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Objective: To analyze the genotypic characteristics of patients with

neurofibromatosis type 1 (NF1) associated dystrophic scoliosis and to

summarize the outcomes of the surgical treatment of these patients.

Methods: Exome sequencing (ES) combined with multiplex

ligation-dependent probe amplification (MLPA) was used for genotypic

identification. All patients underwent surgical treatments for spinal deformities,

and the outcomes of the surgery was summarized by analyzing the clinical

and imaging parameters before and after the surgery.

Results: Fourteen patients (six males and eight females) were clinically

diagnosed as NF1 associated dystrophic scoliosis with common symptoms

including café-au-lait spots, paravertebral tumors, and dystrophic scoliosis.

NF1 mutations were detected in 12 (85.7%) patients, including four nonsense

mutations, three splicing mutations, three frameshift mutations, and two exon

deletions. The first surgical procedure included growing-rod surgery in 10

patients and posterior spinal fusion in four patients. The follow-up duration

was 2.3 years (1.0–10.3 years), and the Cobb angle of themain curve improved

from 61.5◦ (30◦-125◦) pre-operatively to 14.5◦ (0◦-42◦) at the last follow-up,

with an average correction rate of 74.0% (44–100%). Instrumentation-related

complications occurred in four patients during the follow-up period.

Conclusions: In patients with dystrophic scoliosis who met the clinical

diagnostic criteria for NF1, the mutation detection rate of ES combined with

MLPA was 85.7%. There was no mutation hotspot in NF1 gene, molecular

diagnosis could o�er information about genetic counseling, prenatal diagnosis

and eugenics. Surgical treatment according to patient’s age and severity could

e�ectively correct the spinal deformities.

KEYWORDS
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Introduction

Neurofibromatosis type 1 (NF1) is an autosomal dominant

genetic disorder, with an incidence of∼1/3,000. The pathogenic

gene NF1, is located in 17q11.2, with 60 exons and a total

length of ∼350 kb. NF1 mutations lead to the dysfunction

of the NF1 protein, resulting in café-au-lait spots, plexus

neurofibroma, optic glioma, skeletal system disorders, and

other manifestations. NF1 associated dystrophic scoliosis

is the most common skeletal system disorder, with an

incidence of 30% (1). The imaging manifestations of spinal

deformity include vertebral scalloping, rib penciling, elongated

and attenuated pedicles, and a widened spinal canal and

foramen (2, 3).

Most cases of NF1 associated dystrophic scoliosis are

progressive, and conservative treatment is usually ineffective.

Considering the potential for spinal growth, growing-rod

surgery is typically performed in young patients. For elderly

patients, posterior spinal fusion is usually used to correct

deformities and to control their progression (4). Due to

severity and complexity of spinal deformities in patients with

NF1, surgical treatment is difficult, and the incidence of

complications, such as displacement, breakage, and loosening

of instrumentation, as well as deformity progression, could be

more than 50% (5, 6).

Previous studies focused on either genotypic analysis

of patients with NF1 (7, 8) or surgical effects and

complications of surgery for NF1 associated dystrophic

scoliosis (9, 10), while hardly any reports comprehensively

studied the genotypic characteristics of patients with NF1

associated dystrophic scoliosis and their respective effects of

clinical intervention.

In our study, we recruited patients clinically diagnosed

with NF1 associated dystrophic scoliosis in Beijing Children’s

hospital and investigated their genotypic characteristics using

exome sequencing (ES) combined with multiplex ligation-

dependent probe amplification (MLPA). All of patients accepted

surgical treatments to control the progression of spinal

deformities. Their clinical and imaging parameters before and

after surgical treatments were analyzed to summarize the effects

of clinical interventions.

Materials and methods

Subjects

We recruited patients from Department of Orthopedics

of Beijing Children’s Hospital from May 2010 to December

2021, and collected the complete clinical and imaging data.

