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The Neurovascular Unit in
Glaucomatous Neurodegeneration
Lauren K. Wareham and David J. Calkins*

Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville,
TN, United States

Glaucoma is a neurodegenerative disease of the visual system and leading cause of
blindness worldwide. The disease is associated with sensitivity to intraocular pressure
(IOP), which over a large range of magnitudes stresses retinal ganglion cell (RGC)
axons as they pass through the optic nerve head in forming the optic projection
to the brain. Despite clinical efforts to lower IOP, which is the only modifiable risk
factor for glaucoma, RGC degeneration and ensuing loss of vision often persist.
A major contributor to failure of hypotensive regimens is the multifactorial nature of
how IOP-dependent stress influences RGC physiology and structure. This stress is
conveyed to the RGC axon through interactions with structural, glial, and vascular
components in the nerve head and retina. These interactions promote pro-degenerative
pathways involving biomechanical, metabolic, oxidative, inflammatory, immunological
and vascular challenges to the microenvironment of the ganglion cell and its axon. Here,
we focus on the contribution of vascular dysfunction and breakdown of neurovascular
coupling in glaucoma. The vascular networks of the retina and optic nerve head
have evolved complex mechanisms that help to maintain a continuous blood flow
and supply of metabolites despite fluctuations in ocular perfusion pressure. In healthy
tissue, autoregulation and neurovascular coupling enable blood flow to stay tightly
controlled. In glaucoma patients evidence suggests these pathways are dysfunctional,
thus highlighting a potential role for pathways involved in vascular dysfunction in
progression and as targets for novel therapeutic intervention.
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INTRODUCTION

Glaucoma is an age-related disease of the visual system and a leading cause of irreversible blindness
worldwide (WHO, 2020). Clinical classification schemes of the several forms of glaucoma hinge
upon a key anatomic feature of the anterior segment, the iridocorneal angle, which is defined by
the angle formed where the iris and cornea meet. In open-angle glaucoma, the angle is sufficiently
wide to allow normal outflow of aqueous humor from the anterior chamber to the drainage canals
in the trabecular meshwork at the base of the cornea. In the most common form of the disease,
primary open-angle glaucoma (POAG), the angle is open but there is progressive resistance within
the outflow pathways that can lead to an increase in intraocular pressure (IOP). The disease causes
degeneration of the optic nerve through sensitivity to IOP which remains the only modifiable
risk factor. Over a range of magnitudes, IOP stresses retinal ganglion cell (RGC) axons as they
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pass unmyelinated through the optic nerve head (ONH) and
form the myelinated segment of the nerve and visual projection
to the brain. In the anterograde direction from the ONH,
axon degeneration involves transport dysfunction and eventual
disassembly with subsequent pruning of synaptic termination
sites in central projection sites in the brain (Calkins, 2012). In
the retrograde direction back toward the retina, RGC dendritic
arbors shrink and lose complexity as excitatory synapses are
eliminated, though the cell body and unmyelinated axon segment
persist until later in progression (Buckingham et al., 2008;
Calkins, 2012). In late stages of disease progression, RGCs
degenerate completely and retinal nerve fiber layer (RNFL)
thickness is significantly decreased.

That the ONH is a critical juncture for pathogenic processes
that underlie neurodegeneration in glaucoma is underscored
by its unique structure and physiology (Sigal and Ethier,
2009; Burgoyne, 2011; Tamm et al., 2017; Lawlor et al., 2018).
Through its architecture, complex IOP-dependent forces at
the ONH translate to biomechanical stress at the lamina
cribrosa and ultimately, to RGC axons as they pass through
(Yan et al., 1994; Burgoyne et al., 2005; Downs, 2015). The
ONH is also an important site for both systemic and local
vascular dysfunction that likely contributes to progression.
Glaucoma involves significant comorbidity with multiple
vascular conditions, including migraine, arterial hypertension
and hypotension, low ophthalmic artery blood pressure, and
diabetes mellitus (Dienstbier et al., 1950; Hayreh, 1969, 2001).
Vascular dysfunction and insufficiency at the ONH as well
as in the retina can lead to ischemia that contributes to RGC
degeneration (Hayreh et al., 1970; Flammer, 1984). In normal
tension glaucoma, which occurs without overt elevations in
IOP, vascular dysfunction may be a primary driver of disease
progression through increased oxidative stress at the level of
the retina and ONH (Trivli et al., 2019). Mild and repetitive
hypoxic events due to small fluctuations in IOP may lead
to an unstable oxygen supply, generating chronic, low-grade
ischemia-reperfusion injury that differs from sustained hypoxic
insults resulting from acute elevations in IOP (Flammer, 2001;
Nita and Grzybowski, 2016). In both cases, however, the main
consequence is progressive oxidative stress that challenges the
metabolic resources RGCs require in transmitting the retinal
image to the brain.

