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A B S T R A C T   

Ovarian cancer represents a severe gynecological malignancy with a dire prognosis, underscoring 
the imperative need for dependable biomarkers that can accurately predict drug response and 
guide therapeutic choices. In this study, we harnessed online single-cell RNA sequencing 
(scRNAseq) and bulk RNA sequencing (RNAseq) datasets, applying the Scissor algorithm to 
identify cells responsive to paclitaxel. From these cells, we derived a gene signature, subsequently 
used to construct a prognostic model that demonstrated high sensitivity and specificity in pre-
dicting patient outcomes. Moreover, we conducted pathway and functional enrichment analyses 
to uncover potential molecular mechanisms driving the prognostic gene signature. This study 
illustrates the critical role of scRNAseq and bulk RNAseq in developing precise prognostic models 
for ovarian cancer, potentially transforming clinical decision-making.   

1. Introduction 

Ovarian cancer (OV) ranks as the fifth leading cause of cancer-related mortality among women, with the incidence increasing 
significantly after the age of 50 [1]. Despite a general five-year survival rate of around 50 %, prognosis dramatically varies depending 
on the stage at diagnosis [2]. Often termed the ‘silent killer,’ OV’s nondescript symptoms frequently lead to late diagnosis, com-
pounding treatment challenges [3]. Chemotherapy, incorporating agents such as paclitaxel, carboplatin, and doxorubicin, remains the 
cornerstone of post-surgical treatment for OV [4,5]. However, patient responses to these chemotherapeutic regimens differ markedly 
due to factors such as cancer stage, tumor cell heterogeneity, and specific drug efficacy [6]. Consequently, there is a critical need to 
stratify patients into distinct groups based on their chemotherapy responses [7], enabling clinicians to tailor more effective treatment 
strategies for OV. 

Previous studies have leveraged RNAseq to investigate drug responses in OV cells, illuminating the genomic landscape of che-
moresistance [8,9]. For instance, one study employed RNAseq to discern a gene set distinctly expressed between drug-sensitive and 
drug-resistant OV cells [10]. This research revealed that drug-resistant cells exhibit elevated expression of genes related to drug 
detoxification and cell survival, shedding light on the molecular underpinnings of drug resistance in OV. Another study utilized 
RNAseq to profile the transcriptomes of OV cell lines, differentiating those sensitive to paclitaxel from those resistant to this commonly 
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used chemotherapeutic agent [11]. These investigations underscore the value of RNAseq in elucidating drug responsiveness in OV, 
offering potential pathways for targeted therapeutic interventions. 

Over the past decade, scRNAseq has revolutionized our understanding of cell biology and disease mechanisms [12]. Unlike 
traditional bulk RNA sequencing, which measures gene expression from a mixed cell population potentially obscuring individual cell 
differences, scRNAseq assesses gene expression in each individual cell. This approach provides a nuanced view of the cellular diversity 
and states within tissues. Cancer cells exhibit significant heterogeneity, influenced by their varied tumor microenvironment (TME) and 
interactions with distinct cell types [13]. This heterogeneity even extends to clonal cancer cells, which can display diverse phenotypic 
features through clonal evolution. The TME, comprising immune cells, stromal cells, blood vessels, the extracellular matrix, and 
signaling molecules, plays a crucial role in drug resistance [14]. Drug resistance mechanisms facilitated by the TME include the 
secretion of signaling molecules such as cytokines and growth factors that activate pathways like PI3K/AKT, promoting cell survival 
and chemotherapy resistance [15]. Additionally, the TME can physically impede drug delivery to tumor cells through increased 
interstitial fluid pressure, abnormal blood vessel structures, or extracellular matrix remodeling. Dynamic changes in the TME in 
response to treatment, such as the induction of growth factors post-chemotherapy, further complicate drug resistance by promoting 
tumor cell proliferation and survival [16]. 

