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Abstract

Environmental temperatures are a major constraint on ectotherm abundance, influencing

their distribution and natural history. Comparing thermal tolerances with environmental tem-

peratures is a simple way to estimate thermal constraints on species distributions. We inves-

tigate the potential effects of behavioral thermal tolerance (i. e. Voluntary Thermal

Maximum, VTMax) on anuran local (habitat) and regional distribution patterns and associated

behavioral responses. We tested for differences in Voluntary Thermal Maximum (VTMax) of

two sympatric frog species of the genus Physalaemus in the Cerrado. We mapped the differ-

ence between VTMax and maximum daily temperature (VTMax—ETMax) and compared the

abundance in open and non-open habitats for both species. Physalaemus nattereri had a

significantly higher VTMax than P. cuvieri. For P. nattereri, the model including only period of

day was chosen as the best to explain variation in the VTMax while for P. cuvieri, the null

model was the best model. At the regional scale, VTMax—ETMax values were significantly

different between species, with P. nattereri mostly found in localities with maximum temper-

atures below its VTMax and P. cuvieri showing the reverse pattern. Regarding habitat use, P.

cuvieri was in general more abundant in open than in non-open habitats, whereas P. natter-

eri was similarly abundant in these habitats. This difference seems to reflect their distribution

patterns: P. cuvieri is more abundant in open and warmer habitats and occurs mostly in

warmer areas in relation to its VTMax, whereas P. nattereri tends to be abundant in both

open and non-open (and cooler) areas and occurs mostly in cooler areas regarding its

VTMax. Our study indicates that differences in behavioral thermal tolerance may be impor-

tant in shaping local and regional distribution patterns. Furthermore, small-scale habitat use

might reveal a link between behavioral thermal tolerance and natural history strategies.
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Introduction

Environmental temperatures are a major constraint on ectotherm abundance and diversity,

influencing their distribution and natural history [1–3]. Several studies have explored environ-

mental constraints on ectothermic vertebrates at regional and global scales [1, 4]. The physio-

logical performance of individuals can be negatively affected by high environmental

temperatures [5], which can lead to declining populations and/or local extinctions [6, 7]. Thus,

knowing species thermal tolerance and exploring how environmental temperatures might

affect their physiology and restrict their distribution is of primary concern for long-term con-

servation, especially under current global warming crisis (e.g. [8, 9]), as well as habitat distur-

bance causing microclimate changes (e.g. habitat fragmentation; [10]).

However, thermal tolerances are rarely taken into account in studies that focus on local dis-

tribution and habitat use. For instance, many studies infer potential distribution of species

using solely environmental temperatures from occurrence localities to model their niche [11–

14]. While the broad geographical range of a species most likely reflects its thermal tolerance

(e.g. [15, 16]), local factors might also play a role in shaping abundance and distribution. At a

local scale, high environmental temperatures and its daily variation in the microhabitats of

small ectotherms (e.g. anurans and lizards) impose physiological constraints on their activity

patterns and habitat use [12]. For example, in habitats where direct sunlight is limited, the vari-

ation in temperatures is lower than in open habitats, suggesting a possible interplay between

thermal tolerance and habitat use [17]. However, studies that relate how thermal tolerances

affect habitat use and distribution are scarce.

Thermal tolerances can be behavioral, when an animal moves or adjusts its body posture to

thermoregulate, or physiological if it does not move but uses other strategies such as increased

respiration rates [3]. Behavioral and physiological thermal tolerances impact not only species

ranges, but also the distribution and abundance patterns of their populations [3]. Identifying

thermal tolerance thresholds (i.e. measurable thermal limits) outside the range of preferred

body temperatures (PBT) for thermoregulation (see [18]) allows for the identification of tem-

peratures that directly affect the behavioral and physiological thermal tolerance of ectothermic

organisms. One of the thresholds related to PBT is the Voluntary Thermal Maximum (VTMax),

which represents a behavioral thermal tolerance measure. VTMax is the maximum temperature