The patients were diagnosed as NF1 associated dystrophic

scoliosis by at least two independent surgeons. The NF1 clinical

diagnostic criteria included: (1) six or more café-au-lait spots

≥5mm in diameter before puberty or ≥1.5mm in diameter

after puberty; (2) axillary or inguinal skinfold freckling; (3) two

or more dermal neurofibromas or one plexiform neurofibroma;

(4) two or more iris hamartomas (Lisch nodules); (5) An optic

pathway glioma; (6) distinctive long bone dysplasia involving

the sphenoid wing or thinning of the long bone cortex with

or without pseudarthrosis; and (7) A first-degree relative with

neurofibromatosis type 1. NF1 can be diagnosed if an individual

presents with 2 or more of these features (11).

A total of 14 patients with the clinical diagnosis of NF1

associated dystrophic scoliosis were included. Patients and/or

their guardians were informed about this study, and signed

the informed consent. This study was approved by the Ethics

Committee of Beijing Children’s Hospital, Capital Medical

University (BCH, Approval No.2022-E-083-R).

Clinical data

Clinical data, including sex, age, past medical history,

and NF1 family history were recorded. Physical examination

involved checks for café-au-lait spots, plexus neurofibroma,

axillary or inguinal freckles, optic glioma, Lisch nodules (iris

hamartoma), and skeletal manifestations. Before surgeries,

the patients underwent X-ray, computed tomography (CT),

and magnetic resonance imaging (MRI) of the whole spine.

The location of the main curve and Cobb angle were

measured using an X-ray film (12). The number of malformed

vertebrae was determined and recorded according to the

CT images of the whole spine. The malformed vertebrae

were defined as a spinal curve in the presence of vertebral

scalloping, rib penciling, elongated and attenuated pedicles,

and a widened spinal canal and foramen (2, 3). The

presence of paravertebral or intraspinal tumors was determined

using MRI.

Genetic testing

Exome sequencing (ES) and variants analysis

DNA was isolated from peripheral blood samples of

patients using the Gentra Puregene Blood Kit (QIAGEN,

Hilden, Germany). Exon capture was performed using

SureSelect Human All Exon Kit (Agilent Technologies,

Santa Clara, America). Target regions were sequenced using

NovaSeq (Illumina, San Diego, USA) and compared with

the GRCh37/hg19 human reference sequence. Sequencing

depth of >100X was employed. Single nucleotide variants

(SNVs) and insertion-deletions (indels) were annotated

and filtered by TGex (https://fa.shanyint.com). Variants

with a frequency over 1% in the databases of gnomAD,

ESP or 1000G were excluded. The main disease reference

databases included HGMD Professional, Clinvar, OMIM
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and Malacards. The pathogenicity of the missense variants

found in patient was evaluated by listing bioinformatic

tools: PolyPhen-2, PROVEAN and MutationTaster, that of

splicing variants were predicted by GeneSplicer, MaxEntScan

and NetGene2. Variants were classified following the

American College of Medical Genetics and Genomics and

the Association for Molecular Pathology (ACMG/AMP)

interpretation standards and guidelines (13). Putative

pathogenic variants detected by ES were confirmed by

Sanger sequencing for patients and/or their parents if available.

Additional copy number variants (CNVs) based on exome

sequencing data were generated using the CNV detection

program CNVkit, the samples of the same batch were used

as controls.

Multiplex ligation-dependent probe
amplification (MLPA) and copy number
variation (CNV) analysis

For patients whose ES results suggested ES-based exon

deletion and/or didn’t found pathogenic/likely pathogenic

variants in NF1, they were further identified by MLPA

(Figure 1). All of NF1 exons were captured and amplified

using SALSA MLPA Probemix P081 NF1 Mix 1 and P082

NF1 Mix 2 (MRC Holland, Netherlands). Electrophoresis of

the amplified products was performed using an ABI 3500

gene analyzer (Thermo Scientific, USA), and the results were

analyzed using Coffalyser. Net (MRC Holland, Netherlands).

The final ratio (FR) of each individual reference probe

in the patient samples should be between 0.80 and 1.20,

exons with FR between 0.40 and 0.65 indicated heterozygous

deletion, while exons with FR between 1.30 and 1.65 indicated

heterozygous duplication.