To delineate the heterogeneity inherent in OV, recent studies have employed scRNAseq to dissect subpopulations of cancer and 
stromal cells within the tumor microenvironment (TME), offering novel insights into ovarian cancer progression, metastasis, clonal 
evolution, and drug resistance [17–23]. Despite its profound impact, single-cell technology remains prohibitively expensive, limiting 

Fig. 1. Characterization of major cell populations of OV patient samples. 
(A) UMAP clustering of OV cells integrated from three different scRNAseq datasets including 15 OV samples. Each point indicates one single cell and 
cells in the same cluster indicates high similarity in transcriptome profile. Cells were color-coded with patient origin. (B) UMAP plot of the inte-
grated dataset depicts 12 transcriptional distinct cell clusters and cells were color-coded with cluster information. (C) UMAP plot of the integrated 
dataset depicts 6 major cell types and cells were color-coded with cell types. (D) Dot plot of top 3 marker genes upregulated in each cell type. 
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Fig. 2. Identification of tumor cells that are sensitive to by Scissor. 
(A) UMAP clustering of epithelial cells. Cells were color-coded with cluster information. (B) UMAP clustering of epithelial cells. Cells were color- 
coded with patient origin. (C) UMAP clustering of epithelial cells. Cells were color-coded with cell phase. (D) UMAP clustering of epithelial cells. 
Cells were color-coded with EMT score. (E) UMAP plot of the integrated dataset depicts Scissor status. Scissor-cells were colored in blue. Background 
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the number of samples that can be sequenced. Moreover, the practical challenges of treating patients with varying drug combinations 
compared to controlled in vitro experiments pose significant hurdles. To bridge these gaps, algorithms have been developed that 
integrate bulk RNAseq data from large cohorts or cell line assays with scRNAseq datasets. These algorithms aim to identify cell 
subpopulations driving critical phenotypes such as disease stage, tumor metastasis, treatment response, and survival outcomes. One 
such computational method, SCISSOR, is designed to pinpoint subpopulations within a single-cell dataset that correlate with specific 
phenotypes of interest [24]. This method holds promise for advancing the development of cell type-specific therapies and the discovery 
of prognostic biomarkers. 

In this study, we utilized the Scissor analysis to integrate bulk RNAseq data from paclitaxel-resistant OV cells with scRNAseq data 
from OV patient samples. We examined the association between cellular composition, cell-cell communication, and clinical outcomes. 
This analysis aims to enhance our understanding of paclitaxel responsiveness across different OV patient groups and to establish a 
foundation for personalized management strategies for OV. The insights gained could lead to more targeted and effective treatments, 
tailored to the unique cellular landscapes of individual patients. 

2. Materials and methods 

2.1. Acquisition of datasets and data preprocessing 

Three scRNA-seq datasets GSE154600, GSE158937 and GSE184880 of total 15 OV samples were first downloaded from the Gene 
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database. We then used “Seurat” R package (version 4.1.1) to 
process the datasets [25]. Initially, the percentage of mitochondrial genes, ribosomal genes and erythrocyte genes were determined 
using the PercentageFeatureSet function. Cells with a gene number <200 and >5,000, mitochondrial gene content >10 %, ribosomal 
gene content <20 % and erythrocyte gene content >10 % and were excluded. Subsequently, scRNA-seq data were normalized by the 
NormalizeData function, and the top 2000 genes with highly variable features were identified by FindVariableFeatures function. We 
used ScaleData function to standardize the count data. The batch effects between different datasets were removed by “harmony” R 
package (version 0.1.1) [26]. The top 2000 highly variable genes were used for principal component analysis (PCA). Thus, the top 30 
principal components were manually selected for cell clustering analysis using the Uniform Manifold Approximation and Projection 
(UMAP). Canonical marker genes of specific cell types in were used to annotate the clusters of cells. We used FindAllMarker function to 
identify the genes upregulated in the Scissor-cells. “DoubletFinder” R package (version 2.0.3) was carried out to remove the potential 
doublet cells in the scRNAseq dataset with default parameters [27]. 