that an organism will endure before trying to move to a place with a lower temperature, thus

trying to maintain its body temperature within its range of PBT [3, 18, 19]. If an individual

fails to respond to its VTMax, an increase in body temperature will expose it to its physiological

thermal limit (i.e. its Critical Thermal Maximum), which can lead to functional collapse and

consequently death due to overheating [19, 20]. Therefore, the behavioral response to upper

limits might represent a more informative ecological threshold to identify thermal constraints

on habitat use and geographic distribution [3, 8, 13]. Contrary to the Critical Thermal Maxi-

mum, the exposure to the VTMax does not induce an immediate loss of locomotion [3, 21].

Therefore, VTMax can more realistically portray changes in species behavior associated with

their natural history.

Behavioral thermal tolerances can be influenced by factors such as reproductive status, sex,

photoperiod, and hydration state [18, 22]. Additionally, thermal tolerances such as the VTMax

might decrease with body size: due to thermal inertia, larger animals might have slower heat-

ing and cooling rates than small animals, which increases the exposed time to stressful thermal

conditions [23, 24]. Thus, understanding the effects of these variables on the VTMax might

help to evaluate its impact on habitat use and geographic distribution.

Herein we address the question: Does VTMax determine habitat use and regional distribu-

tion patterns in a pair of congeneric frogs, Physalaemus cuvieri and P. nattereri, which are
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widely sympatric in the savannas of Central Brazil? Our hypothesis is that, for being a measure

that reflects avoidance of stressful thermal conditions, VTMax determines both habitat use and

geographic distribution in these species. If VTMax decreases with body size (see above; [23,

24]), we predict that VTMax is lower in the larger species (P. nattereri). Furthermore, if VTMax

determines habitat use and geographic distribution, we predict that (i) the species with lower

VTMax is less abundant in open habitats, with higher environmental temperatures, and that

(ii), regarding geographic distribution, both species occur mostly in localities where the maxi-

mum environmental temperature is below their VTMax. We expect that our results can con-

tribute to assess the vulnerability of Neotropical frogs to climate change by integrating their

behavioral thermal tolerances with their habitat use and distribution patterns, in order to iden-

tify areas with potential stressful climatic conditions to their populations.

Materials and methods

Focal species

Most species of the genus Physalaemus have sympatric populations along extensive areas, such

as Physalaemus nattereri [25] and Physalaemus cuvieri [26] (see [27]), which are widespread in

central South America [25, 26]. These species belong to different clades within Physalaemus
(P. signifer and P. cuvieri clades, respectively; [28]). Physalaemus nattereri has a stout body, a

moderate to large size (adult snout-to-vent length of 29.8–50.6 mm) and is endemic to the Cer-

rado, whereas P. cuvieri has a slenderer body, a smaller size (snout-to-vent length of adults 28–

30 mm) and occurs throughout the Cerrado, in southern portions of the Amazon Forest and

in the Atlantic Forest [29]). Although the populations traditionally assigned to P. cuvieri (see

[27]) may include more than one cryptic species (see [28]), most of the distribution of P.

cuvieri in the Cerrado correspond to a single lineage (Lineage 2 in [28]). These two species also

differ in their biology. While P. cuvieri uses several aquatic habitats for reproduction and seeks

shelter during the day in previously-dug burrows, P. nattereri breeds mostly in temporary pud-

dles and buries itself in the soil during the day aided by metatarsal tubercles (S1 Fig) on its

hind feet [29–31].

Physiological parameters

Capture and maintenance of individuals. Fieldwork was carried out at Estação Ecológica

de Santa Bárbara (22˚49’2.43"S, 49˚14’11.29"W; WGS84, 590 m elevation), one of the few rem-

nants of Cerrado savannas in the state of São Paulo, Brazil, with a total area of 2,712 ha [32].

