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Background: Hepatocellular carcinoma (HCC) is a common malignancy. Ferroptosis and cuproptosis 
promote HCC spread and proliferation. While fewer studies have combined ferroptosis and cuproptosis 
to construct prognostic signature of HCC. This work attempts to establish a novel scoring system for 
predicting HCC prognosis, immunotherapy, and medication sensitivity based on ferroptosis-related genes 
(FRGs) and cuproptosis-related genes (CRGs).
Methods: FerrDb and previous literature were used to identify FRGs. CRGs came from original research. 
The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases 
included the HCC transcriptional profile and clinical information [survival time, survival status, age, gender, 
Tumor Node Metastasis (TNM) stage, etc.]. Correlation, Cox, and least absolute shrinkage and selection 
operator (LASSO) regression analyses were used to narrow down prognostic genes and develop an HCC risk 
model. Using “caret”, R separated TCGA-HCC samples into a training risk set and an internal test risk set. 
As external validation, we used ICGC samples. We employed Kaplan-Meier analysis and receiver operating 
characteristic (ROC) curve to evaluate the model’s clinical efficacy. CIBERSORT and TIMER measured 
immunocytic infiltration in high- and low-risk populations.
Results: TXNRD1 [hazard ratio (HR) =1.477, P<0.001], FTL (HR =1.373, P=0.001), GPX4 (HR =1.650, 
P=0.004), PRDX1 (HR =1.576, P=0.002), VDAC2 (HR =1.728, P=0.008), OTUB1 (HR =1.826, P=0.002), 
NRAS (HR =1.596, P=0.005), SLC38A1 (HR =1.290, P=0.002), and SLC1A5 (HR =1.306, P<0.001) were 
distinguished to build predictive model. In both the model cohort (P<0.001) and the validation cohort 
(P<0.05), low-risk patients had superior overall survival (OS). The areas under the curve (AUCs) of the ROC 
curves in the training cohort (1-, 3-, and 5-year AUCs: 0.751, 0.727, and 0.743), internal validation cohort  
(1-, 3-, and 5-year AUCs: 0.826, 0.624, and 0.589), and ICGC cohort (1-, 3-, and 5-year AUCs: 0.699, 0.702, 
and 0.568) were calculated. Infiltration of immune cells and immunological checkpoints were also connected 
with our signature. Treatments with BI.2536, Epothilone.B, Gemcitabine, Mitomycin.C, Obatoclax. 
Mesylate, and Sunitinib may profit high-risk patients.
Conclusions: We analyzed FRGs and CRGs profiles in HCC and established a unique risk model for 
treatment and prognosis. Our data highlight FRGs and CRGs in clinical practice and suggest ferroptosis 
and cuproptosis may be therapeutic targets for HCC patients. To validate the model’s clinical efficacy, more 
HCC cases and prospective clinical assessments are needed.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most prevalent 
types of cancerous tumors found all over the world (1), with 
a significant morbidity and fatality rate (2). Despite surgical 
resection, interventional therapy, chemoradiotherapy, 
targeted pharmacological therapy, and liver transplantation 
currently are the leading treatments for HCC (3), the 
overall survival (OS) rate for individuals with HCC remains 
suboptimal (4). The potential for multigene signature 
to aid in risk stratification and prognosis prediction in 
HCC is being supported by mounting research (5-7). 
However, most of these signatures employ only a single 
gene set, which is slightly less predictive for the complex 
pathogenesis of tumors. Consequently, the objective of this 
work is to develop a ferroptosis and cuproptosis signature to 
forecast HCC patients’ OS.

To put it  s imply,  ferroptosis is  a novel kind of 
programmed cellular death marked by lipid peroxidation 
that is exceptionally iron-dependent (8). Ferroptosis 
has garnered substantial interest as a potential cancer 
treatment pathway since its introduction in 2012 (9). 

Extensive research has uncovered the essential function of 
ferroptosis in destroying tumor cells and preventing their 
progression (10,11). Consequently, inducing ferroptosis 
has shown promise as a therapeutic technique for hastening 
the death of cancer cells (12). Numerous genes that play 
roles in regulating or revealing the presence of ferroptosis 
have been discovered. For instance, the up-regulation of 
ACSL4 stimulates tumor expansion and proliferation, but 
also increases vulnerability to ferroptosis (13). The P53 
tumor suppressor, a key repressor of cancer development, 
is also closely linked to ferroptosis. Ferroptosis and lipid 
metabolism cooperate to contribute to p53-mediated tumor 
suppression (14,15).