Despite the association between systemic vascular dysfunction
and glaucoma, controversy remains concerning the extent of
involvement of neurovascular dysfunction in RGC degeneration
during glaucoma (Hayreh, 2001). Much of the data addressing
vascular changes in eyes of patients have been collected using
techniques that have limitations; for example, limitations in
the technology available to accurately measure blood flow in
the retina and ONH (discussed below). Difficulties arise when
discerning whether vascular abnormalities precede glaucomatous
degeneration as most studies of the vasculature in patients are
carried out in those already clinically diagnosed with glaucoma
(for a recent review see Ahmad, 2016). Nevertheless, there is
mounting evidence to support a role for vascular dysfunction in
some cases of glaucoma. Critical questions still remain, including
(1) whether vascular changes precede other insults thereby

increasing RGC susceptibility, (2) if vascular dysfunction follows
neuronal degeneration from a breakdown in neurovascular
coupling, and (3) whether particular vascular pathways are
dysfunctional and, if so, if they are targets for therapeutic
intervention. In the sections that follow, we will review known
facts that address these questions and others that have bearing on
the vascular contribution to glaucomatous neurodegeneration.

VASCULAR DYSFUNCTION IN
GLAUCOMA

The high metabolic nature of the retina necessitates a continual
supply of metabolites and removal of oxidative waste (Buttery
et al., 1991; Wong-Riley, 2010; Country, 2017). The retina
has a conflicting requirement of blood supply and minimal
interference with light. The evolution of two vascular supplies
meet this conflict: the choroid supplies photoreceptors that
comprise one-third of the retina, and intra-retinal vessels supply
the remaining two-thirds of the retina (Kur et al., 2012). The
inner layers of the retina that require a proximal blood supply
include the outer plexiform layer, the inner plexiform, and
the ganglion cell layer (Dowling, 1987). The vascular system
supplying the ONH is more complex than in the retina (Harris
et al., 2005). Blood flow to the ONH is primarily supplied by
the posterior capillary artery circulation via the peripapillary
choroid and short posterior ciliary arteries, except for the surface
nerve fiber layer which is supplied from the central retinal artery
circulation (Onda et al., 1995) (Figure 1A). Blood flow regulation
at these sites involves multiple metabolic and vasoactive pathways
(Figure 1B).

In all stages of glaucoma, early through to late progression,
functional and morphological changes appear in the
microvasculature of both the retina and ONH, independently of
IOP (Newman et al., 2018). Ocular blood flow measurements
have improved over recent years but remain technically
challenging. Compared with healthy controls, ocular blood flow
is disturbed in glaucoma patients and is a recognized factor that
contributes to progressive visual field loss (Galassi et al., 2003;
Grieshaber and Flammer, 2005). Ocular blood flow is more
reduced in patients who have IOP in a normotensive range,
compared with patients who experience ocular hypertension
(Kaiser et al., 1997). Ocular hypotensive medications have the
potential to improve ocular blood flow in the eye, but studies to
date have had difficulties disentangling the effects of lowered IOP
and improved circulation in the eye (Januleviciene et al., 2012).

