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Von Hippel–Lindau (VHL) disease affects approximately 1 in 
35,000 people worldwide and presents clinically as an autosomal 
dominant hereditary cancer syndrome (1). The classical tumors 
seen in this disorder are blood vessel tumors called hemangio-
blastomas of the retina, cerebellum, and spinal cord; clear cell 
renal cell carcinomas (ccRCCs); and sympathetic nervous sys-
tem tumors called paragangliomas. Paragangliomas arising in 
the adrenal gland are referred to a pheochromocytomas. Patients 
with VHL disease usually harbor a germline loss-of-function VHL 
mutation or, less frequently, have a mosaic loss-of-function VHL 
mutation that was acquired after conception. Tumors develop 
when the remaining wild-type VHL allele is mutated or lost.

ccRCC is the most common form of kidney cancer, which 
is one of the ten most common cancers in the developed world 
(2). Consistent with the knowledge that germline VHL muta-
tions predispose to ccRCC, biallelic VHL mutations or, less fre-
quently, hypermethylation are very common in sporadic ccRCC 

(3, 4). Somatic VHL mutations have also been described in spo-
radic hemangioblastomas and paragangliomas (5, 6). In short, 
the VHL gene behaves as a classical Knudson two-hit tumor 
suppressor gene.

VHL disease is not genetically heterogeneous insofar as all 
patients who phenotypically have VHL disease are known or can 
be presumed to harbor a VHL mutation. On the other hand, there 
are striking genotype-phenotype correlations in VHL disease (3). 
VHL families are said to have type 1 disease if they display a low 
risk of paraganglioma and type 2 disease if they display a high risk 
of paraganglioma. Type 2 disease can be subdivided into type 2A 
disease (low risk of ccRCC), type 2B disease (high risk of ccRCC), 
and type 2C disease (paraganglioma only). Interestingly, almost 
all VHL mutations associated with type 2 disease are missense 
mutations, while VHL mutations associated with type 1 disease 
include true null VHL mutations and grossly destabilizing VHL 
missense mutations.

Some VHL mutations have been linked to familial polycythemia 
rather than to VHL disease. These individuals carry homozygous 
(or, less commonly, compound heterozygous) hypomorphic VHL  
alleles (Chuvash polycythemia). In contrast, VHL disease patients 
carry a wild-type allele and a defective VHL allele. Accordingly, 
all the somatic cells (including cells capable of producing erythro-
poietin) in Chuvash polycythemia patients are hypomorphic with 
respect to pVHL function. VHL disease patients are initially normal, 
because there is no evidence of VHL haploinsufficiency.

The VHL gene encodes two different proteins by virtue of 
alternative, in-frame, start codons (7–9). The longer protein con-
tains 213 amino acid residues, with the shorter version beginning 
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HIF and genotype-phenotype correlations
Mutant VHL alleles linked to type 1, type 2A, type 2B, or type 
2C VHL disease differ with respect to the degree to which they 
deregulate HIF, with relative HIF levels being highest in type 1 
and lowest in type 2C as follows: type 1 > type 2B > type 2A > type 
2C (24) (Figure 2). In fact, type 2C mutants appear fully capable 
of suppressing HIF, at least when expressed from strong promot-
ers (25, 26). It is possible, however, that such overexpression sys-
tems masked subtle defects, including pVHL destabilization, that 
might have been apparent had these mutants been expressed by 
the endogenous VHL locus. Nonetheless, these observations sug-
gest that complete loss of pVHL, perhaps due to excess HIF activ-
ity, is antithetical to paraganglioma development, and either that 
paraganglioma development reflects a HIF-independent pVHL 
function or that very subtle HIF dysregulation can cause paragan-
glioma (see also below).