Copper is a crucial mineral that aids in many different 
bodily processes. Compared to healthy people, cancer 
patients have much elevated degree of copper in their 
bloodstream and tumor tissue, according to studies (16,17). 
Additionally, copper levels within cells may have a role in 
cancer’s advancement and growth (18). In a recent study 
published in Science, the term “cuproptosis” was used to 
characterize a newly discovered way of copper-induced cell 
death (19). By forming a covalent bond with the lipoacylated 
components of the tricarboxylic acid (TCA) cycle, copper 
induces a toxic protein stress that ultimately leads to cell 
death that is not mediated by the apoptotic pathway (18). 
This illustrates the enormous anticancer potential of copper 
against malignancies that are innately resistant to apoptosis.

Understanding ferroptosis and cuproptosis better is 
essential for the progression and management of HCC. 
However, it is mostly undetermined whether these 
ferroptosis-related genes (FRGs) and cuproptosis-related 
genes (CRGs) link with HCC patient prognosis. Therefore, 
we investigated the genome of HCC and thousands of 
biological targets using high-throughput methodological 
tools to find FRGs and CRGs that are strongly connected 
with HCC prognosis and to develop predictive signatures 
for forecasting HCC patients’ outcomes. Our findings 
demonstrated that our signature had a beneficial purpose in 
assessing the responses to immunotherapy, and medication 
sensitivity for patients with HCC in various subgroups, and 
that they exhibited outstanding predictive performance for 
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Highlight box

Key findings 
• A prognostic model consisting of nine genes (TXNRD1, FTL, 

GPX4, PRDX1, VDAC2, OTUB1, NRAS, SLC38A1, and SLC1A5) 
is a strong predictor of hepatocellular carcinoma.  

What is known and what is new? 
• Ferroptosis and cuproptosis are known to play a key role in the 

development and metastasis of hepatocellular carcinoma;
• This study combined ferroptosis- with cuproptosis-related genes 

to construct a prognostic model and found that the new model 
correlated with prognosis, immunotherapy and drug sensitivity in 
patients with hepatocellular carcinoma.

What is the implication, and what should change now?
• This study highlights the importance of ferroptosis- with 

cuproptosis-related genes in clinical practice and implies that 
ferroptosis and cuproptosis may be a therapeutic priority for 
patients with hepatocellular carcinoma.
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prognosis. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-22-2203/rc).

Methods

Data collection

The Cancer Genome Atlas (TCGA) database (https://
portal .gdc.cancer.gov)  was mined for  the mRNA 
expression and pertinent clinical information of 50 
normal hepatocellular tissues and 374 HCC tissues. For 
external validation, we also retrieved 242 HCC samples 
from the International Cancer Genome Consortium 
(ICGC) database (https://dcc.icgc.org/projects/LIRI-JP). 
Both TCGA and ICGC data are openly accessible to the 
scientific community. As a result, the current study did 
not need permission from regional ethics boards. The 259 
FRGs were retrieved from the FerrDb website (http://www.
zhounan.org/ferrdb/) and prior publications. The 13 CRGs 
were acquired from the previous top research. For future 
studies, we compiled this list of genes after searching the 
literature for relevant articles, eliminating irrelevant ones, 
and adding in any newly published ones. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Identification of differentially expressed genes (DEGs)

The mRNA expression data were matched to FRG and 
CRG, and the cutoff criteria of corrfilter >0.3 and P<0.05 
were set to analyze the correlation between CRG and FRG. 
For the differential expression analysis using the “limma” 
R package, we looked for DEGs associated with ferroptosis 
and cuproptosis with the appropriate cut-off criteria: 
|logFC| >1 and false discovery rate (FDR) <0.05.

Protein-protein interaction (PPI) and functional 
enrichment analyses

To collect information on PPIs, DEGs were uploaded to 
the STRING database (http://www.string-db.org/). With 
the help of Cytoscape (3.7.2), the PPI network was built 
and mapped out. We utilized the MCODE (1.6.1) plug-in 
to identify significant nodes (MCODE score ≥8) and built 
the core target interaction network. The “ClusterProfiler” 
program was used to analyze Gene Ontology (GO) terms 
such as molecular function (MF), biological process (BP), 

and cellular component (CC). Using the same methodology, 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis was undertaken. Significant enrichment 
was considered to exist when both the FDR and P<0.05 
were met. 

