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IFNB autocrine feedback is required to sustain TLR induced production

of MCP-1 in macrophages
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Chemokines, including MCP-1, are crucial to mounting an effective immune response due to their
ability to recruit other immune cells. We show that sustained LPS or poly(I:C)-stimulated MCP-1 pro-
duction requires an IFNp-mediated feedback loop. Consistent with this, exogenous IFNp was able to
induce MCP-1 transcription in the absence of other stimuli. Blocking IFNp signaling with Ruxolitinib,
a JAK inhibitor, inhibited MCP-1 transcription. The MCP-1 promoter contains potential STAT binding
sites and we demonstrate that STAT1 is recruited upon IFNg stimulation. Furthermore we find that

IL-10 knockout increases MCP-1 production in response to LPS, which may reflect an ability of IL-10
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to repress IFNB production. Overall, these results show the importance of the balance between IFNB
and IL-10 in the regulation of MCP-1.
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1. Introduction

The immune system has developed to recognise pathogens and
trigger an inflammatory response. Macrophages and other innate
immune cells recognise pathogens via pattern recognition recep-
tors (PRRs) and their activation helps promote the production of
chemokines and cytokines [1-3]. Chemokines produced by cells
present at the site of infection establish a chemoattractant gradient
to recruit other immune cells [4]. Chemokines are small proteins
often with 4 conserved cysteine residues that form two disulphide
bonds and the position of these cysteine residues has been used to
define sub-families of chemokines [5]. Monocyte chemotactic pro-
teins (MCPs) form a subfamily of B-chemokines consisting of 4 pro-
teins (MCP-1, 2, 3 and 4) that share over 60% homology with each
other [6].

MCP-1 is encoded by the ccl2 gene and can be produced by sev-
eral cell types including macrophages and fibroblasts [7]. MCP-1
acts as chemo-attractant for monocytes as well as some other im-
mune cells such as memory T lymphocytes and natural killer cells
[8]. As a result, MCP-1 knockout mice have impaired monocyte
recruitment following intraperitoneal thioglycollate administra-
tion, induction of delayed-type hypersensitivity models or in re-
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sponse to Schistosoma mansoni eggs [9]. MCP-1 can however also
contribute to several diseases. For example, MCP-1 promotes aller-
gic inflammation by inducing immune cell infiltration and stimu-
lating histamine release from mast cells and basophils [10]. In
inflammatory bowel disease, higher levels of MCP-1 in the mucosa
of patients may inhibit the differentiation of monocytes into toler-
ogenic intestinal macrophages [11]. MCP-1 protein levels are also
increased in the plasma of patients with rheumatoid arthritis
[12] and diabetes [13]. Changes in MCP-1 expression as a result
of nucleotide polymorphisms have been correlated to several dis-
eases. For example, an A-2518G promoter polymorphism is linked
to infection; carriers of the AG or GG genotypes were more likely to
develop tuberculosis, which was associated with increased levels
of MCP-1 but less IL-12p40 [14]. This same polymorphism has also
been linked to psoriasis [15]. G-928C and G-362C (which lies in a
potential STAT binding site) promoter polymorphisms are associ-
ated with an increased risk for carotid atherosclerosis and correlate
to increased expression of MCP-1 [16].

Given its multiple roles in disease, how MCP-1 production is
controlled is an important question. Several agonists have been
found to induce MCP-1 secretion and a range of signalling path-
ways and transcription factors have been implicated in this pro-
cess. For example, the induction of MCP-1 expression by LPS in
macrophages is dependent on Tpl2/ERK signalling, as has previ-
ously been shown using both Tpl2 deficient macrophages and
small molecule inhibitors targeting ERK1/2 [17]. TNFo responsive
NFkB elements have been identified in the murine MCP-1
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promoter and they are also likely to control MCP-1 gene transcrip-
tion in response to TLR agonists [18]. A role for Sp-1 in promoting
the assembly of promoter complexes to drive TNFo induced MCP-1
gene expression has been demonstrated using Sp1—/— embryonic
fibroblasts [19]. In B10R cells, a murine macrophage cell line, roles
for NFkB, AP-1 and CREB in MCP-1 transcription in response to
hydrogen peroxide have been proposed based on small molecule
inhibitors and EMSA [20]. Several studies have suggested roles
for STATs in the transcription of MCP-1. STATs are activated by
JAKs and are responsible for mediating many effects of cytokine
signalling. For example, both STAT1 and STAT3 were required for
maximal MCP-1 expression in an osteoblast cell line in response
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to oncostatin M [21]. Furthermore, STAT4 was required for MCP-
1 expression in murine mast cells in response to IFN [22].