HIF and ccRCC
The role of HIF, and particularly HIF2, has been particularly well 
established in ccRCC. The earliest recognizable pVHL-defec-
tive lesions arising in the kidneys of VHL patients demonstrate 
an increase in HIF and HIF target genes, with the appearance of 
HIF2 in conjunction with HIF1 in such lesions correlating with 
worsening cellular atypia and more advanced disease (13, 27). 
In mouse VHL–/– ccRCC xenograft experiments, silencing HIF2α 
using shRNAs or CRISPR/Cas9 suppresses tumor growth where-
as forced production of HIF2α, such as through the expression 
of a non-hydroxylatable HIF2α mutant, bypasses pVHL’s tumor 
suppressor activity (28–32). In stark contrast, HIF1α constrains 
VHL–/– ccRCC growth in such assays (31–34). A caveat is that some 
VHL–/– ccRCC lines are not affected by manipulations of HIF2 
activity, suggesting they either were never HIF2-dependent or 
became HIF2-independent in the course of tumor progression 

at methionine located at codon 54. For simplicity, I will refer to 
both isoforms as pVHL, partly because the long and short forms 
share key biochemical functions and are both capable of suppress-
ing tumor growth.

pVHL is primarily a cytosolic protein, but can dynamical-
ly shuttle in and out of the nucleus (10–12). pVHL serves as the 
substrate recognition component of a multisubunit ubiquitin 
ligase that includes elongin B, elongin C, cullin 2, and Rbx1 (3). A 
number of substrates for this ubiquitin ligase have been reported, 
although the substrate most clearly linked to pVHL’s tumor sup-
pressor activity is the hypoxia-inducible factor (HIF) transcription 
factor. In addition, pVHL has been reported to control the activity 
of specific kinases, such as AKT (13) and casein kinase 2 (14), in a 
ubiquitin-independent manner.

HIF consists of a labile α subunit (for example, HIF1α) that is 
normally degraded when oxygen is plentiful and a constitutively 
stable β subunit (for example, HIF1β, which is more commonly 
called ARNT1) (15). The pVHL ubiquitin ligase is responsible for 
the oxygen-dependent ubiquitylation, and hence degradation, of 
HIFα (15). In the presence of oxygen HIFα is prolyl-hydroxylated 
on one (or both) of two conserved prolyl residues by members of 
the EglN (also called PHD) prolyl hydroxylase family, which there-
by generates a high-affinity pVHL binding site (16–21) (Figure 1). 
EglN1 (also called PHD2) is the primary regulator of HIFα sta-
bility under normal conditions in the cells and tissues examined 
to date, with EglN2 and EglN3 serving to further fine-tune the 
hypoxic response (22, 23). The EglNs have low oxygen affinities, 
and as a result they are sensitive to decrements in oxygen avail-
ability under physiological and pathological conditions (15). When 
pVHL is defective, or oxygen levels are low, HIFα escapes ubiqui-
tylation and accumulates in cells, whereupon it binds to HIFβ and 
transcriptionally activates genes containing cis-acting HIF binding 
sites referred to as hypoxia response elements (HREs) (15).

Figure 1. Pharmacological control of HIF. (A) In the presence of the cofactors oxygen and reduced iron, the EglN prolyl hydroxylases hydroxylate 
one (or both) of two prolyl residues in HIFα (for simplicity, only one hydroxylation event is depicted). Prolyl-hydroxylated HIFα is recognized by a 
ubiquitin ligase that uses pVHL as the substrate recognition module, leading HIFα to be polyubiquitylated and destroyed by the proteasome. HIF 
prolyl hydroxylase inhibitors (HIF PHIs) prevent the hydroxylation of HIF by inhibiting the EglNs by competing with 2-OG or iron. (B) HIFα binds to 
its partner protein ARNT. This complex can then recognize specific genomic DNA binding sites (hypoxia response elements [HREs]) and activate 
transcription. Belzutifan binds specifically to HIF2α and induces an allosteric change such that it can no longer bind to ARNT and hence to DNA. 
EloB, elongin B; EloC, elongin C; CUL2, cullin 2; RBX1, RING box protein 1.
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PBRM1, or, rarely, both (41). PRBM1 loss amplifies the deregulation 
of HIF in ccRCC (42, 43). Chromosome 5q harbors several candi-
date ccRCC proto-oncogenes, including SQSTM1, which encodes 
the p62 protein that has been implicated in the regulation of auto-
phagy, NRF2 signaling, and mTOR signaling (44). Chromosome 
14q harbors several genes that can function to constrain ccRCC 
growth, including HIF1A (34). Intragenic missense mutations have 
also been described in ccRCCs that affect mTOR signaling, redox 
stress signaling, or the response to DNA damage (41).