The climate is Humid subtropical [33], with temperatures averaging 24˚C and 16˚C during

January and July, the hottest and coldest months, respectively. The average annual rainfall is

1100–1300 mm, with marked dry and wet seasons (approximately April to September and

October to March, respectively; [32]). The landscape not only consists of open grassland and

savanna-type formations, such as ‘campo sujo’ and ‘campo cerrado’, but also of non-open veg-

etation types such as ‘cerrado strictu sensu’ (dense savanna) and ‘cerradão’ (cerrado wood-

land). Between 24 and 28 September 2018, we captured 14 individuals of P. nattereri and 20 of

P. cuvieri in pitfall traps with drift fences [34, 35] and these individuals were housed individu-

ally in plastic boxes at room temperature. This study was conducted under a permit by

Comissão de Ética no Uso de Animais (CEUA #2325141019) of Instituto Butantan. All animals

were alive after the experiments described below and were released the following morning at

the site of capture.

Measurements of the Voluntary Thermal Maximum (VTMax). To obtain the VTMax for

each species, we measured each individual at 100% hydration level less than 24 hours after cap-

ture. To reach maximum hydration level, each individual was placed in a cup with water ad
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libitum one hour prior to the experiment. Then, its pelvic waist was pressed to expel the urine

and to obtain its 100% hydration level in relation to its standard body mass. We heated each

individual inside a metal box wrapped in a thermal resistance for heating. The box had a mov-

able lid, allowing the animal to easily leave the box when needed. A thin thermocouple (type-

T, Omega1) was located in the inguinal region of each individual to record its body tempera-

ture during the heating [22]. Another type-T thermocouple was placed inside (on the surface)

of the box to record heating rate of individuals. A dimmer previously connected to the

box allowed to control that its temperature not exceeded 5–6˚C the temperature of the individ-

ual, allowing the thermoregulation of individuals, and avoided thermal shock and/or a prema-

ture exit of the box by the frog (i. e. before VTMax is reached; [22]). The thermocouples were

calibrated and connected to a FieldLogger PicoLog TC-08 to record temperature data every 10

seconds. The VTMax of each individual was recorded as its last body temperature at the time of

leaving the box. Once its final body mass was measured, it was taken to a container with water

for recovery. Furthermore, to control for a potential effect of photoperiod on behavioral ther-

mal tolerances, we tested if the VTMax differed between different times of the day by testing

half of the individuals of each species in different periods: 10:00 to 17:00 (daytime) and 19:00

to 00:00 (nighttime).

Statistical analyzes. We used Mann-Whitney U tests to compare the VTMax, and ex-

perimental variables between species. Experimental variables were: period (day or night),

duration of experiment, initial body mass, initial body temperature, and heating rate. To test

for the effect of possible confounding experimental variables on the VTMax, we constructed

generalized least squares models for each species. We used the corrected Akaike Information

Criterion (AICc) to select the model that best represented the effects of factors and their

interactions on the VTMax of each species. Differences of two units in AIC (ΔAICc) were

not considered to be different [36]. We considered the model with weighted AIC (wAICc) val-

ues close or equal to 1 to represent the strongest model. All statistical analyzes and plotting

were performed in R 3.5.0 [37], with the nlme [38], ggplot2 [39] and AICcmodavg [40]

packages.

Distribution and habitat. We used vouchered occurrence data for P. cuvieri (N = 163)

and P. nattereri (N = 164) in the Cerrado from a distribution database built for another study

[41]. We calculated and mapped the difference between the VTMax and maximum environ-

mental temperature (ETMax; Bio 5; 30 seconds or ~1 km resolution from WorldClim Vr. 2.0;

[42]), for each occurrence point of each species in Cerrado; the VTMax was that obtained at

Estação Ecológica de Santa Bárbara. We used a Mann-Whitney U test to compare VTMax—

ETMax of species occurrence records. All maps and GIS procedures were made in QGIS 3.12

[43]. We tested for differences between species in habitat use by comparing abundances in

open (‘campo cerrado’, ‘campo sujo’, and ‘campo limpo’) and non-open habitats (gallery for-

est, ‘cerradão’ and cerrado stricto sensu; [44]) for communities within Cerrado where both spe-

cies occur in sympatry, available in the literature [45–50]. We used PAST [51] to test for

differences between the proportion of each species in open and non-open habitats with chi-

square and Fisher Exact tests, the latter when at least one cell was< 5.