In macrophages, MCP-1 expression can be induced by activa-
tion of various PRRs, including members of the Toll-like recep-
tor (TLR) family. The regulation of cytokine production by TLR4
is complicated by the ability of certain LPS induced cytokines to
act in a paracrine or autocrine manner to modulate cytokine
production. For instance, LPS results in the secretion of IL-10
and IFNB [23]. IL-10 acts as a negative feedback mechanism
and can repress pro-inflammatory cytokine and prostaglandin
production while IFNB helps sustain the LPS induced transcrip-
tion of IL-10 and IL-6 [24-28]. Interestingly, both IL-10 and
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Fig. 1. Blocking IL-10 increases MCP-1 in BMDMs. (A and B) BMDMs were isolated from wild-type and IL-10 KO mice and then stimulated with 100 ng/ml LPS for the times
indicated and MCP-1 mRNA levels (determined by Q-PCR) (A) or the levels of MCP-1 protein secreted (B) were determined. (C and D) BMDMs from wild-type mice were
treated with 10 pg/ml IL-10 neutralising antibody for 1 h. Cells were then stimulated with 100 ng/ml LPS for the times indicated and MCP-1 mRNA levels (C) or MCP-1
secretion (D) determined. (E and F) BMDMs were isolated from IL-10 KO mice and where indicated treated with 0.5 uM Ruxolitinib for 1 h. Cells were then treated with either
100 ng/ml LPS alone or a combination of both LPS and 100 ng/ml IL-10. MCP-1 mRNA induction (E) or secreted levels of MCP-1 (F) were determined at the indicated times. In
all panels error bars represent the standard deviation from independent cultures from 4 mice per genotype. A p value (students t-test) relative to the wild type cells of less

than 0.05 is indicated by * and less than 0.01 by **.
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IFNB activate JAK/STAT signalling in macrophages, however de-
spite this, following LPS stimulation IL-10 promotes STAT3
phosphorylation while IFNB results in STAT1 phosphorylation
[29,30]. We show here that while IFNB is not required for the
initial transcription or secretion of MCP-1 in bone marrow de-
rived macrophages (BMDMs), it is required to sustain MCP-1
production in response to both TLR4 and TLR3 activation.

2. Materials and methods
2.1. Mice

C57/BI6 wild-type mice were obtained from Charles River Lab-
oratories or bred in house. Mice were maintained under specific
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Fig. 2. IFNB can induce MCP-1 transcription in BMDMs. (A and B) BMDMs were
isolated from wild-type and IL-10 KO mice and then stimulated with 100 ng/ml LPS
for 8 h and IFNB mRNA levels (A) or IFNB secretion (B) measured by qPCR or ELISA
respectively. (C and D) BMDMs were isolated from wild-type mice and incubated
with 0.5 pM Ruxolitinib for 1 h where indicated before stimulation with 500 Units/
ml IFN for the times indicated. Total RNA was isolated and MCP-1 mRNA levels
determined by Q-PCR (C). Alternatively, MCP-1 protein levels secreted into the
media were determined (D). Error bars represent the standard deviation from
independent cultures from 3 (A and B) or 4 (C and D) mice per genotype. A P value
(students t-test) relative to the no inhibitor conditions of less than 0.05 is indicated
by * and less than 0.01 by **.

pathogen free conditions. Work was carried out in accordance with
EU and UK regulations and covered by a UK Home Office project li-
cence. IL-10 and IFNaBR knockout mice have been described previ-
ously [31] and were backcrossed on C57/BI6 mice for at least 12
generations.