Establishment and validation of a predictive signature for 
prognosis

The TCGA-HCC samples are split into a “7:3” ratio of a 
training risk set and an internal test risk set using the “caret” 
R package. In the meantime, the ICGC sample serves as 
an external validation data set. Univariate Cox regression 
analysis was used to assess DEGs’ prognostic value, 
whereas least absolute shrinkage and selection operator 
(LASSO) regression analysis was used to generate a model 
for assessing patient prognosis in HCC. This calculator 
was used to determine the risk levels: risk score = (Coef 1 
* expression mRNA 1) + (Coef 2 * expression mRNA 2) + 
(Coef n * expression mRNA n). The median value of each 
patient’s risk score was used to classify them as either high-
risk or low-risk for the condition being studied. Kaplan-
Meier (K-M) analysis was utilized so that a comparison 
could be made between the two groups’ projected survival 
times. The prognostic accuracy of the risk model was 
calculated using a receiver operating characteristic (ROC) 
analysis that took into account the passage of time using the 
“survivalROC” R package. Theoretically, a good prediction 
model should have an area under the curve (AUC) value 
greater than 0.5. The predictive ability and utility of this 
HCC signature were also validated by using an internal 
validation set (n=106) and an external validation set (n=242).

Gene Set Enrichment Analysis (GSEA)

GSEA was performed to determine whether there were any 
biochemical processes or functioning paths that might be 
associated with the FRGs and CRGs signature. The cutoffs 
for significance were set at a P value of less than 0.05 and a 
FDR of less than 0.25.

Construction of a nomogram using risk score and clinical 
factors

We investigated the relationship between FRGs and CRGs 
signature and Clinical variables. We incorporated other 
clinical variables discovered by multivariate Cox regression 
and utilized the “rms” R package to develop an outcome-

https://tcr.amegroups.com/article/view/10.21037/tcr-22-2203/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-2203/rc
https://portal.gdc.cancer.gov)
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related prediction nomogram for estimating the probability 
of 1-, 3-, and 5-year OS in HCC patients, as well as the 
associated calibration plots. The prediction effect was larger 
when the nomogram had a better prognostic ability and the 
calibration curve was closer to the 45° line.

Immune cell infiltration analysis

Using CIBERSORT, CIBERSORT-ABS, MCP-counter, 
QUANTISEQ, TIMER, XCELL, and EPIC algorithms, 
we compared the level of immune cell infiltration across 
groups with high and low risk. We looked into the 
expression of several immunological checkpoints such 
CD274, SIRPA, CD27, CTLA4, HAVCR2, PDCD1, 
PDCD1LG2, and TIGIT to better predict the success 
of immune checkpoint blocking therapy. In addition, the 
interplay between immune cells and a total of nine FRGs 
and CRGs was investigated with the assistance of the 
TIMER database (https://cistrome.shinyapps.io/timer/).

Screening for potential small molecule drugs

The Drug Gene Interaction Database 4.0 (DGIdb, https://
www.dgidb.org) was utilized to identify prospective 
medicines for HCC. We explored the DGIdb to detect 
prospective medications or chemical compounds that 
interacted with the FRGs and CRGs, and used the 
Cytoscape software to display the network of drug-gene 
interactions that existed between the two.

Drug sensitivity analysis

Half-maximal inhibitory concentration (IC50) values were 
used to predict drug sensitivity using the Genomics of Drug 
Sensitivity in Cancer (GDSC) (http://www.cancerrxgene.
org) database, while the “pRRophetic” package was used to 
examine the difference in sensitivity between two groups of 
pharmaceuticals.

Comparison with published models

Our model’s prediction power was tested against that of 
12 other models already in circulation. Multivariate Cox 
regression analysis was used to produce a risk score for each 
sample to guarantee that they were representative of the 
whole. Based on the median risk score, the samples were 
sorted into high-risk and low-risk categories. Following 
incorporation of the pertinent genes into each of the  

12 models, the ROC curve was generated.

Statistical analysis

The following packages were used in R software (version 
4.1.3), for data analysis and visualization purposes: 
“tidyverse”, “limma”, “pheatmap”, “survival”, “survminer”, 
“caret”, “glmnet”, “timeROC”, “regplot”, “rms”, “org.
Hs.eg.db”, “clusterProfiler”, “enrichplot”, “DOSE”, 
“ggplot2”, “readr”, “ggpubr”, “pRRophetic”, “genefilter”, 
“preprocessCore”, and “ridge”. When the probability value 
was less than 0.05, it was considered significant.