Mouse models of VHL–/– ccRCC
Vhl–/– mouse embryos are not viable, and Vhl+/– mice are gross-
ly normal (45, 46). In particular, Vhl+/– mice do not phenocopy 
humans in the mouse strains examined to date. Targeted biallelic 
inactivation of Vhl in mouse kidneys and liver causes renal cysts 
and hemangiomas, respectively, apparently driven by HIF2 and 
not HIF1 (46–50). Similarly, HIF2 appears to drive the increased 
vascularization noted after biallelic Vhl inactivation in skin (50).

Multiple attempts have been made to combine Vhl loss with oth-
er cooperating genetic events, either by breeding or, more recently, 
by somatic gene editing with CRISPR/Cas9, in hopes of creating a 
murine model of human VHL–/– ccRCC (43, 51–56). These models 
typically yield small tumors with long latencies and/or introduce 
mutations, such as p53 mutations, that are not common in primary 
human VHL–/– ccRCCs. In most of these models HIF2 dependence 
has not been firmly established. Notably, some of the recurrent 
genetic changes in human ccRCC involve chromosomal arms, sug-
gesting the presence of multiple pathogenic targets on those arms 
that contribute to ccRCC pathogenesis. Therefore it might be chal-
lenging to recapitulate these changes with single gene disruptions. 
In this regard, human ccRCC tumor suppressor genes, including 
PBRM1, BAP1, and SETD2, are located on chromosome 3p, but their 
murine orthologs are located on separate chromosomes.

A mouse model of Chuvash polycythemia was made using homol-
ogous recombination of embryonic stem cells to create VhlR166W/R166W 
mice (equivalent to VHLR200W/R200W in humans) (57). As expected based 
on their human counterparts, these mice develop florid polycythemia 
but are not at high risk of the tumors seen in VHL disease.

Medical treatment of VHL-associated neoplasms
The tumors linked to VHL inactivation, including ccRCCs, are 
highly angiogenic, which can now be rationalized based on the 
knowledge that pVHL regulates HIF-responsive proangiogenic 
genes such as VEGF. Drugs that inhibit VEGF or one of its key 

in vivo or during cell line creation and passage ex vivo (35, 36). 
Interestingly, a polymorphism in the HIF2α locus has been linked 
to risk of ccRCC in humans (37).

HIF and paraganglioma
As described above, type 2C pVHL mutants, when overexpressed, 
retain the ability to suppress HIF. This led to the suggestion that 
pVHL has HIF-independent functions that repress paraganglioma 
development. In this regard, wild-type pVHL, but not type 2C pVHL 
mutants, can suppress aPKC activity and thereby suppress JunB (38). 
The inappropriate accumulation of JunB can repress c-Jun, which 
plays a critical role in the culling of excess sympathetic neuroblasts 
during development. This lack of culling might contribute to the 
development of paragangliomas, which arise from sympathetic/
adrenal-lineage cells. On the other hand, loss-of-function EglN1 and 
gain-of-function HIF2α mutations have also been identified, albeit 
rarely, in paragangliomas (5). This suggests that pVHL mutant para-
gangliomas, including those bearing type 2 mutations, are driven by 
HIF2α and that the failure to demonstrate a defect in HIF regulation 
by type 2C mutants was technical. It remains possible, however, that 
derepression of either HIF or JunB (or perhaps some other HIF-inde-
pendent pVHL substrate) can cause paragangliomas.

HIF and hemangioblastoma
Hemangioblastomas are seen in both type 2A and type 2B VHL 
disease, while ccRCC is, by definition, associated exclusively with 
the latter. Type 2B pVHL mutants lead to higher HIF levels than 
type 2A mutants, suggesting that hemangioblastoma development 
requires less HIF activation than does ccRCC development (39). 
Early work showed that forced expression of VEGF in the mouse 
causes the development of hemangioblastoma-like lesions, strong-
ly suggesting that deregulated HIF, and hence VEGF, contributes 
to the pathogenesis of these tumors (40). Inactivation of VHL in 
various mouse tissues also causes vascular proliferations that very 
loosely resemble hemangioblastomas (see below).