Surgical treatment

Growing-rod surgery

The upper and lower anchor points were located using

fluoroscopy during the operation, with two to three vertebrae

at each end. Two small longitudinal posterior incisions were

made to expose the posterior structure of the corresponding

vertebrae, and pedicle screws were inserted. Each set of screws

was connected by pre-contoured submuscular rods tunneled

to the overlap point, where they were linked with side-by-

side “domino” implants. The screws and domino implants were

tightened after distraction. Through a small incision over the

domino, lengthening was performed at∼6–12 months intervals.

FIGURE 1

Flow diagram of NF1 associated dystrophic scoliosis patients who were enrolled and received genetic testing. A total of 14 patients with the

clinical diagnosis of NF1 associated dystrophic scoliosis were included. Medical history inquiry, physical examination, X-ray, CT, and MRI were

applied to all patients to design the operation plan. Young patients with long curve accepted growing-rod surgery, young patients with short

curve and older patients accepted spinal fusion surgery. After regular follow-up, prognosis and complications were analyzed. Whole blood

samples were obtained from patients and their parents in parallel. Combination of ES and MLPA found 12 NF1 variants from 12 patients. ES,

exome sequencing; MLPA, multiplex ligation-dependent probe amplification; SNV, single nucleotide variants; indels, insertion-deletions; P,

pathogenic.
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Posterior spinal fusion

A posterior midline incision was made to expose the spine.

The bilateral pedicle screws were inserted, according to the

pre-operative plan. At the levels to be fused, multisegment

posterior column osteotomies were performed, the vertebral

lamina was decorticated, and a bone graft was placed along the

side of the vertebrae.

Follow-up

Patients with growing rods were followed up every 6

months after surgery, and the lengthening interval was 6–

12 months. Patients who underwent posterior spinal fusion

were followed up at 3, 6, and 12 months after surgery

and once a year thereafter. Standing anteroposterior and

lateral radiographs of the entire spine were evaluated at

each follow-up.

Statistical analysis

SPSS18.0 (SPSS Inc., Chicago, IL, USA) was used for

statistical analysis. Continuous variables were represented

as median (minimum, maximum), and variables were

classified by the number of cases (percentage). The Cobb

angle correction rate was calculated as [(pre-operative

Cobb–post-operative Cobb)/pre-operative Cobb] ×100%.

The Wilcoxon test was used to compare the Cobb angle

before and after surgery, and statistical significance was

set at P < 0.05.

Results

Clinical data

Fourteen patients diagnosed with NF1 associated dystrophic

scoliosis were reviewed (Figure 1), including 6 males and 8

females. The mean age at the initial surgery was 6 years (3–

14 years). Among the 14 patients, three patients had reported

family history of NF1: Café-au-lait spots and axillary or

inguinal skinfold freckling were present at mother of patient

3 and patient 14. Café-au-lait spots and dermal neurofibromas

were present at father and grandmother of patient 13

(Table 1).

Common symptoms of patients included café-au-lait spots,

paraspinal tumors, and dystrophic scoliosis. Café-au-lait spots

were present at birth, and the age of dystrophic scoliosis

onset varied, with a median age of 4 years (2–13 years).

Other symptoms included pulmonary function limitation (n

= 5), plexiform neurofibroma (n = 3), T6-T8 meningocele

(n = 1), unequal length of the lower extremities (n = 1),

and intraspinal neurofibroma (n = 1). T6-T8 meningocele,

intraspinal neurofibroma, and complications of unequal length

of both lower limbs were treated before the spinal surgery

(Table 1).

Genetic testing

The results of ES combined with MLPA showed that 12

patients hadNF1 pathogenic variants (Table 2), with a diagnostic

rate of 85.7%. NF1 mutations included nonsense (n = 4),

splicing (n = 3), frameshift (n = 3), and exon deletions (n =

2). Five of them were firstly reported (Supplementary Table 1).

Among these patients with detected NF1 variants, their clinical

phenotypes and disease progression were not significantly

related with their genotypes (Figure 2). In addition, two patients

(patients 13 and 14) did not detect any NF1 mutations in

exon regions.