Results

Establishment and validation of FRGs and CRGs signature

Based on the analysis of the correlation, we discovered 
158 FRGs and CRGs. The PPI network of these genes 
indicates that FRGs and CRGs have substantial connections  
(Figure 1A). Compared to normal liver tissues, the TCGA-
HCC dataset identifies 60 genes, 11 of which are down-
regulated and 49 of which are up-regulated, as DEGs  
(Figure 1B). Then, relying on these DEGs, we utilized 
univariate Cox regression analysis to establish whether or 
not these DEGs had prognostic value, and found that just 
15 of them were indeed useful (Figure 1C).

Additionally, we used LASSO regression analysis to 
create a signature for estimating the outcome of HCC 
prognosis. Nine genes were successfully incorporated into 
a risk model (TXNRD1, FTL, GPX4, PRDX1, VDAC2, 
OTUB1, NRAS, SLC38A1, and SLC1A5). By plugging 
their coefficients into the following equation, we were 
able to calculate the risk score associated with these nine 
genes (Table 1): risk score = (0.175 × TXNRD1 expression) 
+(0.1245 × FTL expression) + (0.4628 × GPX4 expression) 
+ (0.0366 × PRDX1 expression) + (0.2921 × VDAC2 
expression) + (0.0450 × OTUB1 expression) + (0.2476 × 
NRAS expression) + (0.126 × SLC38A1 expression) + (0.0223 
× SLC1A5 expression). The median cutoff value was applied 
for determining whether or not a patient posed a high 
or low danger. Mortality rates were dramatically higher 
in the high-risk group compared to the low-risk group 
(P<0.001). This was supported by the findings of the K-M 
analysis, which demonstrated a deteriorating relationship 
between the risk score and the outcome of the condition. 
Moreover, the ROC curve revealed that OS prediction 
using the risk score was possible and accurate. The AUCs 
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for 1-, 3- and 5-year survival were 0.751, 0.727, and 0.743, 
respectively (Figure 2A-2D). The signature’s predictive 
power was examined by subjecting it to both internal 
validation depending on the TCGA and external validation 
relying on the ICGC. The outcomes corresponded with 
the signature group. In the internal validation cohort, the 
high-risk group had considerably more deaths than the 
low-risk group (P<0.001). Specifically, values of the AUC 
were 0.826 at 1 year, 0.624 at 3 years, and 0.589 at 5 years  
(Figure 3A-3D). Within the external validation group, there 
were more deaths in the high-risk category than the low-
risk category (P<0.05). The AUC was 0.699 for a survival 
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Figure 1 Identification of differentially expressed genes. (A) Heatmap revealed differentially expressed genes; (B) univariate Cox regression 
analysis; (C) a protein-protein interaction network showing the relationship between ferroptosis-related genes and cuproptosis-related genes.

Table 1 List of genes and coefficient

Gene symbol Coefficient

TXNRD1 0.1753

FTL 0.1245

GPX4 0.4628

PRDX1 0.0366

VDAC2 0.2921

OTUB1 0.0450

NRAS 0.2476

SLC38A1 0.1266

SLC1A5 0.0223
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rate after 1 year, 0.702 after 3 years, and 0.568 after 5 years 
(Figure 4A-4D).

Prognostic significance of the signature in HCC

Using both univariate and multivariate Cox regression 
models, we set out to determine whether or not this 
signature possesses the ability to function on its own as a 

prognostic factor. In a univariate analysis, the risk score 
and Tumor Node Metastasis (TNM) stage were revealed 
to be significant predictors of survival among HCC 
patients (P<0.001) (Figure 5A); even after accounting for 
other factors, multivariate analysis showed a statistically 
significant (P<0.001) correlation between the risk score and 
TNM stage and survival (Figure 5B). The findings indicated 
that the 9-gene signature might be employed independently 

Figure 2 Using TCGA data to develop a signature for patient prognosis. (A) Kaplan-Meier study of the survival of TCGA HCC patients 
classified as high-risk and low-risk; (B) survival status distribution in the TCGA data based on the median risk score; (C) time-independent 
ROC analysis; (D) a heatmap depicted the disparities between nine FRGs and CRGs for high- and low-risk patients. AUC, area under 
the curve; CRGs, cuproptosis-related genes; FRGs, ferroptosis-related genes; HCC, hepatocellular carcinoma; ROC, receiver operating 
characteristic; TCGA, The Cancer Genome Atlas.
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in OS prognosis.