Cooperating mutations in ccRCC
VHL inactivation causes renal cysts in mice and humans, but is 
not sufficient to cause ccRCC. Both hereditary (VHL disease) and 
sporadic ccRCCs frequently harbor loss of chromosome 3p, gain of 
chromosome 5q, and loss of chromosome 14q, with VHL loss serv-
ing as the initiating or “truncal” event (41). Chromosome 3p harbors 
four bona fide ccRCC tumor suppressor genes: VHL, BAP1, PBRM1, 
and SETD2 (41). Most ccRCCs have suffered biallelic loss of BAP1, 

Figure 2. HIF and genotype-phenotype correlations in VHL disease. 
The degree to which different VHL alleles deregulate HIF, at least 
when tested in preclinical models, correlates with the risk of devel-
oping specific types of tumors in VHL disease. VHL alleles leading to 
the highest HIF levels, including true null VHL alleles, are associated 
with a high risk of hemangioblastoma and ccRCC, but not paragan-
glioma (type 1 VHL disease). VHL alleles associated with minimal HIF 
deregulation are associated with familial paraganglioma with few 
or no other stigmata of VHL disease (type 2C disease). Progressively 
higher HIF levels are associated with an increased risk of hemangio-
blastoma (type 2A disease) and, above a certain threshold, ccRCC 
(type 2B disease). It is possible that exceedingly high HIF levels actu-
ally suppress the development of paraganglioma in type 1 disease.
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complete responses. In one complete responder the response was 
linked to donor T cells that recognized an HLA-bound peptide that 
was derived from the endogenous retrovirus HERV-E (79, 80). 
The authors showed that the expression of this ERV was restrict-
ed to ccRCC and not observed in other cancers or normal tissues. 
They further demonstrated that HERV-E expression is driven by 
HIF2, thus at least partly explaining its deregulation in ccRCC. It 
will be of interest to determine whether HIF drives the promiscu-
ous expression of additional ERVs and, if so, whether this contrib-
utes to the immunogenicity of ccRCC.

2-Oxoglutarate–dependent dioxygenases  
as oxygen sensors
The EglN prolyl hydroxylases belong to a larger superfamily of 
approximately 70 2-oxoglutarate–dependent (2-OG–depen-
dent) dioxygenases that includes the JmjC domain–containing 
histone demethylases, the TET DNA hydroxylases, the colla-
gen prolyl hydroxylases, and the FIH1 asparaginyl hydroxylase 
(81, 82). The EglNs have relatively low oxygen affinities, and 
are therefore poised to act as oxygen sensors. In contrast, the 
collagen prolyl hydroxylases have relatively high oxygen affini-
ties, rendering them relatively insensitive to changes in oxygen 
until cells become virtually anoxic (15). We and others showed 
that some, but not all, of the JmjC domain–containing his-
tone demethylases have low oxygen affinities and can thereby 
directly translate changes in oxygen availability into changes in 
histone methylation and thereby gene expression (83, 84). For 
example, the two principal H3K27 demethylases are KDM6A 
and KDM6B. We showed that KDM6A has a low oxygen affini-
ty while KDM6B has a high oxygen affinity. Hypoxia can affect 
cellular differentiation. We linked the ability of hypoxia to 
block myogenic differentiation to inhibition of KDM6A rather 
than to the activation of HIF. These findings have implications 
for the importance of hypoxia, such as occurs during intrauter-
ine development, in stem cell niches, and in specific organs 
such as the thymus, in the control of cell fate.

2-Hydroxyglutarate: an endogenous 2-OG 
competitor
Some cancers, such as a subset of gliomas, acute myelogenous 
leukemias, cholangiocarcinomas, and chondrosarcomas, are 
caused by mutations in isocitrate dehydrogenase 1 (IDH1) or IDH2 
(85). These mutations cause IDH1 and IDH2 to convert 2-OG to 
2-hydroxyglutarate (2-HG) rather than to convert isocitrate to 
2-OG. 2-HG can accumulate to millimolar levels in IDH mutant 
tumors and can competitively inhibit various 2-OG–dependent 
enzymes. For example, IDH mutations appear to cause AML at 
least partly by inhibiting TET2 (86–88). Many of the enzymes 
that are inhibited by 2-HG are epigenetic regulators, which led to 
the concern that blocking 2-HG production would not reverse its 
transforming activity in a clinically relevant time scale. Fortunate-
ly, we found that 2-HG was both necessary and sufficient for trans-
formation in a preclinical model of IDH mutant AML and that its 
effects were reversible over the course of weeks (88). This galva-
nized interest in developing drugs that block 2-HG production by 
mutant IDH1 or IDH2, and two such drugs are now FDA approved 
for IDH mutant AML.