Moreover, the bulk RNA-seq data of TCGA-OV samples were accessed from TCGA (https://portal.gdc.cancer.gov/) database. The 
statistical results of somatic mutation in TCGA dataset were visualized with the “maftools” R package software (version 2.12.0). 
Additional OV samples were obtained from the GSE14764, GSE23554 and GSE26712 datasets. In this study, OV samples from patients 
without a complete follow-up information were excluded. Bulk RNAseq data of paclitaxel resistance in ovarian cancer cell lines was 
obtained from the GSE172016. 

2.2. Cell-cell communication analysis by CellChat 

To perform CellChat (version 1.6.1) analysis, we first removed low-quality cells and genes, normalized the expression values, and 
performed clustering to identify cell types using Seurat R package. We then used “generate_cell_chat” function to generate the cell-cell 
communication network, which contains information about the ligand-receptor interactions between different cell types. To visualize 
the cell-cell communication network, the “plot_cell_chat” function was performed. 

2.3. Functional and immune cell infiltration analysis 

We used ClusterProfiler R package (version 4.4.4) to perform GO and KEGG analysis. To perform GO analysis, we utilized the 
enrichGO function, which performs enrichment analysis using the GO database. To perform KEGG pathway analysis, we used the 
enrichKEGG function, which performs enrichment analysis using the KEGG database. To carry out immune infiltration analysis in the 
TCGA-OV datasets, we uploaded our data to the Timer website (http://timer.cistrome.org/), which allowed us to obtained the immune 
cell infiltration information of TCGA-OV sample based on different algorithms, including CIBERSORT. 

2.4. Identification of prognostic genes and construction of scissor genes prognosis risk model 

The LASSO Cox regression analysis was performed to construct a predictive signature. The R package “glmnet” (version 4.1.4) was 
used to achieve the variable selection and shrinkage of the LASSO algorithm. The risk scores of each patient were calculated by the 

cells were colored in grey. (F) Violin plots of Scissor score of Scissor-cells and background cells. (G) Overall survival analysis of TCGA cohort based 
on expression of Scissor genes by Kaplan-Meier plotter. The patients were grouped into two groups based on median Scissor score. (H) Bar plot of the 
GO enrichment analysis for Scissor signature genes. Y-axis represents the enriched GO terms; X-axis represents the amount of the Scissor signature 
genes GO terms. GO, Gene Ontology. (I) Bar plot of the KEGG pathway enrichment analysis for Scissor signature genes. Y-axis represents pathways; 
X-axis represents the amount of the Scissor signature genes enriched in KEGG pathways. KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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following formula: Risk score = sum (coeffcients* expression of gene n). The “survminer” (version 0.4.9) and “survival” R packages 
(version 3.4.0) were used to determine the Kaplan-Meier survival curve. The nomogram of the OV prognosis model was established via 
univariate and multivariate analyses, combined with clinical characteristics. Then, calibration curves were constructed for the pre-
diction of survival of different time points in OV. 

2.5. Statistical analysis 

R software (version 4.0.0) were used for statistical analysis. Continuous variables are presented as the mean ± standard deviation. 
Univariate and multivariate Cox regression analyses were used to demonstrate their prognostic value. Kaplan–Meier curves with a two- 
sided log-rank test were used to compare the overall survival (OS) of the patients in the high and low expression groups. p-values <0.05 
were considered statistically significant. 

3. Results 

3.1. The cell atlas of OC 

To dissect the heterogeneity of tumor cells and cells in tumor microenvironment, we analyzed the transcriptome of 15 OC patients 
from 3 public scRNA-seq datasets which contains high quality of sequencing data. After a quality screening based on the percentage of 
the expression of the mitochondrial, ribosomal and erythrocyte genes, we obtained a total of 52,874 high-quality cells with 29,126 
total genes for further study (Fig. 1A). We identified twelve clusters (clusters 0–11) in these OC sample through dimension reduction 
and cluster analysis (Fig. 1B). Canonical markers for different cell type were then used to annotate each cluster of cells and revealed six 
major cell types, including epithelial cells, fibroblasts, endothelial cells, T cells, B cells and myeloid cells (Fig. 1C). Fig. 1D illustrated 
typical markers for different cell types. 