In addition to blood flow, advances in fundus imaging have
enabled vessel diameters close to the optic disc to be routinely
performed on patients. Retinal microvascular caliber is therefore
one of the most commonly reported biomarkers, with high
reproducibility using semi-automated quantification methods (Li
et al., 2013; Newman et al., 2018). However, there are limitations
in the quantification of more specific vessel artifacts that
require assessment by trained observers, such as focal arteriolar
narrowing (Wong, 2004). Vessel caliber measurements indicate
that arteriole vessel narrowing is associated with optic nerve
damage and severity of optic neuropathy (Jonas and Naumann,
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FIGURE 1 | Neurovascular coupling in the ONH and vascular dysfunction in glaucoma. (A) Schematic showing the blood supply at the ONH. Prelaminar, lamina
cribrosa, and postlaminar sections are indicated. The primary blood supply to the ONH and retina comes from the choroid, the central retinal artery, the posterior
ciliary artery and the circle artery. (B) Enlargement of the boxed area in (A) showing a capillary and its associated cells in the ONH. Astrocytes, pericytes, and
endothelial cells of blood vessels constitute the neurovascular unit (NVU), to link local neuronal activity to vascular changes. In healthy tissue, when there is a spike in
neuronal activity (1), or metabolic demand, it leads to an increased intracellular concentration of Ca2+ in neurons and (2) astrocytes. This, in turn, leads to the
generation of nitric oxide (NO), a vasoactive gaseous messenger, which can diffuse to nearby blood vessels, altering blood flow. In glaucoma, apoptotic neurons and
reactive astrocytes lead to the breakdown of this coupling. (3) In addition, in glaucoma, ischemia, and perfusion instability damages astrocyte–astrocyte gap
junctions, leading to miscommunication between astrocytes and neurons.
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1989; Jonas et al., 1989; Lee et al., 1998; Papastathopoulos
and Jonas, 1999). A longitudinal study of glaucoma patients
linked early blood vessel narrowing with disease progression;
over a 10-year follow-up period, patients with narrowed retinal
arteriole caliber were associated with a greater risk of developing
glaucoma (Kawasaki et al., 2013). In this particular study,
RNFL measurements were not carried out, so a correlation
between microvascular changes and RNFL thickness could not
be determined. Nonetheless, generalized narrowing of retinal
vessel caliber is a phenomenon associated with glaucomatous
optic neuropathy and RNFL thinning that occurs independently
of elevated IOP; ocular hypertensive patients without glaucoma
pathology did not exhibit vessel narrowing (Rankin and Drance,
1996; Mitchell et al., 2005; Amerasinghe et al., 2008). This finding
is corroborated in the pediatric population (De Haseth et al.,
2007), lending support to the notion that vascular changes in
glaucoma are independent of IOP and may be associated with
other pathological features.

In addition to vessel narrowing, further along in disease
progression, OCT-angiography in glaucoma patients shows
reduced vessel density in retinal capillary layers (Yip et al., 2019;
see also Quigley et al., 1984). In the very early stages of glaucoma,
macula vessel dropout is common and there is a significant
association between ONH vessel density with peripapillary RNFL
thickness (Suh et al., 2016; Yarmohammadi et al., 2016a,b; Hou
et al., 2019). Elevated IOP combined with decreased perfusion
pressure is correlated with reduced retinal vessel density, which
may lead to a reduction in blood flow to retinal tissues (Baek
et al., 2019). These changes observed in humans also reflect in
animal models of the disease. In a rat model of elevated IOP, there
is reduced capillary volume, perimeter, diameter and density in
the optic nerve head (Moreno et al., 2014). In the DBA/2J mouse
model of glaucoma, choroid and retinal blood flow reduce as age
and IOP increase (Lavery et al., 2012).