Results

Voluntary Thermal Maximum (VTMax) and experimental conditions

We found that VTMax was significantly lower for P. cuvieri than for P. nattereri (Table 1;

U = 51, p = 0.0013). We also found significant differences in initial body mass (Table 1; U = 0,

p< 0.0001) between species, with P. nattereri being heavier. We did not find significant differ-

ences in start body temperatures (Table 1; U = 112, p = 0.3359), period of day (Table 1;
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U = 0.12, df = 32, p = 0.9051), duration of the experiment (Table 1; U = 128, p = 0.6872) and

heating rate (Table 1; U = 123.5, p = 0.5752) between species (see S1, S2 and S3 Tables).

We compared six models for both species using the AIC selection criteria. For P. nattereri,
the model including only period (day or night) was chosen as a better explanation of variation

in the VTMax (Table 2), with higher values attained during daytime. For P. cuvieri, we retained

the simpler null model, which showed a higher wAICc, which indicates that no variable

explains the variation of the VTMax of this species (Table 3).

Distribution and habitat

Overall distribution of occurrences was similar for the two species, occupying mainly the

central and southern portions of the Cerrado (Fig 1; S4 Table). Thus, the distribution of

Table 1. Variation of the VTMax and predictor variables for P. cuvieri and P. nattereri from Estação Ecológica de Santa Bárbara, state of São Paulo, Brazil.

Variable Physalaemus cuvieri Physalaemus nattereri
Mean ± SD Range Mean ± SD Range

VTMax 30.20 ± 1.69˚C 27.48–33.13˚C 32.74 ± 2.14˚C 29.59–36.71˚C

Day 29.62 ± 1.48˚C 27.48–31.94˚C 34.18 ± 1.62˚C 32.09–36.71˚C

Night 30.69 ± 1.76˚C 28.14–33.13˚C 31.74 ± 1.96˚C 29.59–34.97˚C

DOE 27.85 ± 18.17 min 6–86 min 26.72 ± 20.07 min 6–81 min

ST 25.79 ± 1.18˚C 22.95–27.0˚C 26.41 ± 2.30˚C 22.73–30.58˚C

IBM 2.15 ± 0.72 g 1.19–3.82 g 7.27 ± 7.52 g 4.86–32.45 g

HRA 0.07 ± 0.07˚C/min 0.01–0.38˚C/min 0.12 ± 0.21˚C/min 0.06–0.84˚C/min

Predictor variables are: period of day (day and night), initial body temperature (ST), duration of experiment (DOE), initial body mass (IBM), and heating rate (HRA).

https://doi.org/10.1371/journal.pone.0239485.t001

Table 2. Effect of period, start body temperature, duration, initial body mass, and heating rate on the Voluntary Thermal Maximum (VTMax) of P. nattereri from

Estação Ecológica de Santa Bárbara, state of São Paulo, Brazil.

Model Variables Value Std.Error t-value AICc wAICc ΔAICc

VI Intercept 34.245 0.7844 43.66 63.1 0.66 0.000

Period -2.3937 1.0072 -2.377

I Intercept 32.8771 0.5729 57.384 65.13 0.24 2.04

V Intercept 33.48146 6.78518 4.934 67.13 0.09 4.03

Period -2.35356 1.09774 -2.144

Start body temperature 0.02784 0.24653 0.113

IV Intercept 33.402492 7.257777 4.602 72.18 0.01 9.08

Period -2.375403 1.192946 -1.991

Start body temperature 0.027744 0.258758 0.107

Duration 0.002234 0.029308 0.076

III Intercept 34.11138 7.23078 4.718 77.08 0 13.98

Period -2.9531 1.29369 -2.283

Start body temperature -0.03477 0.2628 -0.132

Duration 0.01298 0.03072 0.422

Initial body mass 0.0873 0.08377 1.042

II Intercept 40.97635 8.8114 4.65 83.03 0 19.94

Period -4.69461 1.85994 -2.524

Start body temperature -0.28142 0.31754 -0.886

Duration 0.04667 0.03908 1.194

Initial body mass 0.13547 0.08914 1.52

Heating rate -5.52697 4.19531 -1.317

https://doi.org/10.1371/journal.pone.0239485.t002
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environmental temperatures was similar for both species. However, because the VTMax was