receptors, KDR, have become mainstays of ccRCC treatment. 
Indeed, eight such drugs are now FDA approved for this indi-
cation (58). Nonetheless, not all ccRCC patients respond to 
VEGF inhibitors, and virtually all ccRCC patients who do initial-
ly respond to VEGF inhibitors will eventually progress. There 
is much less information available with respect to the use of 
VEGF inhibitors to treat hemangioblastomas. In this setting 
VEGF inhibitors can sometimes improve symptoms, probably 
owing to decreased peritumoral edema because of a decrease 
in VEGF-induced vascular leakiness, but they do not typically 
cause objective tumor regressions (59, 60). Whether they slow 
hemangioblastoma growth is hard to assess, as these tumors are 
slow-growing to begin with.

The preclinical studies described above nominated HIF2 
as a potential therapeutic target in ccRCC. Although HIF2 was 
classically viewed as an “undruggable” transcription factor, 
Rick Bruick and Kevin Gardner identified a potentially drugga-
ble pocket in HIF2α, as well as chemicals that, upon binding to 
this pocket, induced an allosteric change that prevented HIF2α 
from binding to its heterodimeric partner ARNT (and hence to 
DNA) (61–63). These seminal findings enabled the creation of 
first-in-class small-molecule HIF2 inhibitors by Peloton Thera-
peutics, which was subsequently acquired by Merck. Such inhibi-
tors are active against HIF2-dependent, pVHL-defective, ccRCC 
in preclinical models (36, 64, 65). The most advanced of these, 
belzutifan, was recently FDA approved for VHL disease based on 
a phase II trial of 61 VHL patients with at least one measurable 
ccRCC (66). Virtually all the evaluable ccRCCs in this trial mea-
surably shrank when treated with belzutifan, including many that 
fulfilled RECIST partial response criteria (66). This suggests that 
all pVHL-defective ccRCCs are initially HIF2 dependent. Grat-
ifyingly, responses were also seen in non-indicator lesions such 
as hemangioblastomas and pancreatic neuroendocrine tumors 
(66). Belzutifan has also advanced to phase III trials for sporadic 
ccRCCs based on very promising phase II data (67) and was also 
recently reported to be active in the treatment of a paraganglioma 
caused by a gain-of-function HIF2 mutation (68).

HIF, endogenous retroviruses, and tumor 
immunogenicity
ccRCC has historically been viewed as an immunogenic tumor 
because it occasionally spontaneously regresses and because it 
sometimes responds to immune modulators such as high-dose 
interleukin-2, interferon, or, more recently, immune check-
point blockade (69–71). ccRCCs also are characterized by a 
high level of effector T cells (72). The cause of this presumed 
immunogenicity is not clear. In particular, ccRCC does not have 
the high mutational burden observed in other immunogenic 
tumors such as malignant melanoma and mismatch repair–
deficient colorectal cancer (73).

Some, but not all, studies have suggested a link between the 
expression of endogenous retroviruses (ERVs) in ccRCCs and 
their likelihood of responding to immune checkpoint blockade 
(74–77). Intriguingly, Richard Childs and coworkers treated a 
series of patients with metastatic ccRCC with allogenic stem cell 
transplants (78). Almost half of the patients treated in this way 
exhibited objective tumor regressions, including some who had 
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reducing ATP-consuming processes such as macromolecule syn-
thesis. Chronic HIF activation, however, can lead to deleterious 
changes. For example, chronic HIF1α activation in the heart, such as 
through the cardiac-specific inactivation of EglN family members 
or cardiac-specific expression of a stabilized version of HIF1α, caus-
es a dilated cardiomyopathy (108, 109). These changes correlate 
with a loss of mitochondria, likely due to mitochondrial autophagy 
(“mitophagy”) stimulated by the HIFα-responsive gene product 
BNIP3 (110). These findings might have implications for chronic 
ischemic cardiomyopathy in humans, which is usually linked to cor-
onary artery disease. It has been appreciated for decades that the 
degree of cardiac function in ischemic cardiomyopathy is often out 
of proportion to the degree of heart muscle destruction caused by 
prior myocardial infarctions. Collectively, these results suggest that 
HIF activation is beneficial in the setting of acute ischemia, but can 
become deleterious when persistent over months or years.