3.2. Identifying the subpopulation of tumor cells that are sensitive to paclitaxel 

To further delineate the transcriptional landscape of OC tumor cells, we re-clustered the epithelial cells, identifying seven distinct 
clusters that illustrate pronounced transcriptional heterogeneity among OC patients (Fig. 2A–B). Subsequently, we conducted cell 
cycle and epithelial-mesenchymal transition (EMT) score analyses, finding that most high-EMT tumor cells were in the G1 phase 
(Fig. 2C–D). 

To identify cells sensitive to paclitaxel treatment, we applied Scissor analysis to all tumor cells. The results identified 812 paclitaxel- 
sensitive cells (Scissor-) out of 9161 tumor cells (Fig. 2E). Further investigations revealed 90 significantly upregulated genes in the 
Scissor-cells, termed paclitaxel sensitive genes (PSG) (Fig. 2F). We then assessed PSG expression in The Cancer Genome Atlas (TCGA- 
OV) samples, categorizing them into two groups based on median expression levels (Fig. 2G). Notably, there was a significant dif-
ference in overall survival (OS) between the high and low Scissor groups (p = 0.038, Fig. 2G), suggesting that higher PSG expression 
correlates with improved survival outcomes. To elucidate the biological pathways and functions associated with PSG, we conducted 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The GO analysis showed that PSG were 
predominantly enriched in protein folding and DNA transcription in response to stress (Fig. 2H). The KEGG analysis highlighted 
significant enrichment in processes related to protein synthesis in the endoplasmic reticulum, lipid metabolism, atherosclerosis, and 
estrogen signaling pathways (Fig. 2I). 

3.3. Cell-cell interaction profile of OV with different response to paclitaxel 

We assessed the PSG score in OC single-cell RNA sequencing samples, dividing them into two groups based on their scores: six 
samples with positive scores and nine with negative scores. Cell proportion analysis revealed a higher T cell infiltration in the PSG-high 
group compared to the PSG-low group (Fig. 3A). We then conducted a CellChat analysis to examine the differences in cell-cell 
communication between the PSG-high and PSG-low groups. This analysis showed a decrease in the number of cell-cell interactions 
but an increase in their strength in the PSG-high group relative to the PSG-low group (Fig. 3B). Further analysis revealed that the 
enhanced strength of interactions in the PSG-high group was primarily observed between epithelial cells and T cells/B cells (Fig. 3C). 
Additionally, ligand-receptor profiles indicated a significant upregulation of MIF/CD74+CXCR4 and MIF/CD74 + CD44 interactions 
between epithelial cells and T cells in the PSG-high group (Fig. 3D). These findings suggest that the tumor microenvironment (TME) 
may play a critical role in the response of tumor cells to paclitaxel treatment in OC. 

Fig. 3. Analysis of cell-cell communication between the Scissor high and Scissor low groups using CellChat 
(A) The proportion of each cell type in the Scissor high and Scissor low groups. (B) Total interaction number and strength between cells in the Scissor 
high and Scissor low groups. (C) Overview of selected ligand-receptor interactions of tumor cells and other cells in the Scissor high and Scissor low 
groups. The line thickness is proportional to the number of ligands when cognate receptors are present in the recipient cell type. The loops indicate 
autocrine circuits. (D) Bubble plot showing the selected ligand-receptor interactions between tumor cells and other cells in the Scissor high and 
Scissor low groups. P values are indicated by circle size, with the scale to the right (permutation test). 
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3.4. Mutational landscape in TCGA OV sample with different PSG signature 