Connection between clinical characteristics and signature

We utilized the Chi-square test to determine if the signature 
was related to clinical factors (Figure 6A,6B). Statistically, 
there was a distinction between high- and low-risk groups 
in terms of grade (P<0.05), but not in terms of TNM 

stage, T stage, age, or gender (P>0.05). The signature’s 
predictive significance in distinct classes was then explored 
by means of stratification analysis. Our signature performed 
well in predicting outcomes for those who were ≤65 years 
(P=0.007), >65 years (P=0.005), male (P<0.001), in grade 1–2 
(P=0.026), in grade 3–4 (P=0.007), and in T1–T2 (P<0.001), 
but it was less effective for those in T3–T4 and female 
(P>0.05, Figure 7).

Figure 3 TCGA-based internal verification. (A) Comparison of high-risk and low-risk HCC patients in the internal validation cohort using 
Kaplan-Meier survival analysis; (B) distribution of survival status depending on the median risk score of the internal validation cohort; (C) 
ROC analysis in internal validation cohort; (D) heatmap depicted the disparities between nine FRGs and CRGs for high- and low-risk 
individuals in the internal validation cohort. AUC, area under the curve; CRGs, cuproptosis-related genes; FRGs, ferroptosis-related genes; 
HCC, hepatocellular carcinoma; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas.
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Nomogram-based validation of the signature’s prognostic 
value in HCC

To validate the prognostic utility of FRGs and CRGs 
in HCC, we designed nomograms to forecast 1-, 3-, 
and 5-year OS based on the aforementioned genes  
(Figure 8A). A strong correlation could be seen between the 
data and the calibration curves (Figure 8B). The C-index of 
the nomograms was 0.697. The C-index of the risk score 

was found to be relatively larger with time, proving high 
levels of accuracy in their predictions (Figure 8C).

Analyses of functional enrichment and PPIs

To elucidate the probable function of 60 DEGs, we carried 
the enrichment analysis using both GO and KEGG. The 
outcomes of BP analyses revealed that 60 DEGs were 

Figure 4 ICGC-based external validation. (A) Kaplan-Meier survival study in external validation cohort comparing high-risk and low-
risk categories; (B) median risk score distributions of outcomes in the external validation cohort; (C) ROC analysis in external validation 
cohort; (D) a heatmap illustrated the variances between nine FRGs and CRGs for high-risk and low-risk participants in the external 
validation cohort. AUC, area under the curve; CRGs, cuproptosis-related genes; FRGs, ferroptosis-related genes; ROC, receiver operating 
characteristic; ICGC, International Cancer Genome Consortium.
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Figure 5 Cox regression analysis. (A) Univariate Cox regression analysis; (B) multivariate Cox regression analysis.

significantly engaged in cellular reaction to chemical 
stress, cellular reaction to oxidative stress, reaction to 
nutritional levels, and peptidyl-serine phosphorylation. 
CC study pointed to melanosome, pigment granule, late 
endosome and caveola. Analysis of MF revealed that 
ferrous iron binding, antioxidant activity, mitogen-activated 
protein (MAP) kinase activity, and ferric iron binding 
were primarily enriched (Figure 9A). According to KEGG 
analysis, autophagy-animal, vascular endothelial growth 
factor (VEGF) signaling, central carbon metabolism in 
cancer, and mTOR signaling pathway were significantly 
enriched (Figure 9B). Using the STRING database to 
illustrate the PPI network, the result showed that the PPI 
network of the 60 DEGs comprised of 52 nodes and 120 
edges. The top modules, consisting of 8 nodes (MCODE 
score =8), was discovered using MCODE (Figure 9C).

GSEA

To further specify the molecular process behind this 
signature, a GSEA analysis was conducted. To further 
specify the molecular process behind this signature, a GSEA 
analysis was conducted. 2-oxocarboxylic acid metabolism, 
arginine biosynthesis, cocaine addiction, non-small cell lung 
cancer, and other glycan degradation were concentrated in 
the high-risk group, according to the results of the GSEA 
(Figure S1). Endocytosis, human T-cell leukemia virus 1 
infection, neurodegenerative pathway, PI3K-Akt signaling 
pathway, and protein processing in endoplasmic reticulum 
were most prevalent in the low-risk group (Figure S1).