Remote ischemic protection
Tissues that survive a transient ischemic insult are temporarily 
partially protected from subsequent ischemic insults, a phenom-
enon referred to as “ischemic preconditioning.” Ischemic precon-
ditioning is likely due, at least partly, to HIF-dependent metabolic 
changes that persist after the initial ischemic insult has resolved. 
“Remote ischemic preconditioning” (RIPC) refers to the phenom-
enon whereby a tissue that survives an ischemic insult can also pro-
tect other tissues and organs at a distance. RIPC has been demon-
strated in a variety of laboratory models, but has not been highly 
reproducible or robust when studied in human clinical trials. For 
example, two large randomized clinical trials failed to show a clini-
cal benefit when blood pressure cuffs were repeatedly overinflated 
in order to cause limb ischemia prior to elective heart surgery (111, 
112). We reasoned that understanding the mechanism of RIPC 
in the laboratory might allow one to revisit the possibility of har-
nessing RIPC for clinical benefit in humans. One consequence of 
ischemia is to inhibit EglN activity. Accordingly, we created mice 
in which EglN1 was specifically inactivated in the skeletal muscle 
before experimental myocardial infarctions (103). We discovered 
that acutely inactivating EglN1 in skeletal muscle decreased heart 
muscle damage following experimental myocardial infarctions. 
RIPC has been hypothesized to involve either neural or hormon-
al mechanisms. In parabiosis experiments we confirmed that the 

Surprisingly, we found that 2-HG could stimulate EglN activi-
ty, which would explain the low HIF levels observed in IDH mutant 
gliomas (89). One study suggested that the apparent activation of 
EglN by 2-HG in vitro reflected contamination with 2-OG (90), but 
the 2-HG Km values observed, coupled with the sensitivity of our 
2-OG assays, make this extremely unlikely (89). Moreover, HIF 
levels are characteristically low in IDH mutant gliomas (91), and 
deletion of HIF1 can augment brain tumor growth in mouse mod-
els, suggesting that decreased HIF1 activity contributes to glioma-
genesis (92). Importantly, drugs that block 2-HG production have 
thus far had very modest effects against IDH mutant gliomas in pre-
clinical models and in clinical trials (93–95). In this regard, there is 
evidence that IDH mutations might act in a “hit and run” manner in 
glioma, setting in motion a feed-forward cycle that promotes trans-
formation (96, 97).

HIF agonists and anemia
A number of inhibitors of the EglN prolyl hydroxylases have been 
developed for the treatment of anemia (Table 1) (98–100). These 
agents offer an oral alternative to parenteral erythropoietin (EPO) 
and can also induce red blood cell production in certain EPO-re-
fractory conditions, such as anemia of chronic disease linked to 
high hepcidin levels. The most advanced of these, roxadustat, 
has been approved in multiple countries, including China, Japan, 
South Korea, Chile, and the European Union, for the treatment of 
anemia caused by chronic kidney disease. Daprodustat is currently 
approved in Japan and is awaiting approval in Europe. Vadadustat 
is approved in Japan. The US FDA did not approve roxadustat and 
vadadustat owing to safety concerns, including a possible increased 
risk of thrombosis in patients. Whether this risk can be mitigated by 
titration of drug doses to correct anemia more slowly remains to be 
determined; this would require additional clinical trials (and per-
haps real-world data from post-approval countries).

HIF and tissue protection
Pharmacological or genetic activation of HIF1α, such as through 
inactivation of EglN1, protects against tissue damage in models of 
acute cardiac, cerebral, and renal ischemia (101–107). These acute 
effects likely reflect acute changes in metabolism that help to pre-
serve ATP under hypoxia conditions, both by promoting a switch 
from oxidative phosphorylation to anaerobic glycolysis and by 

Table 1. Pharmacological HIF modulators

Compound Company Approved indications
HIF2 inhibitor

Belzutifan Merck VHL disease–associated ccRCC, hemangioblastomas, and/or pancreatic neuroendocrine tumors (US)

HIF stabilizer
Roxadustat Fibrogen/AstraZeneca/Astellas Anemia in setting of DD and NDD chronic kidney disease (Japan, China, EU, UK, Chile, South Korea)

Daprodustat GlaxoSmithKline Anemia in setting of DD and NDD chronic kidney disease (Japan)

Vadadustat Akebia Anemia in setting of DD and NDD chronic kidney disease (Japan)

Molidustat Bayer Anemia in setting of DD and NDD chronic kidney disease (Japan)