2.2. Cell culture

Primary bone marrow derived macrophages (BMDMs) were
isolated as described previously [32]. Where indicated cells
were pre-treated with 0.5 pM Ruxolitinib (JAK inhibitor), 2 pM
PD184352 (MEK1/2 inhibitor) or 10 pg/ml IL-10 neutralising
antibody. We have previously shown that in macrophages these
concentrations block JAK, ERK1/2 or IL-10 signalling respectively
[32,33].
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Fig. 3. Induction of signaling by IFN is required for sustained MCP-1 transcription
and secretion. BMDMs were isolated from wild-type or IFNofR knockout mice and
incubated with 0.5 uM Ruxolitinib for 1 h where indicated. Cells were stimulated
with 100 ng/ml LPS for the indicated times and MCP-1 mRNA levels (A) or secreted
levels were determined (B). The levels of phosphorylated STAT2, 5 and 6 were
determined by immunoblotting (C). Error bars represent the standard deviation
from independent cultures from 4 mice per genotype. A p value (students t-test)
relative to the wild type cells in the absence of Ruxolitinib of less than 0.05 is
indicated by * and less than 0.01 by **.
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2.3. Q-pcr

Cells were lysed and total RNA purified using the Qiagen micr-
oRNeasy system. Total RNA (0.5-1 pg) was reversed transcribed
using iScript (Bio-Rad) and qPCR carried out using sybergreen
based detection. Levels of 18s were used as a normalization con-
trol, and fold induction calculated as described previously [32]. Pri-
mer sequences were: TTTGAATGTGAAGTTGACCCGTAAATC and
TCACTGTCACACTGGTCACTCC (MCP-1); GTAACCCGTTGAACCCCATT
and CCATCCAATCGGTAGTAGCG (18s); GGAAAAGCAAGAGGAAAG-
ATTGAC and CCACCATCCAGGCGTAGC (IFNB).

2.4. Cytokine measurements

MCP-1 was measured using a Luminex-based assay (Bio-Rad),
according to the manufacturers’ protocol. Briefly, cytokines are
captured using antibody-coupled beads. A biotinylated detection
antibody then binds to the complex followed by a streptavidin-
PE reporter complex. Samples are measured on a dual-laser,
flow-based microplate reader system. [FNB was measured by ELISA
(Pbl Interferon Source).

2.5. Immunoblotting

Immunoblotting was carried out using standard techniques
[32]. Phospho STAT2 and 6 antibodies were from Abcam and phos-
pho STAT5 and ERK2 from Cell Signaling Technology.

2.6. Chromatin Immunoprecipitation

Cells were stimulated with 500 U/ml IFN for 30 min and chro-
matin immunoprecipitations performed as described previously
[34]. Anti-STAT1 and anti-IgG antibodies (Cell Signaling Technol-
ogy) were used. STAT1 or IgG ChIP DNA from either nn-stimulated
or IFN-stimulated cells was analyzed by qPCR to test for the pres-
ence of STAT1 target sequences in the promoter regions of CCL2
(Forward- CACTTCCTGGAAACACCCGA and Reverse-
CTTGGTGCCAAGGAGTAGCA) and a region in the GAPDH with no
known STAT binding site (Forward- AGTGCCAGCCTCGTCCCGTA-
GACAAAATG and Reverse- AAGTGGGCCCCGGCCTTCTCCAT). ChIP
data was calculated as percentage of input DNA for each sample.

3. Results

In response to the TLR4 agonist LPS, BMDMs secrete IL-10 and
this sets up a feedback mechanism that inhibits the production
of multiple pro-inflammatory mediators [27]. As IL-10 acts via a
JAK/STAT pathway and as STATs have been implicated in MCP-1
transcription, we examined the role of IL-10 in LPS induced MCP-
1 production. Following LPS stimulation, wild-type BMDMs rapidly
induced MCP-1 mRNA and this increased level was maintained
over 24 h. Knockout of IL-10 did not affect the initial induction of
MCP-1 mRNA. In contrast, at later time points, IL-10 knockout
BMDMs had a moderately higher induction of MCP-1 compared
to wild-type cells (Fig 1A). The increase in MCP-1 mRNA in the ab-
sence of IL-10 translated into elevated secretion of MCP-1 by the
IL-10 knockout cells relative to wild-type cells at 16 and 24 h after
LPS stimulation (Fig 1B). To confirm these results, LPS stimulation
of wild-type cells was carried out in the presence of a neutralizing
antibody to IL-10. Similar to the IL-10 knockout, the IL-10 neutral-
izing antibody did not greatly affect the initial induction of MCP-1
mRNA but did increase MCP-1 mRNA induction and MCP-1 protein
secretion at later time points (Fig 1C and D). These results suggest
that IL-10 represses MCP-1 production. To confirm that IL-10 could
directly repress MCP-1 induction, IL-10 knockout BMDMs were