Of particular importance to the health of RGC axons is
the microvascular perfusion at the ONH. In glaucoma there
is a general compromise of the vasculature in the ONH and
surrounding regions (Liu and Neufeld, 2000; Jia et al., 2012; Liu
et al., 2015; Scripsema et al., 2016; Akil et al., 2017; Nascimento
et al., 2019). Thus glaucoma is often associated with an unmet
need for metabolites and O2 due to insufficient blood flow,
or ‘ischemia’ (Osborne et al., 2004; Kaur et al., 2008; Schmidt
et al., 2008). In fact, the posterior lamina is implicated as the
primary site of disruption in glaucoma, and emerging studies
show a significant decrease in vessel density and blood flow in
POAG in the deeper layers of the ONH compared with controls
(Nascimento et al., 2019). Microvascular density correlates with
RGC axon volume across all areas at the ONH, but the correlation
is greater at the posterior lamina cribrosa, further emphasizing
the importance of changes in vascular parameters at this site
(Kang et al., 2018). Narrowing of retinal blood vessels is also
characteristic of advanced glaucomatous optic nerve damage,
indicating that vascular changes occur in the retina in addition
to the site of injury at the ONH (Jonas et al., 1989; Rankin
and Drance, 1996). ONH blood flow velocity is reduced to a
greater extent in glaucoma patients with visual field progression
compared to those with non-progression (Yamazaki and Drance,

1997). Furthermore, eyes with progressive visual field defects in
NTG patients had lower blood vessel velocities (Kaiser et al., 1997;
Yamazaki and Drance, 1997).

Changes in vascular morphology, i.e., narrowing of vessels and
complete vessel dropout, are indicative of deleterious changes in
blood vessel tone and blood flow regulation at the level of the
neurovascular unit (NVU). There is a higher incidence of these
changes in glaucoma patients at all stages of disease progression.
Interestingly, focal arterial narrowing and other microvascular
changes are also associated with other non-glaucomatous optic
neuropathies (Jonas et al., 1991; Rader et al., 1994), suggesting
that changes in vessels occur across a wide range of IOP
values and may well arise from dysfunctional RGCs, leading
to impaired blood flow and vessel narrowing. When RGCs are
dysfunctional, for example, RGCs that are experiencing higher
levels of ROS, or cells that are undergoing cell death, they are
not as metabolically active and due to lower nutritional demand,
blood flow decreases. Therefore blood flow dysregulation in
glaucoma likely exacerbates the progressive loss of RGCs. The
next sections of this review will highlight critical pathways in
blood flow regulation in the retina and ONH.

BLOOD FLOW REGULATION IN THE EYE

The vessels of the retina and ONH have evolved mechanisms
that enable blood flow to meet the dynamic metabolic demands
of the tissue (Kur et al., 2012). Such mechanisms include
tight autoregulation and neurovascular coupling. Autoregulation
enables vascular beds in the retina and ONH of healthy eyes
to maintain a continuous blood flow and supply of metabolites
despite fluctuations in ocular perfusion pressure (OPP, Alm and
Bill, 1973). To determine autoregulation capacity in patients,
measurements of blood flow differences are carried out before
and after the OPP is artificially increased or decreased. The
normalized blood flow change represents the autoregulation
capacity at any given OPP level tested. Changes in blood flow
in response to OPP changes plotted on a graph constitute a
classic autoregulation curve (Figure 2A). The curve includes
a plateau region across a range of OPP where the blood flow
is fully compensated by autoregulatory mechanisms. When the
OPP fluctuations exceed the autoregulation range defined by this
plateau, vasomotor adjustments are incomplete and blood flow
will gradually decrease or increase passively as OPP changes.
Autoregulation is achieved through changes in blood vessel
tone and through neurovascular interaction. Typically, when
blood vessels experience changes in blood pressure, they alter
the resistance and the tone of their vessel walls as part of the
‘myogenic response’ in order to maintain a continuous flow
through the tissue (Hayreh, 2001). Arterioles will contract or
relax in response to an increase or decrease in intravascular
pressure, respectively (Boltz et al., 2013; Prada et al., 2016).

Two key vasoactive molecules mediate blood vessel tone
and blood flow: nitric oxide (NO) and endothelin-1 (ET-1;
Nyborg and Nielsen, 1990). NO is a potent vasodilator released
by smooth muscle cells and endothelial cells which acts via
pericytes to dilate capillaries (Hayreh, 1997). ET-1 is a potent
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FIGURE 2 | Blood flow autoregulation in the eye. (A) A schematic showing an
autoregulation curve that describes the relationship between normalized blood
flow (y-axis) and perfusion pressure (x-axis). Autoregulation can only operate
within a critical range of OPP and once OPP surpasses the optimal range
(shown in pink), autoregulatory systems start to break down. (B) The two
important vasoactive substances released by endothelial cells are nitric oxide
(NO) and endothelin-1 (ET-1) and autoregulation of the vascular system in the
eye relies on a delicate balance between the two; NO is a potent vasodilator
released by smooth muscle cells and endothelial cells which acts via pericytes
to dilate capillaries. Opposite in function is ET-1, a potent vasoconstrictor.