Enarodustat Japan Tobacco Anemia in setting of DD and NDD chronic kidney disease (Japan)

DD, dialysis-dependent; NDD, non-dialysis-dependent.
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RIPC in our mouse models involved a circulating factor, which we 
later identified as kynurenic acid (KynA) (103). KynA had been 
shown to confer ischemic protection in other models, but its mech-
anism of action was unknown. In this regard, a number of poten-
tial KynA receptors have been reported in the literature (113–119). 
We showed that ischemic protection by KynA reflects its ability to 
activate the orphan receptor GPR35 (120). Once bound to KynA, 
GPR35 internalizes to mitochondria where, in an ATPIF1-depen-
dent manner, it promotes the dimerization of ATP synthase and 
thereby prevents futile ATP consumption by ATP synthase under 
hypoxic conditions (120).

pVHL, protacs, and molecular glues
Ray Deshaies and Craig Crews pioneered the concept of target-
ing specific proteins for degradation using bifunctional chemicals 
that would simultaneously bind to a ubiquitin ligase and the target 
protein of interest, essentially acting as molecular matchmakers 
(121, 122). They referred to such molecules as proteolysis-target-
ing chimeras, or protacs. Early protacs tended to be large chem-
icals with suboptimal medicinal chemistry properties, although 
several have now advanced to clinical trials.

In the late 1990s the infamous teratogen thalidomide was 
found, through clinical serendipity, to be highly active in the treat-
ment of the B cell malignancy multiple myeloma. This sparked 
interest in identifying the relevant protein target(s) of thalidomide. 
In 2010, Hiroshi Handa and coworkers showed that thalidomide 
could bind to cereblon, which is the substrate recognition subunit 
of a ubiquitin ligase (123). Moreover, they provided preliminary 
evidence that thalidomide was a cereblon antagonist (123).

It was subsequently reported that some myeloma patients 
who relapsed after initially responding to thalidomide (or relat-
ed drugs such as lenalidomide) had acquired myeloma cells that 
no longer produced cereblon (124, 125). Conversely, high levels 
of cereblon appeared to increase the likelihood of responding to 
thalidomide-like drugs, now referred to as immunomodulatory 
imide drugs (IMiDs) (126, 127). The former observation suggest-
ed to us and others that the killing of myeloma cells by IMiDs was 
likely to be due, not to cereblon inhibition, but rather to a neomor-
phic activity of cereblon once bound to an IMiD. Our group, Ben 
Ebert’s group, and a group at Celgene Corp. went on to show that 
the cereblon ubiquitin ligase, once bound to an IMiD, acquires 
the ability to polyubiquitylate, and hence earmark for destruc-
tion, the IKZF1 and IKZF3 transcription factors, which play crit-
ical roles in myeloma maintenance (128–130). Shortly thereafter 
it was reported that the SALL4 transcription factor was likely the 
neomorphic target responsible for the limb defects associated 
with thalidomide use during pregnancy (131, 132).

The IMiDs are more “drug-like” than earlier protacs and yet 
act through the same mechanism envisioned for protacs. As IKZF1 
and IKZF3 would classically be viewed as undruggable, this dis-
covery galvanized interest in targeting undruggable proteins with 
small-molecule degraders, as did the discovery of other bifunction-
al “molecular glues” such as indisulam, which targets the RBM39 
splicing factor by recruitment of DCAF15 (133, 134), and CR8 and 
HQ461, which target cyclin K by recruitment of CUL4 and DDB1 
(135, 136). Moreover, it was quickly established that IMiDs could 
be chemically modified to change their target specificity (137, 138).

As described above, cereblon loss offers a rapid path to resis-
tance to cereblon-based molecular glues such as the IMiDs. Loss 
of pVHL confers fitness disadvantage in most cell types examined 
to date, which likely contributes to the narrow range of tumor types 
linked to VHL mutations. Partly for this reason, a number of pVHL-
based protacs and molecular glues have now been developed (121).