Given the critical role of genetic mutations in tailoring cancer treatment, we analyzed the somatic mutation profiles in TCGA-OV 
samples. Our analysis identified genes with high mutation frequencies, including CSMD3, RYR2, and MUC16 (Fig. 4A). Moreover, we 
observed distinct pathway impacts between risk groups: the NRF2 pathway was more significantly affected in the high-risk group, 
while the TP53 pathway showed greater alterations in the low-risk group (Fig. 4B–C). We identified five genes—ADGRG7, HIVEP1, 
TECTA, and TMEM131—that exhibited significant differences in mutation rates between the high and low-risk groups (Fig. 4D). 
However, there was no observed difference in the overall tumor mutation burden (TMB) between these groups (Fig. 4E). 

To further distinguish the immune cell landscape between the high- and low-risk groups, we employed CIBERSORT to analyze 22 
types of immune cells. The results showed that the high-risk group had higher proportions of CD4+ memory resting T cells and 
activated dendritic cells (DCs), whereas the low-risk group was characterized by an enrichment of M2 macrophages, resting DCs, and 
plasma B cells, which are typically associated with immunosuppression (Fig. 4F). These findings underscore the potential of immune 
profiles as indicators of risk and therapeutic response in ovarian cancer. 

3.5. Identification of a five-gene signature 

In our study of the TCGA-OV cohort, all PSGs were evaluated for their association with overall survival (OS) using univariate Cox 
regression analysis. This analysis revealed that ten genes were significantly correlated with patient prognosis (P < 0.05). Subsequently, 
a paclitaxel-sensitive signature comprising five genes was developed for prognosis prediction using the LASSO regression algorithm 
(Fig. 5A and B). The formula for the risk score is as follows: Risk score = (− 9.842e-07 × expression level of HSP90AA1) + (1.179e-05 
× expression level of JUN) + (− 1.748e-06 × expression level of CALM1) + (− 1.424e-05 × expression level of RBP1) + (− 5.665e-05 ×
expression level of GLRX5). The 342 OC patients were categorized into high- and low-risk groups based on the median risk score, with 
the high-risk group demonstrating better survival outcomes than the low-risk group (Fig. 5C). The model was also validated across 
different datasets, including GSE14764, GSE23554, and GSE26712. Notably, in the GSE23554 and GSE26712 datasets, patients with 
higher signature scores exhibited significantly better survival times compared to those with lower scores (Fig. 5D–F). Further analysis 
involved both univariate and multivariate Cox regression to evaluate if the risk score could serve as an independent prognostic factor 
relative to other common clinicopathological parameters for the TCGA-OV patients. The multivariate Cox regression analysis iden-
tified both ovarian tumor stage and risk score as significant predictors of OS (Fig. 5G). Similarly, univariate analysis confirmed the 
significance of the prognostic risk score (Fig. 5H). In the GSE26712 cohort, both multivariate and univariate analyses indicated that the 
risk score was a prognostic factor for OS (Fig. 5I and J). The risk graph and heatmap were used to detail survival outcomes and display 
the expression differences of the five genes within the model across the risk groups for both the TCGA and GSE26712 cohorts (Fig. 6A 
and B). The risk score also showed robust performance in predicting OS for individuals in these cohorts (Fig. 6C and D). Based on these 
findings, we developed nomograms that incorporate clinical characteristics and the risk score for both the TCGA and GSE26712 co-
horts, as illustrated in Fig. 6E and G. These tools offer a quantitative method for predicting survival, enhancing the personalization of 
treatment strategies in ovarian cancer. The calibration curve effectively depicts the concordance between the predicted and observed 
survival probabilities at 1-year, 3-year, and 5-year intervals for ovarian cancer patients. The data points closely approach the ideal line, 
indicating that the prognostic model accurately reflects the survival outcomes based on the gene signature. This precise calibration 
suggests that the model captures essential biological variables influencing patient survival and highlights its potential reliability for 
clinical application (Fig. 6F and H). Taken together, the nomogram may serve as a useful quantitative tool for predicting prognoses of 
OV. 