vasoconstrictor released from endothelial cells that acts on
three primary receptors: ETA, ETB1, and ETB2 receptors. ETA
receptors are present in vascular smooth muscle and mediate
the vasoconstrictive properties of ET-1 (Orgul et al., 1999; Resch
et al., 2009a; Schmidl et al., 2011). ETB1 receptors are present on
endothelial cells and facilitate vasodilation (Schmidl et al., 2011).
ETB2 receptors on the other hand mediate constriction of vessels
(Pollock et al., 1995).

Aside from its role in regulating blood flow, ET-1 mediates
a multitude of responses in the retina through targeting
ET-1 receptors on several cell types. In rodents, intravitreal
and peribulbar administration of ET-1 activates receptors
on RGCs altering the rate of RGC axonal transport and
promotes apoptotic cell death of RGCs (Stokely et al., 2002;
Yorio et al., 2002; Chauhan et al., 2004; Lau et al., 2006;
Taniguchi et al., 2006; Krishnamoorthy et al., 2008). ET-1
receptor activation on astrocytes promotes their proliferation
(Lau et al., 2006). Moreover, ET-1 reduces expression of RGC
mitochondrial oxidase enzymes, implicating a role for ET-1 in

RGC bioenergetics (Chaphalkar et al., 2020). The effect of ET-1
on RGCs and other cell types directly is beyond the scope of this
review, but reviewed well in Shoshani et al. (2012).

In vascular autoregulation, a delicate balance between
concentrations of NO and ET-1 mediates appropriate vessel
response to maintain blood flow (Figure 2B; Orgul et al., 1999;
Venkataraman et al., 2010). In glaucoma, mounting evidence
suggests dysfunction in the pathways of vasoactive mediators.

BLOOD FLOW REGULATION IS
IMPAIRED IN GLAUCOMA

Patients with glaucomatous optic neuropathy have abnormal
autoregulatory responses due to the dysfunction of the cells
involved in these processes (Pournaras et al., 2004; Galambos
et al., 2006; Feke and Pasquale, 2008; Prada et al., 2016). Cellular
stress derived from pressure changes at the ONH, combined
with impaired autoregulatory responses which triggering
ischemia may accelerate glaucomatous RGC degeneration
(Trible et al., 1993).

Elevated serum levels of ET-1 and other biochemical markers
of endothelial function in the aqueous humor of glaucoma
patients suggest that endothelial dysfunction is associated with
disease pathology (Sugiyama et al., 1995; Noske et al., 1997;
Resch et al., 2009a; Ghanem et al., 2011; Cellini et al., 2012;
Li et al., 2016). There is a statistically significant correlation
between microvascular endothelial function and severity of
POAG in the Malay population (Bukhari et al., 2016). In patients,
blocking both ETA and ETB receptors results in increased
blood flow through the retina, choroid and ONH. In DBA/2J
mouse studies, delivery of bodentan, a dual ETA and ETB
receptor blocker, significantly protects against glaucomatous
damage at the ONH (Resch et al., 2009b; Howell et al., 2011).
In addition, administration of ET-1 in proximity to the optic
nerve head leads to ischemia, and the appearance of clinical
indications of glaucoma including increased cupping of the
optic disc, which leads to subsequent RGC loss (Orgul et al.,
1996; Chauhan et al., 2004; Cioffi et al., 2004). Mice with
endothelium-specific overexpression of ET-1 exhibit both retinal
vascular dysfunction and progressive loss of RGCs over 10–
12 months (Mi et al., 2012). Importantly, a recent study
in mice directly links IOP elevation to vascular endothelial
dysfunction, which bolsters findings of endothelial dysfunction in
glaucoma patients where elevated IOP is apparent. In the study,
elevated IOP blunts retinal arteriole reactivity in response to
the endothelium-dependent vasodilator acetylcholine, but not to
the endothelium-independent nitric oxide donor, nitroprusside.
Also, retinal arteriole responses to changes in perfusion pressure
are compromised in eyes with elevated pressure, suggesting that
autoregulation is impaired (Gericke et al., 2019). In the DBA/2J
mouse model of inherited glaucoma, several molecular changes
in the ONH are detectable before damage to optic nerve axons
have been elucidated, and these include endothelin induction in
microglia (Howell et al., 2011).