Conclusions and future directions
My mentor, the late David M. Livingston (139), taught me and his 
other mentees that every good experiment starts with the ques-
tion it is aimed at addressing. Studying the von Hippel–Lindau 
tumor suppressor gene shed light on a number of questions: 
What are the earliest steps in the development of ccRCC, and 
how should we treat these tumors based on that knowledge? How 
do tumors regulate angiogenesis, which is a conspicuous feature 
of VHL-associated tumors, and, more broadly, how do cells and 
tissues sense oxygen and couple that information to changes in 
gene expression? The VHL gene product, pVHL, proved to be a 
key node in the oxygen sensing mechanism, targeting the HIF 
transcription factor for destruction when oxygen is plentiful. 
Drugs that inhibit HIF2, and HIF-responsive gene products such 
as VEGF, are now cornerstones of kidney cancer therapy, while 
HIF agonists, which block oxygen-dependent prolyl hydroxyl-
ation of the HIFα subunits, appear promising for the treatment 
of anemia and ischemia.

A number of questions and mysteries remain. For example, it 
remains unclear why VHL loss is intimately linked to ccRCC, but 
not other common epithelial cancers. It is potentially relevant in 
this regard that mammalian kidneys are hypoxic at rest, which 
might lead to epigenetic changes that allow certain renal cells to 
proliferate (for example, in response to injury) in a hypoxic envi-
ronment. Consistent with this idea, HIF lowers cyclin D1 levels 
and proliferation in many cell types, but increases cyclin D1 and 
proliferation in the cells capable of giving rise to ccRCC (140). Nor 
do we completely understand the genotype-phenotype correla-
tions in VHL disease, although the degree of HIF dysregulation 
almost certainly plays a role here.

It is also unclear how HIF1 and HIF2, which appear to oppose 
one another with respect to ccRCC proliferation, achieve their 
paralog-specific effects. Prior reports suggest that this is achieved, 
at least in part, through paralog-specific binding to specific HIF 
response elements (141–143). These initial reports, however, 
might have been confounded by technical factors such as the use 
of different antibodies or reliance on overexpression systems.

We do not fully understand how, mechanistically, stereotypi-
cal non-allelic mutations, such as of BAP1 and SETD2, cooperate 
with VHL loss to cause ccRCC. Nor do we know whether these 
mutations play roles in tumor maintenance, as opposed to tumor 
initiation and progression, and whether they engender any specif-
ic therapeutic vulnerabilities.

It is not known why the response to VEGF inhibitors and, 
based on early data, HIF2 inhibitors is variable in ccRCC. With 
respect to the latter, the percentage of ccRCCs exhibiting measur-
able tumor shrinkage is much higher in the setting of VHL disease 
patients whose ccRCCs were previously untreated than in the set-
ting of metastatic disease patients who had been heavily pretreat-
ed. This suggests that all ccRCCs are initially HIF2 dependent, but 
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can evolve toward HIF2 independence over time under the selec-
tion pressure created by standard-of-care agents such as VEGF 
inhibitors and immune checkpoint inhibitors.

Our knowledge of the effects of HIF on the immune system is 
incomplete. This knowledge might influence the outcome of combin-
ing HIF2 inhibitors with other anticancer drugs and could prove valu-
able in exploring the therapeutic utility of HIF agonists. In this regard, 
we are just beginning to understand the benefits and risks of acutely 
or chronically inactivating HIF for the treatment of anemia and oth-
er disorders such as ischemic diseases. It is perhaps noteworthy that 
the most advanced HIF agonists inhibit the EglN prolyl hydroxylases, 
but not the FIH1 asparaginyl hydroxylase (100). Accordingly, these 
drugs can induce EPO without inducing VEGF, which relies on the 
FIH1-responsive HIF1α C-terminal transactivation domain in most 
tissues (144). This was initially viewed as fortuitous, insofar as it was 
feared VEGF would induce angiogenesis and possibly stimulate latent 
tumors. On the other hand, there is no evidence that systemic (rath-
er than focal) VEGF induces angiogenesis, presumably because an 
effective gradient to stimulate endothelial cells is not established, and 
a recent study showed that increasing systemic VEGF levels in adult 
mice caused tissue rejuvenation and increased lifespan (145). It is also 

theoretically possible that a slight increase in VEGF would improve 
endothelial cell health and reduce, for example, the risk of thrombo-
sis, especially as decreasing VEGF clearly has the opposite effect (146). 
Combined inhibition of EglN and FIH1 should more faithfully mimic 
the effects of true hypoxia, such as life at very high altitude. It would 
therefore be interesting to test combined EglN1 and FIH1 inhibition 
preclinically and clinically.
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