Imaging evaluation and surgical outcome

Pre-operative imaging revealed paraspinal tumors and

vertebral dystrophy in all 14 patients. Dystrophic vertebrae

showed wedge-shaped or scallop-like changes, and the number

of median deformed vertebrae was 3 (2–7). The apical vertebrae

were located in the thoracic vertebrae in 12 cases and in

the lumbar vertebrae in two cases. The first surgery included

growing-rod surgery in 10 cases and posterior spinal fusion

in four cases. The median operative time was 200min (90–

700min) and the median intraoperative blood loss was 425mL

(140–2,300mL). The pre-operative median Cobb angle of the

main curve was 61.5◦ (30◦-125◦) and the postoperative Cobb

angle was 25.5◦ (0◦-55◦). The immediate correction rate was

60.0% (25–100%), and the postoperative Cobb angle was

significantly lower than that before surgery (Z = 3.297, P <

0.001). At the last follow-up, the Cobb angle of the main curve

was 14.5◦ (0◦-42.0◦) and the correction rate was 74.0% (44–

100%) (Table 1).

Follow up

The duration of follow-up was 1–10 years, with a

median term of 2.3 years. Among the 10 patients who

underwent growing-rod surgery, two patients completed

the definitive fusion. Postoperative instrumentation-related

complications occurred in 4 cases (28.6%). Among the

patients who underwent growing-rod surgery, screw

displacement, rod breakage, and adding-on phenomenon

occurred in one patient each, respectively. Curve progression

occurred in one patient who underwent posterior spinal

fusion surgery.
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TABLE 1 Clinical information of 14 patients with NF1 associated dystrophic scoliosis.

Patient

ID

Sex Age First

operation

Apical

vertebrae

Preoperative

Cobb

Last

follow-up

Cobb

Last follow-up

correction rate

(%)

Complication Family

history

Other

symptoms

1 F 5 years 2 months GR T5 125 42 66.4 Rod breakage None Pulmonary function

limitation

2 M 3 years 2 months GR T8 63 35 44.4 - None None

3 F 9 years 8 months GR T9 60 15 75.0 - Mother T6-T8 meningocele

4 F 6 years 1 months GR T5 94 9 90.4 - None None

5 F 13 years 9 months SF T4 82 5 93.9 Curve progression None None

6 M 8 years 7 months SF T9 30 0 100.0 - None Plexiform neurofibroma

7 F 6 years 1 months GR T7 61 24 60.7 - None None

8 F 3 years 4 months GR T4 90 30 66.7 Screw displacement None Pulmonary function

limitation

9 M 5 years 6 months GR T9 62 14 77.4 - None Plexiform neurofibroma

10 F 3 years 11 months GR T11 40 10 75.0 - None Pulmonary function

limitation

11 M 4 years 2 months GR T6 35 10 71.4 Adding-on

phenomenon

None Pulmonary function

limitation

12 M 9 years 7 months GR T9 63 17 73.0 - None Plexiform neurofibroma

13 F 9 years 7 months SF L1 55 25 54.5 - Father and

grandmother

Unequal length of the lower

extremities, intraspinal

neurofibroma

14 M 13 years 4 months SF L2 49 5 89.8 - Mother Pulmonary function

limitation

Café-au-lait spots and axillary or inguinal skinfold freckling were present at mother of patient 3 and patient 14. Café-au-lait spots and dermal neurofibromas were present at father and grandmother of patient 13. GR, Growing-rod surgery; SF, Spinal

fusion surgery.
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TABLE 2 Variation description of the 12 patients with NF1 associated dystrophic scoliosis.

Patient ID Detection

method

Gene Variants

type

Variants Zygosity Inheritance

pattern

Firstly reported in

literature (No.