As well as perturbations in the endothelin-1 pathway, there
is also longstanding evidence that impaired NO signaling is
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implicated in glaucoma (Haefliger and Anderson, 1997; Polak
et al., 2007; Wareham et al., 2018). NO is a gaseous signaling
molecule, however, high NO concentrations can be neurotoxic
and induce oxidative stress through the formation of reactive
nitrogen species (Pacher et al., 2007). In a rat model of glaucoma,
RGC degeneration is linked with increased nNOS expression and
RGC loss was prevented by NOS inhibition (Neufeld et al., 2002).
NO is not always deleterious to ocular function, and a delicate
balance in NO production is therefore necessary to support a
healthy cellular environment. Production of NO by NO-synthase
(NOS) enzymes in the ONH is essential for controlling the
vascular tone of the region (Haefliger et al., 1992, 1993, 1999).
When NO production is blocked systemically by inhibition of
NOS in glaucoma patients, both choroidal and ONH blood flow
do not decrease to the same extent as in healthy patient controls,
suggesting that elevated basal NO in glaucoma patients may be
a compensatory mechanism to ensure optimal ocular blood flow
(Polak et al., 2007). On the other hand reports of decreased levels
of NO were found in the aqueous humor of POAG patients
(Doganay et al., 2002), as well as a reduction in the levels of cGMP,
a signaling molecule downstream of NO production (Galassi
et al., 2004). In animals, impaired NO signaling has also been
linked with glaucomatous characteristics. A mouse line deficient
in the alpha subunit of the guanylate cyclase (GC1−/−), an
enzyme activated by NO and responsible for the production of
cGMP), develop POAG over time, characterized by RGC axon
loss, modest increases in IOP and impaired retinal vascular
function (Buys et al., 2013). RGC loss is linked to deficiencies
in the NO-cGMP signaling pathway in two animal models
of glaucoma and treatment with tadalafil, a phosphodiesterase
inhibitor prevents RGC degeneration, independently of IOP
(Wareham et al., 2018).

Dysfunction in the NO signaling pathway, either through
up-regulation, or down-regulation, is a likely contributor to
abnormal ocular blood flow; an increase or decrease in NO
shifts the balance between vasoconstrictive and vasodilatory
mediators. Poor ocular perfusion is directly detrimental to
RGC health, leading to ischemia, oxidative stress, and lack of
metabolic support. In addition, a reduction in ocular perfusion
may also increase the sensitivity of the cells to other glaucoma-
related stressors conveyed at the ONH that further exacerbate
disease progression.

NEUROVASCULAR COUPLING IN
GLAUCOMA

Neuronal activity and blood flow are tightly coupled in the
central nervous system in a phenomenon known as ‘functional
hyperemia’ – a spike in neuronal activity evokes increased
blood flow to the area (Roy and Sherrington, 1890). After
initial observations in the brain, the general consensus was that
homeostatic regulation of blood flow was dependent on local
metabolite concentration in a negative feedback loop. In this
mechanism, increased neuronal activity leads to increased energy
demand, for example, the additional ATP consumption that is
required to reset ion gradients after an action potential (Attwell