different between species, the resulting distribution of VTMax—ETMax values was markedly

different (Fig 1A and 1B). The north central portion of the Cerrado showed much higher envi-

ronmental temperatures than the VTMax of P. cuvieri (Fig 1A), while this region is mostly

below the VTMax of P. nattereri (Fig 1B). Furthermore, VTMax—ETMax values were found to

be significantly different between species (U = 2249, p< 0.001; Fig 1C). Physalaemus nattereri
is mostly found (~ 80%) on localities that attain maximum temperatures equal to or lower

than its VTMax, whereas P. cuvieri seems to be mostly distributed (~ 60%) in localities with

temperatures higher than its VTMax (Fig 1C).

We obtained abundance data for five additional localities in southern Cerrado, most of

them from protected areas (Fig 2; see also S2 Fig). In only two localities [49 and 50 + this

study] we found significant differences between the proportion of each species in open and

non-open habitats (S5 Table); in both cases, P. cuvieri was proportionally more abundant than

P. nattereri in open areas. Considering the pooled abundances of these six studies, P. cuvieri
was nearly twice more abundant in open (N = 2317 individuals) than in non-open areas

(N = 1201), while P. nattereri was similarly abundant in open (N = 469) and non-open areas

(N = 506; S5 Table). Furthermore, P. cuvieri was more abundant in open areas than in non-

open areas in three localities and P. nattereri, in two localities, whereas both species were more

abundant in non-open areas in two localities each (Fig 2; S5 Table).

Discussion

Our results show that the Voluntary Thermal Maximum (VTMax) is higher for P. nattereri
than for P. cuvieri, contrary to our first prediction that larger body size (and an expected slower

Table 3. Effect of period, start body temperature, duration, initial body mass, and heating rate on the Voluntary Thermal Maximum (VTMax) of P. cuvieri from

Estação Ecológica de Santa Bárbara, state of São Paulo, Brazil.

Model Variables Value Std.Error t-value AICc wAICc ΔAICc

I Intercept 30.293 0.3788 79.98 81.52 0.48 0

VI Intercept 29.69 0.5352 55.478 81.89 0.400 0.370

Period 1.0964 0.7337 1.494

V Intercept 28.01163 8.54933 3.276 84.99 0.08 3.47

Period 1.0601 0.7799 1.359

Start body temperature 0.06593 0.3355 0.196

IV Intercept 24.27443 8.89011 2.73 86.91 0.03 5.39

Period 1.35975 0.81681 1.665

Start body temperature 0.15946 0.33822 0.471

Duration 0.02977 0.02327 1.279

III Intercept 24.16542 9.23459 2.617 91.07 0 9.55

Period 1.4054 0.89665 1.567

Start body temperature 0.16829 0.35657 0.472

Duration 0.03163 0.02728 1.16

Initial body mass -0.09116 0.62658 -0.145

II Intercept 24.89384 9.69648 2.567 95.73 0 14.21

Period 1.38928 0.92409 1.503

Start body temperature 0.14817 0.37081 0.4

Duration 0.03157 0.02811 1.123

Initial body mass -0.05353 0.65185 -0.082

Heating rate -2.10171 5.68863 -0.369

https://doi.org/10.1371/journal.pone.0239485.t003
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cooling rate) would reflect in a lower VTMax. Additionally, no difference in heating rate was

found between species and only P. nattereri showed a significant difference on its VTMax

between day and night. Regarding habitat use, in general, we found the species with lower

VTMax, P. cuvieri, to be more abundant in open habitats than in non-open habitats, which

does not support our prediction that the species with the lower thermal tolerance should be

less abundant in habitats with higher environmental temperatures. Lastly, in spite of both spe-

cies being widespread in Cerrado, they showed different patterns of VTMax—ETMax values

throughout their ranges, with only P. nattereri having most of its records in localities with tem-

peratures below its VTMax. Thus, only for P. nattereri did we confirm our prediction that

regional distribution comprises mostly localities with environmental temperatures below the

VTMax.