isolated and stimulated with LPS in the presence or absence of
exogenous IL-10. The addition of exogenous IL-10 repressed LPS
stimulated MCP-1 transcription and MCP-1 protein secretion (Fig
1E and F). IL-10 signals via the kinases JAK1 and Tyk2, the effects
of IL-10 should therefore be blocked by JAK inhibitors. We there-
fore tested the ability of Ruxolitinib, a JAK inhibitor, to block the ef-
fect of IL-10 on MCP-1 induction. We have previously shown that
Ruxolitinib shows similar IC50s for JAK1, JAK2 and Tyk2 in vitro
[32]. In this study we also demonstrated that at the concentration
used in Fig 1, Ruxolitinib was able to block both IL-10 induced
STAT3 phosphorylation and IFN stimulated STAT1 phosphoryla-
tion in BMDMs. Addition of exogenous IL-10 resulted in decreased
MCP-1 production. This decrease however was not blocked by
addition of Ruxolitinib. In fact, Ruxolitinib treatment inhibited
MCP-1 secretion or sustained MCP-1 mRNA induction in response
to either LPS alone or a combination of LPS and exogenous IL-10.
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Fig. 4. Poly(I:C) induces biphasic IFNB production which is required for sustained
MCP-1 production. BMDMs were isolated from wild-type or IFNafR knockout mice
and stimulated with 10 pg/ml poly(I:C) for the indicated times and IFNf mRNA (A)
or MCP-1 mRNA (B) levels determined by Q-PCR. Alternatively the levels of MCP-1
secreted into the media were determined by Luminex based assay (C). In all panels
error bars represent the standard deviation from independent cultures of 4 mice per
genotype. A P value (students t-test) relative to the wild type cells of less than 0.05
is indicated by * and less than 0.01 by **.
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This indicates another JAK or Tyk2 dependent pathway distinct
from IL-10 is required for maximal MCP-1 expression (Fig 1F).
IFNB is secreted by BMDMs following LPS stimulation and is
also able to activate JAK1/Tyk2 signaling. IL-10 is known to repress
IFNB induction in response to LPS [35,36], thus the results in Fig 1E
could be explained by a requirement for IFNB for sustained MCP-1
mRNA induction. In line with this, knockout of IL-10 resulted in
both increased IFNB mRNA and IFNB protein section in response
to LPS (Fig. 2A and B). The treatment of BMDMs with exogenous
IFNB demonstrated that IFNB was sufficient to increase both
MCP-1 mRNA levels and secreted MCP-1 protein levels (Fig. 2C
and D). Consistent with IFNB stimulating JAK/STAT signaling, this
was inhibited by Ruxolitinib (Fig. 2C and D). To test whether IFNB
was required to maintain LPS induced MCP-1 induction, cells were
isolated from mice with a knockout in the type 1 interferon recep-
tor (IFNafR knockout). IFNaBR knockout macrophages showed a
transient increase in MCP-1 transcription compared to wild-type
cells following a 1 h stimulation with LPS. The reason for this in-
crease is unknown. Despite this early increase, the knockout cells

were unable to sustain MCP-1 mRNA induction resulting in lower
levels relative to wild-type cells at later time points (Fig. 3A). As
IFNB requires JAK1 and Tyk2 to activate intracellular signaling,
we hypothesized that the effects of an IFNB feedback loop should
be blocked by Ruxolitinib. In confirmation of this, treatment of
wild-type cells with Ruxolitinib mirrored the effect of IFNapR
knockout on MCP-1 mRNA induction (Fig. 3A). Ruxolitinib did
not have an additive effect in combination with the IFNogR knock-
out on MCP-1 mRNA induction, in line with it acting downstream
of IFNB. Consistent with the mRNA results, neither knockout of
the IFNafR nor Ruxolitinib treatment greatly affected the initial
secretion of MCP-1 in response to LPS (Fig. 3B). Ruxolitinib did
however reduce the secreted levels of MCP-1 at 16 and 24 h from
wild-type cells. IFNapR knockout also reduced MCP-1 secretion
relative to wild-type controls at 16 and 24 h (Fig. 3B). As for
MCP-1 mRNA, Ruxolitinib did not have an additive with IFNafR
knockout on MCP-1 secretion (Fig. 3B). We have previously shown
that IFNB is required for LPS induced STAT1 but not STAT3 phos-
phorylation [32]. In addition to STAT1, STAT2 Tyr phosphorylation
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was dependent on IFNB signalling, although in contrast the Tyr
phosphorylation of STAT5 and 6 was increased in IFNoR knockout
BMDMs (Fig. 3C).