et al., 2010). A reduction in ATP is perceived as an increased
need for metabolites in tissues and thus induces dilation of blood
vessels. However, the vascular supply to tissues after neuronal
activity far supersedes the metabolic requirements of the tissue,
so a feedback mechanism working alone has been discredited
(Powers et al., 1996). More recent work has shown that glial
cells play a major role in neurovascular coupling (NVC) via a
feedforward mechanism (Vaucher et al., 1997; Attwell et al., 2010;
Petzold and Murthy, 2011). In this process, neuronal activity
leads to neuronal signaling to nearby blood vessels or astrocytes,
which leads to the release of vasoactive agents thereby increasing
blood supply (Attwell et al., 2010). The latest consensus is that
both feedforward and feedback mechanisms are at play; the
initial feed-forward mechanisms that over-supply neurons with
nutrients may be balanced by a feedback mechanism that is
metabolism-dependent and responsive to the accumulation of
vasoactive metabolic by-products (Iadecola, 2017). The objective
of these mechanisms medicated by the NVU is to meet the
metabolic needs of the neurons. A triumvirate of cell types
comprise the NVU (Figure 3A): vascular cells (vascular smooth
muscle cells, pericytes and endothelial cells), glial cells (astrocytes,
microglia, and oligodendrocytes), and neurons (Iadecola, 2004;
Attwell et al., 2010; Hamilton et al., 2010; Winkler et al., 2011).

The NVC response has been elegantly demonstrated in the
ONH and retina with experiments investigating hemodynamic
responses to flicker-light stimulation (Riva et al., 1986, 1997;
Garhofer et al., 2003, 2005; Gugleta et al., 2012, 2013a).
In glaucoma patients, this response is dysfunctional; flicker-
light induced retinal vasodilation responses are diminished
(Figure 3B, Garhofer et al., 2004). This impaired response is likely
due to reduced neuronal activity and altered glial cell function
in the disease (Kornzweig et al., 1968; Hernandez et al., 2008).
However, it could also be directly related to fluctuations in IOP, or
vascular dysfunction in the tissue. In an experiment where short
term IOP elevations of up to 43 mmHg were inflicted in healthy
subjects, flicker-light stimulations in the retina were maintained,
suggesting that diminished responses in glaucoma patients are
not necessarily directly due to changes in IOP alone (Garhofer
et al., 2005). Thus, the dysfunctional NVC response observed
in glaucoma patients probably arises from dysfunction at the
cellular level provoked by other, non-IOP-related stressors.

PERICYTES AND THE NVU

The involvement of pericytes in the regulation of blood flow in
the retina and the relation to glaucomatous disease has been
largely unexplored. Pericytes are embedded in the basement
membranes of microvessels, and extend their processes along
capillaries, pre-capillary arterioles and post-capillary venules
(Sweeney et al., 2016). Pericytes express several types of muscle
contractile proteins (Herman and D’amore, 1985) and are
involved in propagating vasomotor signals along the length
of capillaries (Peppiatt et al., 2006; Puro, 2007). Pericytes are
responsive to vasoactive molecules described earlier, e.g., NO,
and other circulating metabolites, such as ATP (Haefliger and
Anderson, 1997; Kawamura et al., 2003). Pericytes function
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FIGURE 3 | Cells of the ‘neurovascular unit’ and the light flicker response. Neurovascular coupling describes the coupling of neuronal activity to vascular responses.
(A) Shows the cells comprising the NVU, these include neurons (in the eye specifically – RGCs), astrocytes, microglia, pericytes, and endothelial cells. In general, a
spike in neuronal activity leads to an increase in intracellular Ca2+, which generates NO. NO diffuses to local blood vessel endothelial cells, activating K+ channels,
which leads to downstream vasodilation and increased blood flow. The light flicker response demonstrates the tight coupling of neuronal activity (in response to light)

(Continued)
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FIGURE 3 | Continued
and change in vessel diameters in the retina. In glaucoma, this light flicker response is diminished. (B) To measure the light flicker response in the retina, a fundus
video is used (image left) where the temporal inferior artery and vein, and temporal superior artery and vein are clearly visible. Areas of analysis are shown in
grayscale boxes. Graphical representation the light flicker response in control, ocular hypertension (OHT) and glaucoma patients shows diminished vessel response
with disease. Figure adapted from Gugleta et al. (2013b).

similarly to smooth muscle and endothelial cells, possessing a
number of ion channels and transporters that help to mediate
changes in capillary diameter. Like smooth muscle, alterations
in pericyte tone and contractile ability change with intracellular
Ca2+ levels (Sakagami et al., 1999, 2001; Wu et al., 2003). The
overall tone of pericyte-containing microvessels is the result
of a balance between Ca2+-mediated contractility and by NO-
mediated relaxation (Kutcher et al., 2007).