Regarding the lower VTMax values in the nocturnal period for P. nattereri, this result war-

rants future studies exploring variation in behavioral thermal tolerances in diurnal and noctur-

nal species in both periods of the day. Indeed, a higher VTMax during the day could reflect

physiological adjustment of its thermal safety margin (see [22]), thus helping to protect the

frog from extreme, potentially deleterious temperatures.

Fig 1. Geographical distribution of the studied species and VTMax—ETMax values throughout their distribution. (A) Distribution of Physalaemus cuvieri; (B)

distribution of Physalaemus nattereri; and (C) comparison of VTMax—ETMax values at occurrence points between these species in the Cerrado.

https://doi.org/10.1371/journal.pone.0239485.g001
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The difference in VTMax values between these two frog species might be related to their dif-

ferent body sizes [51, 52] but additionally might reflect their physiology and natural history.

For instance, although there was no difference in heating rate between the species, P. nattereri
might still cool slower when exposed to high temperatures because of its larger body size. As

for differences in natural history, P. nattereri burrows in the soil [30, 31], which may allow it to

quickly reduce its body temperature, since the soil is a good thermal insulant [53]. On the

other hand, P. cuvieri uses pre-existing cavities as diurnal refuge (e. g. see [54]), which, in spite

of also being below ground level (S3 Fig), are more exposed to variations in external environ-

mental temperatures. Yet, despite having a lower VTMax, most of the localities of P. cuvieri in

Cerrado have temperatures above its VTMax. This suggests that other aspects of its thermal

ecology might be playing a role in avoiding thermal stress, such as a reduced daily activity time

or physiological traits regulating hydration state.

As wet skin ectotherms, hydration level can also influence the temperatures tolerated and

selected by individuals for thermoregulation in their habitats [55–58]. This has been observed

for other frog species (e. g. Rana catesbeiana; [22]), with individuals decreasing their VTMax in

response to dehydration, and some even losing their behavioral response to the VTMax. Even

though we controlled for hydration when measuring VTMax, individuals in the wild rarely are

at their optimal hydration level and thus desiccation might influence local frog distribution

[59]. Desiccation has been shown to be correlated with substrate use [60] and with dispersal

Fig 2. Relative abundance (in %) of P. cuvieri (blue bars) and P. nattereri (green bars) in open and non-open areas in Cerrado (see S2 Fig). Sources of data: [45–50].

Detailed data on the abundance of the frogs in different vegetation types are in S5 Table.

https://doi.org/10.1371/journal.pone.0239485.g002
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probability throughout the landscape [59]. Additionally, closely related frog species may vary

in their response to desiccation along thermal gradients, with some species showing greater

resistance to water loss at lower temperatures, and others at higher temperatures [61]. There-

fore, knowing the interaction between VTMax and hydration state of individuals in their envi-

ronments can help to understand patterns and/or limits in their distribution [59, 62–64].

We found that P. cuvieri, the species with the lower VTMax, was in general more abundant

in open habitats, despite our second prediction that the species with the lower VTMax should

be less abundant in warmer habitats (up to 35–37 ºC in open habitats versus 32–35 ºC in non-

open habitats in our study area; pers. obs.). On the other hand, P. nattereri, which showed a

higher VTMax, was in general similarly abundant in open and non-open habitats. These results

may reflect clade-related physiological constraints and further studies on the relationship of

VTMax with habitat use should include additional species from both clades within the genus

Physalaemus to which these species belong [28]. Although competition could also lead to dif-

ferences in habitat use, especially in closely related species, we found no evidence of competi-

tion between our focal species in cerrado habitats (e. g. extensive niche overlap associated with

limited resources, negative correlations between abundances; [65]).