PMID)

Classification

1 ES NF1 Splicing c.655-1G>A Heterozygous N.A. 8957181 P

2 ES NF1 Nonsense c.910C>T / p.Arg304* Heterozygous N.A. 18484666 P

3 ES NF1 Nonsense c.1318C>T / p.Arg440* Heterozygous N.A. 18484666 P

4 ES NF1 Nonsense c.1318C>T / p.Arg440* Heterozygous N.A. 18484666 P

5 ES NF1 Indel c.1828delT / p.Leu611fs*19 Heterozygous N.A. Novel P

6 ES NF1 Indel c.2409_2409+1insGT Heterozygous N.A. Novel P

7 ES NF1 Splicing c.3975-2A>T Heterozygous N.A. 34418705 P

8 ES NF1 Indel c.5247delA / p.Val1751fs*1 Heterozygous N.A. Novel P

9 ES NF1 Indel c.7095dupT / p.Asn2366* Heterozygous De novo Novel P

10 ES NF1 Indel c.5752_5756delATTGA /

p.Leu1920fs*20

Heterozygous De novo Novel P

11 ES+MLPA NF1 Deletion exon 15-16 del Heterozygous N.A. 16786508 P

12 ES+MLPA* NF1 Deletion exon 1-58 del Heterozygous De novo 30290804 P

All of patients accepted proband-only ES. Patient 11 and 14 accepted proband-only MLPA.

*Parents of Patient 12 and 13 also accepted MLPA. ES, exome sequencing; MLPA, multiplex ligation-dependent probe amplification; indel, insertion-deletion; N.A., not available;

P, pathogenic.

FIGURE 2

Schematic diagram of distribution of 10 NF1 pathogenic SNVs and indels variants identified by ES in NF1 associated dystrophic scoliosis patients.

CSRD, Cysteine-Serine-rich domain; GRD, GTPase-activating protein-related domain; SEC14/PH, SEC14 domain and pleckstrin homology (PH)

domain; CTD, Carboxy-terminal domain; SBD, Syndecan-binding domain; ES, exome sequencing; SNV, single nucleotide variants; indels,

insertion-deletions.*means amino acid turns into termination codon and translation is stopped.

Two years after the definitive spinal fusion, retroperitoneal

rhabdomyosarcoma was observed in Patient 11 (Figure 3;

Patient 11 in Table 1), and led to the death of the patient, 1

year later.

Discussion

NF1 spinal deformity is generally classified into two

categories: non-dystrophic and dystrophic, based on the imaging

evidence of skeletal dystrophy such as vertebral scalloping, rib

penciling, elongated and attenuated pedicles, and a widened

spinal canal and foramen (2, 3). Pre-operation imaging revealed

skeletal dystrophy in all of 14 patients, in which the NF1

mutation detection rate of ES combined with MLPA was 85.7%.

Our cohort showed that there was no mutation hotspot in

NF1 gene and no clear genotype-phenotype correlation, but

all of NF1 variants were null variants. Surgical treatment

according to patients’ age and severity could effectively correct

the spinal deformities.
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FIGURE 3

Surgical treatment of 4-year-old NF1 associated dystrophic scoliosis patient 11. (A,B) Patient 11 had large café-au-lait spots on the trunk,

scattered café-au-lait spots on the limb, and scoliosis. (C,D) X-ray of spine showed scoliosis with apical vertebrae located in T6 causing 35.0◦

Cobb angle, dystrophic changes at T5-T7 vertebrae when patient was 4 years old. (E,F) After surgery, X-ray showed that Cobb angle was 10.0◦.

(G,H) After definitive fusion, patient’s Cobb angle was 10.0◦ at 12 years and 7 months old. T, thoracic vertebra.

Patients without typical clinical manifestations require

genetic testing to confirm the diagnosis of NF1. In our study,

12 of 14 clinically diagnosed as NF1 patients were identified

as NF1 null variants by the combination of ES and MLPA,

including four nonsense variants, three splicing variants, three

frameshift variants, and two exon deletions. All of the variants

could reduce mature NF1 protein, leading to neurofibromatosis

around the vertebrae, and further scoliosis. In our study, no

significant genotype-phenotype correlation was observed to

date, consistent with previous reports (7, 14). The combination

of ES and MLPA could detect SNVs, indels, and exon-deletions

of NF1, which could cover the majority of NF1 mutations (15,

16). We molecularly diagnosed 85.7% of patients who met the

clinical criteria of NF1, which highlighted the necessity of the

application of ES and MLPA in clinical practice. Among them,

SNVs and indels ofNF1 took proportion of 71.4% (10/14) of NF1

patients, so ES should be prior to MLPA for economic efficiency.