Immune infiltration analyses

The heatmap illustrated the association between the 
signature and immunological infiltration (Figure 10A). 
According to the findings of CIBERSORT, the fraction of 
M0 macrophages was much larger in individuals who were 
considered to be at high risk. In low-risk groups, CD8+ T 
cells and M1 macrophages were more prevalent than naive 
B cells (P<0.05) (Figure 10B). In light of the importance 
of checkpoint blocker immunotherapies, we selected 
additional immune checkpoints (CD274, SIRPA, CD27, 
CTLA4, HAVCR2, PDCD1, PDCD1LG2, and TIGIT) 
to examine the relationship between immune checkpoints 
and risk scores. Extreme differences were seen in the levels 
of PDCD1, CTLA4, HAVCR2, TIGIT, SIRPA, and CD27 
expression between the two patient groups (Figure 10C).

TIMER analysis

We dug deeper into the connection between nine FRGs 
and CRGs and immune cells by using the TIMER online 
database. VDAC2, GPX4, NRAS, and OTUB1 were 
positively linked with tumor purity, according to the 
conclusions. Multiple immune cells, including CD8+ T cells, 
CD4+ T cells, macrophages, neutrophils, and dendritic cells, 
had positive associations with VDAC2, NRAS, OTUB1, 
SLC1A5, SLC38A1, and TXNRD1. Negative associations 
were found between FTL and CD8+ T cells, CD4+ T cells, 
macrophages, neutrophils, and dendritic cells. A positive 
association was observed between GPX4 and CD4+ T cells, 
and negative correlations were observed between GPX4 
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Figure 6 Signature-clinical traits relationship. (A) Analyzing the expression levels of model genes and the subtype-specific clinical 
characteristics using a heatmap; (B) the distinction between high- and low-risk groups in clinical characteristics. P values were shown as: **, 
P<0.01.
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Figure 7 Kaplan-Meier survival plots showing variations in OS between high- and low-risk subgroups, stratified by age, gender, grade, and 
TNM stage. OS, overall survival; TNM, Tumor Node Metastasis.

and CD8+ T cells, macrophages, neutrophils, and dendritic 
cells. CD8+ T cells, macrophages, neutrophils, and dendritic 
cells were shown to have positive correlations with PRDX1, 
while CD4+ T cells were found to have negative correlations 
with PRDX1 (Figure S2).

Screening for potential drugs

When DGIdb was used to invest igate drug-gene 
interactions, a total of 52 medicines were found to have 
therapeutic promise for HCC patients (Figure 11). In all, 47 
of these medications, including Metformin, Panitumumab, 
Trametinib, Obatoclax, and Osimertinib, were found to 
have an interaction with NRAS. TXNRD1 was involved 
in pharmacological interactions with arsenic trioxide, 
spermidine, and fotemustine. Both VDAC2 and SLC1A5 

were found to interact with Olesoxime and Glutamine, 
respectively.

Drug sensitivity analysis

Twelve chemotherapeutic medications were selected for 
further study to better understand the discrepancies in 
sensitivity between the two groups of patients and to 
improve the survival of HCC patients. Patients in the high-
risk group exhibited higher IC50 values for medications 
such as BI.2536, Epothilone.B, Gemcitabine, Mitomycin.C, 
Sunitinib, Obatoclax.Mesylate, and Vinorelbine than those 
in the low-risk group, indicating that these patients were 
considerably more susceptible to these drugs. Patients in 
the low-risk group were better able to respond to ABT.888, 
Nilotinib, IPA.3, ATRA, and Doxorubicin, as evidenced by 

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

Time, years

Time, years

Time, years Time, years

Time, years Time, years

Time, years Time, years
0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Female risk Male risk

P=0.143

P=0.005

P<0.001 P=0.068

P=0.026 P=0.007

P=0.007P<0.001

High risk High risk High risk

High risk High riskHigh risk

High risk High risk

G3–4 riskG1–2 risk

T1–2 risk T3–4 risk

≤65 years risk

>65 years risk

Low risk Low risk Low risk

Low risk Low riskLow risk

Low risk Low risk

https://cdn.amegroups.cn/static/public/TCR-22-2203-Supplementary.pdf


Translational Cancer Research, Vol 12, No 1 January 2023 57

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(1):46-64 | https://dx.doi.org/10.21037/tcr-22-2203

their significantly lower IC50 values (Figure 12).