Even though we found a relatively high variation in the data on habitat use for both species,

the difference in the use of open and non-open habitats between species seems to be reflected

in the overall patterns of their distribution throughout the Cerrado regarding their VTMax.

Indeed, P. cuvieri is in general more abundant in open and warmer habitats and occurs mostly

in areas that attain maximum temperatures higher than its VTMax, whereas P. nattereri tends

to be abundant in both open and non-open (and cooler) areas and occurs mostly in areas that

attain maximum temperatures below its VTMax. Although geographic biases in sampling effort

could affect these results, our study species are usually extremely abundant and conspicuous in

localities where they occur, making them very easy to detect in inventories, by almost all frog

sampling techniques. Thus, we are confident that the records in the maps of Fig 1 correspond

to their overall actual distribution in the Cerrado. We highlight the importance of considering

different spatial scales—geographic range and habitat use, as proposed by [66]—because these

allow to quantify how species distribution may reflect different aspects of their niches.

Despite numerous ecophysiological studies comparing how environmental temperatures

influence habitat use of species [11, 13], these rarely account for thermal tolerances. Using

behavioral thermal tolerances, such as the VTMax, allows for the integration of thermoregula-

tory behavior, which usually happens before critical limits are reached [3, 67, 68]. Further-

more, integrating the VTMax with natural history and geographic distribution data can be

critical to understand how future scenarios of global warming might impact distribution [69,

70], especially for amphibians which are already under a global decline worldwide [71, 72].

Our study indicates that differences in behavioral thermal tolerance may be important in shap-

ing local and regional distribution patterns. Furthermore, small-scale habitat use might reveal

a link between behavioral thermal tolerance and natural history strategies. Further studies

using additional sympatric species of the genus Physalaemus (e. g. P. centralis, from the same

clade of P. cuvieri, and P. marmoratus, from the same clade of P. nattereri) could help to eluci-

date if those differences are due to body size variation or if tolerances are phylogenetically con-

served. We hope this study stimulates future mechanistic studies on amphibian thermal

ecology and on the impact of global warming on species distribution.

Supporting information

S1 Fig. Detail of hind feet of Physalaemus species in the study. P. nattereri (A–B) and P.

cuvieri (C–D), showing the inner and outer metatarsal tubercles in the detail. Note the much
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larger and strongly keratinized tubercles in P. nattereri. Photos not to scale.

(PDF)

S2 Fig. Relative abundance (in %) of P. cuvieri (blue circles) and P. nattereri (red circles)

in open (brown) and non-open (green) areas in Cerrado (see S5 Table). The localities are:

Floresta Nacional (FLONA) de Silvânia (GO), Reserva Particular do Patrimônio Natural

(RPPN) Cabeceira do Prata (MS), Estação Ecológica (EE) Jataı́ (SP), Estação Ecológica de Itira-

pina (SP), Estação Ecológica de Santa Bárbara (SP), and Aporé River (GO and MS). Sources of

data: [45–50]. Detailed data on the abundance of the frogs in different vegetation types are in

S5 Table.

(PDF)

S3 Fig. Temperature during a 24-hour cycle measured in the field. A) Temperature mea-

sured with sensors buried in the soil at superficial soil (green) and below ground level (red)

and in a frog-sized plaster model (blue). B) Illustration of the measurement setup.

(PDF)

S1 Table. Physiological data of species. Data on each individual tested for Voluntary Thermal

Maximum (VTMax) in this study.

(XLSX)

S2 Table. Temperature data of P. cuvieri during experiments.

(XLSX)

S3 Table. Temperature data of P. nattereri during experiments.

(XLSX)

S4 Table. Geographical records of both species in the Cerrado ecoregion. Data from a distri-

bution database built for another study [41].

(XLSX)

S5 Table. Habitat and abundance data for both species in six localities of the Cerrado ecor-

egion. [45–50].

(XLSX)
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