As TLR3 activation also promotes IFNB production by macro-
phages we examined the effect of TLR3 agonist poly(I:C) on MCP-
1 production. Consistent with what has been reported previously
[37-39], poly(I:C) induces significant IFNB transcription, which
was biphasic in macrophages, with the second wave of IFN tran-
scription dependent on type I IFN signalling as it was absent in IF-
NopR knockout BMDMs (Fig. 4A). MCP-1 mRNA levels were
increased by stimulation with poly(I:C), although to lower levels
than seen with LPS stimulation. At 1 h, MCP-1 transcription was
independent of type I IFN signaling as it was unaffected by the IF-
NofR knockout (Fig. 4B). However, the sustained induction of
MCP-1 mRNA was lost in IFNafR knockout (Fig 4B). Poly(I:C) was
also able to induce MCP-1 secretion, and in line with the mRNA re-
sults MCP-1 secretion was considerably lower from poly(I:C)
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stimulated IFNafR knockout BMDMs relative to wild-type cells
(Fig. 4C).

Loss of the type I interferon receptor leads to reduced STAT1
[32] and STAT2 phosphorylation (Fig 3C), therefore perhaps loss
of activated STAT transcription factors is responsible for the re-
duced transcription of MCP-1 seen at later time points. Further-
more, a potential STAT binding site is evident within the MCP-1
promoter (Fig. 5A). To investigate a direct role for STAT1 in MCP-
1 transcription, primary macrophages were stimulated with IFNB
and STAT1 chromatin immunoprecipitation carried out. Upon
stimulation with IFNB, a marked increase in STAT1 was found at
the MCP-1 promoter compared to an IgG negative control and in
the unstimulated state with STAT1 and IgG (Fig. 5B and C).

The ERK1/2 pathway can inhibit IFNB transcription resulting in
less IFNB secretion [40]. As a result, blocking ERK1/2 pharmacolog-
ically may lead to increased IFNB production which would then
further stimulate MCP-1 production at later time points. Against
this, a direct role for ERK1/2 in promoting MCP-1 induction has
also been suggested [17]. To investigate this, macrophages were
stimulated with LPS for up to 24 h in the presence or absence of
2 uM PD184352, a MEK1/2 inhibitor that blocks the activation of
ERK1/2 in response to LPS [33]. Treatment with the ERK1/2 inhib-
itor lead to significantly increased IFNB mRNA transcription from
1 h onwards (Fig. 6A). However, this did not lead to increase in
MCP-1 transcription (Fig. 6B) or secretion (Fig. 6C). In contrast
PD 184352 actually decreased the induction of both secreted
MCP-1 protein and MCP-1 mRNA at later time points, an observa-
tion consistent with a previous report indicating that ERK1/2 can
directly promote MCP-1 production [17].

4. Discussion

The sustained production of pro-inflammatory cytokines by TLR
agonists is modulated by autocrine signaling. For instance, endog-
enously produced IL-10 acts to inhibit further pro-inflammatory
cytokine production and this is important to keep cytokine produc-
tion in check and to prevent excessive inflammation [24]. In con-
trast, IFNB helps maintain the production of specific cytokines
downstream of LPS [41]. The importance of this in vivo is demon-
strated by the finding that IFNB knockout mice are protected from
LPS-induced endotoxic shock [42]. Interestingly, despite their dif-
ferent actions on macrophages, both IFNB and IL-10 signal via
JAK1 and Tyk2. Following LPS stimulation however, endogenously
produced IL-10 results in STAT3 phosphorylation while IFNB is
responsible for STAT1 phosphorylation [32,33]. The molecular de-
tails of this specificity are not clear and specificity is lost if exoge-
nous IL-10 or IFNB are added at high concentrations [43-45].