New model as a new predictor of HCC

We compared our own model to 12 other published HCC 
prognostic models to better show its predictive power  
(20-31). Multivariate analysis was used to calculate the risk 
value and prognostic evaluation for each dataset, leveling 
the playing field amongst the four models. High-risk 
individuals had a dismal prognosis, as evidenced by the 
survival curves for all four models (Figure S3). The ROC 
curve shows that when compared to our model, the AUC 
values of the other models are lower (Figure S3). This fact 
alone demonstrates the improved prediction performance 
of our model. Then, we created the restricted mean survival 
(RMS) package to calculate the C-index for each prognostic 
indicator. Our model’s C-index of 0.697 was greater than 
that of the other models (Figure S3). RMS can be used to 
assess the impact of gene features across time on prediction. 
Our genetic traits were at their peak performance around 
the sixth year (Figure S3). This indicates that our model is a 
great predictor when compared to other models.

Discussion

As high-throughput sequencing technology develops, a wide 
range of diagnostic biomarkers and therapeutic targets are 
being identified (32). mRNAs, miRNAs, long noncoding 
RNAs (lncRNAs) and circular RNAs (circRNAs) are some 
examples of potential biomarkers for the diagnosis and 
prognosis of cancer (33,34). Prior research has established 
that ferroptosis and cuproptosis are effective strategies 
for triggering HCC cell apoptosis; however, their precise 
molecular alterations and mechanisms of action remain 
unknown (35,36). In order to better the early identification 
and treatment of HCC and consequently its clinical 
prognosis, it is necessary to clarify the clinical importance 
of ferroptosis and cuproptosis in HCC.

We evaluated the TCGA database for 60 FRGs and 
CRGs that were differently expressed across HCC samples 
and normal liver tissues. We investigated the biological 
pathways of 60 genes systematically and developed PPI 
networks. Using univariable and lasso-penalized regression 
analysis, we subsequently identified 9 FRGs and CRGs that 
were linked with HCC prognosis. On the basis of these 

Figure 8 Construction of a nomograms. (A) 1-, 3-, or 5-year prediction of OS using a nomogram; (B) predicting OS over 1, 3, or 5 years 
using calibration plots; (C) time C-index curve. P values were shown as: ***, P<0.001. OS, overall survival.
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nine genes, we developed and validated risk models for the 
outcomes. Analyses of survival and ROC indicated that 
the model possessed strong ability to predict. Univariate 
and multivariate Cox regression analyses corroborated 
the 9-gene signature’s prognostic power for OS. In 
addition, we found that the signature was strongly linked 
to the infiltration of immunocytic, and the efficacy of 52 
prospective drugs was assessed for the treatment of HCC 
individuals.

Go analysis revealed that 60 FRGs and CRGs were 
predominantly enriched for ferric iron binding, antioxidant 

activity, MAP kinase activity, and ferrous iron binding; 
KEGG analysis revealed that autophagy-animal, VEGF 
signaling pathway, central carbon metabolism in cancer, 
and mTOR signaling pathway were predominantly 
enriched. These mechanisms are intimately associated with 
angiogenesis, one-carbon metabolism, and the malignant 
phenotype of HCC (37-39). This provided evidence that 
these genes may play a function in tumor development.

A number of malignancies, including lung cancer (40), 
esophageal cancer (41), and HCC (42) have been linked to 
TXNRD1, and this gene has been proven to have a role 

Figure 9 Analyses of functional enrichment and protein-protein interactions. (A) GO enrichment analysis based on DEGs; (B) KEGG 
enrichment analysis based on DEGs; (C) a PPI network of 60 DEGs. AGE, advanced glycation end products; BP, biological process; CC, 
cellular component; DEGs, differentially expressed genes; EGFR, epidermal growth factor receptor; GnRH, gonadotropin-releasing 
hormone; GO, Gene Ontology; HIF-1, hypoxia-inducible factor-1; KEGG, Kyoto Encyclopedia of Genes and Genomes; MAP, mitogen-
activated protein; MF, molecular function; PPI, protein-protein interaction; RAGE, receptor for advanced glycation end products; VEGF, 
vascular endothelial growth factor.
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in their development. TXNRD1 overexpression in HCC 
cells and tissues is an indicator of a terrible prognosis for 
HCC patients (43). The mechanism may accelerate the 
development of HCC cells by downregulating PCK1 via 
the Nrf2/Keap1 pathway (42). Histological examination 
of hepatocellular cancer specimens revealed high levels of 
FTL expression (44), and it figured prominently in HCC 
apoptosis and iron metabolism (45,46). The selenoenzyme 
glutathione peroxidase (GPX4) has been identified 
through genetic investigations in cells and animals as a 
crucial regulator of ferroptosis (47). Improved sorafenib-
induced ferroptosis in HCC cells is mediated by GSTZ1, 
which acts by blocking the NRF2/GPX4 axis (48). The 
peroxidase (PRDX) family is widely considered to be the 