4. Discussion 

Ovarian cancer drug resistance is a common problem in the treatment of ovarian cancer, resulting in the cancer continuing to grow 
and spread, making treatment more difficult [28]. There are several factors that can contribute to drug response in ovarian cancer, 
including genetic mutations, changes in tumor microenvironment, and the activation of certain cellular pathways [29]. 
Platinum-based chemotherapeutics remain the principal agents for treating both newly diagnosed ovarian cancer and 
platinum-sensitive recurrent forms of the disease. The integration of poly (ADP-ribose) polymerase inhibitors (PARP inhibitors) into 
the ovarian cancer treatment regimen represents a significant advancement, offering substantial benefits to patients exhibiting defects 
in DNA repair mechanisms. Recent findings underscore the utility of PARP inhibitors in patients with advanced-stage ovarian cancer, 
extending beyond those harboring BRCA mutations. However, the emergence of resistance to PARP inhibitors among certain patient 
cohorts presents a critical challenge, tempering the optimism generated by these breakthroughs [30]. To overcome this, effort has been 
made to develop new drugs or combination therapies that target multiple pathways or mechanisms of resistance [31]. However, it is 

Fig. 4. Statistics of mutation information in the Scissor high and Scissor low TCGA OV samples. 
(A) Statistical results of the top 5 hyper abrupt genes in the scissor high samples. (B) Bar plot depicts the distributions of 9 pathways affected by 
mutation in the scissor high samples. (C) Bar plot depicts the distributions of 9 pathways affected by mutation in the scissor low samples. (D) Bar 
plot depicts the comparison of 4 driver genes in the scissor high and scissor low samples. (E) Comparison of TMB levels between the scissor high and 
scissor low samples. TMB, tumor mutation burden. (F) Differences of 22 immune cells infiltration between the scissor high and scissor low samples 
according to CIBERSORT algorithm. 

Z. Zhang et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e33367

9

Fig. 5. LASSO Cox regression and overall survival analysis of Scissor signature genes in OV. 
(A) LASSO coefficient profile plots of each independent variable. (B) The partial likelihood deviance for the LASSO Cox regression analysis. (C) 
Analysis of the prognostic value of the RiskScore in TCGA-OV dataset. (D) Analysis of the prognostic value of the RiskScore in GSE14764 dataset. (E) 
Analysis of the prognostic value of the RiskScore in GSE23554 dataset. (F) Analysis of the prognostic value of the RiskScore in GSE26712 dataset. 
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also important to identify biomarkers that can predict drug response, allowing for the selection of more personalized treatment options 
for each patient. 

Previous research has identified multiple biomarkers capable of predicting drug response in OC. For instance, patients with mu-
tations in the TP53 gene or elevated HE4 protein levels exhibit reduced sensitivity to chemotherapy, suggesting a need for alternative 
treatment approaches [32,33]. Conversely, mutations in genes associated with the DNA damage response (DDR) pathway, such as 
ATM, ATR, and CHK1, or low ERCC1 expression levels may enhance responsiveness to platinum-based chemotherapy [34]. However, 
it is crucial to recognize that biomarkers do not always guarantee accurate drug response predictions; thus, treatment strategies should 
consider a variety of factors. In this context, RNA sequencing (RNAseq) has been employed to refine drug response prediction accuracy. 
One notable study utilized TCGA online data and OV GEO datasets to develop a predictive model based on 10 genes [35]. Our findings 
indicate that the NRF2 pathway is notably active in paclitaxel-sensitive patients, whereas alterations in the TP53 pathway are more 
prevalent in other patient groups. 