We demonstrate here that the sustained production of MCP-1 in
macrophages in response to LPS or poly(l:C) requires an IFNB
dependent feedback loop. Additionally, we show that IFNB can di-
rectly stimulate MCP-1 transcription and that Ruxolitinib, a JAK
inhibitor, blocks IFNB-induced MCP-1 transcription. IFNB induces
STAT1 and STAT2 phosphorylation and STAT activation may ex-
plain the effects of IFNB on MCP-1 expression (Fig. 5, [32]). STAT1
binding sites have previously been identified in the MCP-1 pro-
moter [46,47]. Our data supports a role for STAT1 and/or STAT2
in the control of MCP-1 transcription, as an IFNB mediated feed-
back loop drives STAT1 and STAT2 tyrosine phosphorylation in re-
sponse to LPS. We have also shown that STAT1 is recruited to the
ccl2 promoter in response to IFNB, this underlines the potential
importance of STAT1 to MCP-1 transcription. STAT1 and STAT2
can form heterodimers [48,49] and therefore loss of STAT2 activa-
tion might be relevant to the loss of sustained MCP-1 production.
In line with a potential role for STAT2, one study has shown that
STAT2 KO mice produce less MCP-1 in a model of colitis [50]. A role
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for STAT6 in regulating MCP-1 expression in murine peritoneal
macrophages has been suggested [51]. Our data however demon-
strates that STAT6 phosphorylation is stronger in IFNafR KO mac-
rophages, which is consistent with a study showing that interferon
B suppress STAT6 activation by IL-4 [52]. STAT6 is therefore unli-
kely to explain the regulation of MCP-1 by IFNB downstream of
TLR4 or 3 activation.

We show here that IL-10 can repress MCP-1 transcription, how-
ever the mechanism by which this occurs is not clear. One inter-
pretation is that IL-10 directly represses MCP-1 transcription.
Alternatively, this could be due to IL-10 repressing IFNB produc-
tion, as less IFNB would limit the IFNB-mediated feedback loop re-
quired to sustain MCP-1 transcription. IL-10 KO macrophages
produce higher levels of IFNB in response to LPS. Furthermore,
addition of exogenous IL-10 results in decreased IFNpB secretion
[35,36]. This increase in IFNB could explain the elevated levels of
MCP-1 transcription in LPS-stimulated IL-10 KO macrophages.

It has been previously published that the ERK1/2 pathway will
negatively regulate IFNB production [40], blocking the ERK1/2
pathway could therefore be predicted to lead to increased produc-
tion of MCP-1 by enhancing the IFNB autocrine loop. Whilst phar-
macological inhibition of ERK1/2 did indeed cause enhanced IFNB
transcription, a resultant increase in MCP-1 production was not
evident. In fact, loss of ERK1/2 signaling resulted in the reduction
of MCP-1 mRNA induction and protein secretion at later time
points, demonstrating the importance of ERK1/2 in MCP-1 tran-
scription as previously published [17].

IFNB is a key mediator of viral immune responses and so it is
interesting that MCP-1 is directly up-regulated in response to I[FNB.
Studies involving knockout mice for MCP-1 or its receptor, CCR2,
show a role for this pathway in the anti-viral response. In a model
of influenza pneumonia, WT mice have a profound increase in pul-
monary MCP-1 levels. MCP-1 KO mice showed increased viral load,
a diminished influx of macrophages and granulocytes and in-
creased pro-inflammatory mediators such as TNFa and IL-6 [53].
MCP-1 and CCR2 deficient mice infected with murine CMV showed
reduced accumulation of macrophages and NK cells as well as in-
creased viral titers [54]. In West Nile virus infection, CCR2 defi-
ciency results in reduced monocyte accumulation in the brain
and increased mortality from encephalitis [55]. These studies show
a direct role for MCP-1 in anti-viral responses and therefore the
IFNB mediated induction of MCP-1 downstream of TLR3 and/or 4
may important for an appropriate host response to viral infection.

In conclusion, we show that in macrophages the sustained pro-
duction of MCP-1 in response to LPS or poly(I:C) requires an auto-
crine IFNB signaling loop. In addition, we show that Ruxolitinib, a
selective JAK inhibitor, can attenuate the transcription of MCP-1.
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