most successful group of enzymes across the evolutionary 
divide between bacteria, archaea, and eukaryotes (49). The 
prognosis of HCC patients has been shown to worsen in 
correlation with high PRDX1 expression (50). VDAC2 
is now a non-BCL-2 family protein that is essential for 
the execution of BAX- and BAK-directed apoptosis in 
mitochondria (51). As a result, a medication targeting BAK’s 
interaction with VDAC2 could be useful in treating cancer. 
The expression of OTUB1 was a novel and independent 
prognostic indicator for HCC patients. It altered tumor 
immune cell infiltration and influenced apoptosis and 
autophagy considerably (52). Sorafenib-resistant HCC cells 
exhibited considerably higher NRAS expression compared 
to non-resistant HCC cells (53), suggesting that NRAS 

Figure 10 Immune infiltration analyses. (A) Differential infiltration of immune cells in high- and low-risk populations; (B) comparative 
investigation of immune cell types using the CIBERSORT; (C) the link between immunological checkpoints and signatures. P values were 
shown as: **, P<0.01; ***, P<0.001; ****, P<0.0001. NK, natural killer.
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Figure 11 Results of potential drugs analysis with DGIdb. DGIdb, The Drug Gene Interaction Database 4.0.

expression may contribute to HCC treatment resistance. 
Overexpression of NRAS was also linked to decreased 
survival and proliferation in vivo (54). Solute carrier family 
38 member 1 (SLC38A1) is one of the primary transporters 
of glutamine (55), and it has been demonstrated that 
overexpression of SLC38A1 in malignant tumors 
promotes tumor cell proliferation, invasion, and metastasis  
(56-58). The SLC1A5 variation carried glutamine into 
mitochondria, which plays a crucial role in cancer’s 
metabolic reprogramming. Knockdown and overexpression 
of the SLC1A5 variant altered tumor development and 
enhanced their carcinogenic properties (59). 

Based on the findings of the GSEA study, it was 
hypothesized that the signature linked with ferroptosis and 
cuproptosis primarily involved metabolic and apoptosis-
related pathways. Some examples of these pathways are the 
2-oxocarboxylic acid metabolism, the PI3K-Akt signaling 
system, and the tumor necrosis factor (TNF) signaling 
route.

Our results are in line with the notion that those at low 
risk have more CD8+ T cells, as CD8+ T cells are the main 
“effector” cells in the battle against cancer. Activated CD8+ 
T lymphocytes killed tumor cells by recognizing antigens 
on major histocompatibility complex I (MHC I) that were 
linked with tumors through the use of their expressed T cell 

receptors (60). Differential expression of PDCD1, CTLA4, 
HAVCR2, CD276, and CD80 between high-risk and low-
risk groups further supports the idea that a suppressed 
immunological milieu contributes to the poor prognosis 
of high-risk patients. In addition, it was discovered that 
ABT.888, Nilotinib, IPA.3, ATRA, and Doxorubicin would 
be beneficial for patients in the low-risk group, whereas 
BI.2536, Epothilone.B, Gemcitabine, Mitomycin.C, 
Obatoclax.Mesylate, Sunitinib, and Vinorelbine might be 
beneficial for patients in the high-risk group.

In the end, we chose 12 prognostic risk models for HCC 
from the literature and compared their ability to predict 
outcomes. The prediction performance of our model was 
quite high. However, there are still certain restrictions on 
current research. To begin with, all inferences are made 
based on the processing and analysis of data obtained from 
public databases, and there is a lack of clinical data and 
experimental research to further verify the results. In the 
future, it will be necessary to collect more HCC cases and 
conduct many prospective clinical assessments to further 
evaluate the model’s efficacy in clinical settings.

Conclusions

We conducted a thorough evaluation of CRGs and FRGs, 
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Figure 12 Drug sensitivity analysis. IC50, half maximal inhibitory concentration.
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and their utility in the study of clinical features, and HCC 
prognosis was successfully demonstrated. Results like 
these highlight the potential clinical significance of CRGs 
and FRGs and raise the possibility that ferroptosis and 
cuproptosis could be a therapeutic focus for HCC patients.
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