Drug treatments, notably chemotherapy, can significantly impact T cell functionality, playing a pivotal role in cultivating an 
immunosuppressive tumor microenvironment. Our study highlights that in OV, chemotherapy enhances the interaction between 
epithelial cells and T cells/B cells. Specifically, interactions involving MIF/CD74+CXCR4 and MIF/CD74 + CD44 were found to be 
substantially upregulated, suggesting their crucial role in the tumor’s response to paclitaxel. Chemotherapy is known to prompt the 
secretion of immunosuppressive cytokines such as TGF-β and IL-10 from both tumor and stromal cells [36]. These cytokines can inhibit 
T cell activation and proliferation, facilitating the proliferation of regulatory T cells (Tregs) and myeloid-derived suppressor cells 
(MDSCs), which further diminish T cell functionality [37]. Additionally, chemotherapy can alter the expression of major histocom-
patibility complex (MHC) molecules and components of the antigen-processing machinery in tumor cells, impairing the recognition 
and activation of T cells [38]. It also influences the expression of co-stimulatory molecules, such as CD80 and CD86, which are essential 
for robust T cell activation [39]. These effects collectively highlight the complex interplay between chemotherapy and the immune 
landscape within tumors, underscoring the need for integrated therapeutic strategies that consider both tumor cell killing and the 
modulation of the immune response. 

Our research significantly contributes to advancing ovarian cancer prognostics, yet it is essential to recognize the inherent limi-
tations that could moderate our conclusions. One major challenge is the validation of our prognostic model using publicly available 
datasets such as TCGA and GSE26712. These datasets often lack comprehensive clinical parameters, especially detailed treatment 
histories, which are crucial for enhancing the predictive accuracy of the model [40–42]. Therefore, robust validation in a broader 
range of prospective cohorts, enriched with extensive longitudinal data on treatments and outcomes, is imperative. Such data will not 
only validate the reliability of the model but also expand its clinical applicability [43]. 

Furthermore, despite the proven robustness of the Scissor algorithm, which has shown superior performance in multiple studies, it 
does not capture all sources of biological variability [44,45]. The heterogeneity of the tumor microenvironment, a pivotal factor in 
resistance and prognosis, is still not fully represented in the datasets we analyzed. This limitation may introduce biases in our findings, 
potentially affecting their applicability across diverse patient cohorts or in different clinical settings. This underscores the need for 
ongoing refinement of prognostic models to incorporate a more comprehensive view of the biological landscape, ensuring that they 
remain robust and predictive in a real-world clinical context. 

To mitigate the potential limitations identified in our current study, it is imperative for future research efforts to focus on inte-
grating diverse datasets, particularly emphasizing the inclusion of data from multi-institutional and multicentric cohorts. Enriching 
these datasets with a broad range of clinical variables and comprehensive demographic data is crucial. These enhancements will not 
only strengthen the external validity of our prognostic models but will also significantly boost their applicability in the field of pre-
cision oncology. By ensuring that these models are robust and adaptable, we can better accommodate variations in clinical practices 
and patient populations across different settings. This approach will enable more personalized and effective treatment strategies, 
ultimately improving patient outcomes in ovarian cancer care. The strategic integration of varied data sources and detailed clinical 
information will provide a more holistic understanding of the factors influencing disease progression and treatment response, facil-
itating the development of universally applicable and highly accurate prognostic tools. 

In summary, combining the public scRNAseq dataset and bulk RNAseq databases, we selected the feature DEGs to construct a model 
to determine the patients’ responses to platinum-based chemotherapy. Meanwhile, a prognostic risk model was established to help 
predict patients’ prognoses. 

Data availability 

GEO data analyzed during this study can be downloaded from https://www.ncbi.nlm.nih.gov/geo website, including GSE154600, 
GSE158937, GSE184880, GSE14764, GSE23554, GSE26712 and GSE172016 datasets. TCGA data can be downloaded from https:// 
portal.gdc.cancer.gov/database. 

(G) Forest plot of the multivariate regression analysis in the TCGA cohort. (H) Forest plot of the univariate regression analysis in the TCGA cohort. 
(I) Forest plot of the multivariate regression analysis in the GSE26712 cohort. (J) Forest plot of the univariate regression analysis in the 
GSE26712 cohort. 
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