However, ES and MLPA testing for peripheral blood sample

cannot uncover etiology of all NF1 patients, germline mutations

located in the NF1 introns or somatic NF1mutations could also

lead to NF1 and its inheritance between generations (15, 16).

For undiagnosed patients, we will further perform RNA-seq to

investigate the variants of NF1 intron region, or take skin tissues

for molecular diagnosis to analyze somatic variants (23).

The surgical treatment of NF1 associated dystrophic

scoliosis is relatively difficult for surgeons. First, spinal

deformities caused by NF1 mutations are usually severe and

require surgical treatment at a young age. At this age, patients

possess low spinal maturity and the pedicle is deformed, leading

to a greater difficulty in precise pedicle screw placement (9, 17).

Second, NF1 mutations cause neurofibroma protein deficiency,

bone mineralization disorders, and bone strength reduction,

resulting in insufficient holding force for internal fixation (17–

20). Third, NF1 mutations lead to a decrease in osteoblast

function, which in turn results in a notable decline in the

effect of vertebral fusion and an increase in pseudarthrosis

(19, 21). In addition, involvement of multiple organs can

occur in patients with NF1, leading to complications such as

intracranial tumors, intracranial vascular malformations, renal

hypertension, cardiopulmonary dysfunction, anisotropy of the
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cerebromedullary tube, intraspinal tumors, and intervertebral

foramen tumors. All these factors can compromise the safety

of the surgery. In our study, Patient 3 had complications with

T6-T8 meningocele while Patient 13 had intraspinal tumor

complications (Table 1). To increase the safety of spinal surgery,

T6-T8 meningocele and intraspinal tumors were treated, before

performing the spinal surgery.

Surgical management, including growing-rod surgery and

spinal fusion surgery, has been recommended to prevent the

progression of NF1 associated dystrophic scoliosis. Growing-

rod surgery aims to allow truncal growth while maintaining

the correction and is necessary for young patients with a

long curve (17). Spinal fusion surgery can be performed

in patients with a short and sharp curve or >10-year-old

patients with a long curve (4). Dystrophic changes in the

vertebrae lead to rapid progression of spinal deformities, and

early fusion can be considered for patients with frequent

instrumentation-related complications following the growing-

rod surgery. Jain et al. reported that the growing-rod surgery

corrected the early onset scoliosis rate in patients with

NF1 from 74◦ to 36◦ (51% correction) (9). Wang et al.

reported that the rate of correction of scoliosis with posterior

pedicle screw fixation from 83.2◦ to 27.6◦ (67% correction)

(22). In our study, the initial surgery included growing-rod

surgery in 10 cases and spinal fusion surgery in four cases.

The mean correction rate was 60.0% (25–100%) after the

operation. At the last follow-up, the mean correction rate was

74.0% (44–100%), suggesting that both growing-rod surgery

and spinal fusion surgery were effective for the correction

and control of NF1 associated dystrophic scoliosis. Due to

severity and complexity of spinal deformities in patients with

NF1, surgical treatment is difficult with high incidence of

complications. In our study, the frequency of postoperative

instrumentation-related complication was 28.6%, after timely

revision, these complications were well-controlled. The choice

of surgical method should comprehensively consider the

age of the patients, development of the spine, and severity

of deformity.

In conclusion, in patients with NF1 associated dystrophic

scoliosis who met NIH diagnostic criteria, the NF1 mutation

detection rate of ES combined with MLPA was 85.7%, no

mutation hotspot in NF1 gene was found. The phenotype,

the severity and progression of scoliosis in NF1 patients

were not significantly related with their genotypes, but with

the position of neurofibromatosis, so did surgical treatment

options and post-operational prognosis. Both growing-rod

and spinal fusion can correct the deformity and control

scoliosis progression when applied at proper age. The molecular

diagnose could offer information about genetic counseling,

prenatal diagnosis and eugenics, surgical treatment and

long-term prognosis prediction required evaluation from

experienced orthopedists.
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