As an integral cell of the NVU, it is unlikely that pericytes are
immune to cellular changes or dysregulation. In an experiment
mimicking glaucoma in mice, elevated IOP stimulated the
expression of β-III-tubulin, a neuronal cell marker, in both
pericytes and endothelial cells, suggesting that vascular cells
respond to changes in IOP via alterations in protein expression
(Prokosch et al., 2019). It is not yet understood how these
expression changes relate to regulation of blood flow or in
NVC responses in the retina, however, the results suggest that
pericytes respond to IOP-related stress through changes in gene
expression. Furthermore, pericytes themselves are vulnerable
in ischemic conditions; retinal ischemia reduces the ability of
pericytes to relax after constriction, leading to a further decrease
in blood flow (Hall et al., 2014; Sweeney et al., 2016; Alarcon-
Martinez et al., 2019). Glaucoma has been described as a
vasospastic disease, whereby retinal ischemia-reperfusion injury
repeatedly occurs, rather than a single ischemic event (Flammer
et al., 2001). Reduced retinal blood flow in glaucoma may lead
to pericyte dysfunction, which may further impact reperfusion
of retinal tissue. Glaucoma is associated with aging, and changes
in pericytes that occur with age may also contribute to, and
encourage, degeneration of RGCs. In the aged rat retina, there
is breakdown of the normal vascular architecture and reduced
pericyte-endothelial cell contact (Hughes et al., 2006). Pericytes
express a number of gap junction proteins that facilitate cell–
cell communication with other cells of the NVU, and expression
changes of these gap junctions in glaucoma may also play a role
in vascular dysfunction (discussed below). With their central role
in retinal perfusion, the role of pericytes in ocular perfusion
and blood flow in glaucoma is crucial in our understanding of
vascular dysfunction in the disease and is an area that warrants
further investigation.

VASCULAR CONNECTIVITY IN
GLAUCOMA

Astrocytes are the predominant glial cell type of the unmyelinated
ONH, and their close proximity to blood vessels hints at
their importance in mediating blood flow (Balaratnasingam
et al., 2014). Astrocytes react to neurotransmitters released
during neuronal activity (such as glutamate) by increasing their

intracellular Ca2+ levels, prompting the release of vasoactive
substances, such as K+ (Porter and Mccarthy, 1996; Filosa et al.,
2006). Astrocytes are key players in the neurovascular coupling
response and in healthy eyes, they are quiescent and mediate
normal neurovascular responses (Bachoo et al., 2004), however,
in response to changes in the ONH environment, such as changes
in IOP, or ischemia, astrocytes become reactive, promoting the
degradation of RGCs and their axons (Varela and Hernandez,
1997; Hernandez et al., 2008). Since changes in glial reactivity
are significantly implicated in various stages of glaucoma, it is
plausible that all cells of the NVU in some way have a role to play
in the breakdown of NVC in the retina and ONH that contributes
to disease progression. Multiple pathways integral to the NVU are
differentially regulated in glaucoma, and evidence for their role in
glaucoma progression is outlined below.

In NVC, NO surfaces as an important player when considering
direct neuronal signaling to blood vessels. An increase in
neuronal activity causes the synaptic release of glutamate,
activating NMDA receptors on neurons, leading to increased
intracellular levels of Ca2+. An elevated level of Ca2+ triggers
a cascade of events leading to the activation of nNOS, which
generates intracellular NO. NO can directly activate BKCa
channels (Bolotina et al., 1994), or indirect activation can occur
through NO-derived cGMP (Stumpff et al., 1997). Activation of
BKCa channels leads to K+ efflux and cell hyperpolarization.
Cell hyperpolarization causes voltage-operated (L-type) Ca2+

channels to close, reducing Ca2+ influx, leading to vasorelaxation
of vascular smooth muscle cells. This chain of events leads
to vasodilation and increased blood flow (Cavet et al., 2014;
Prada et al., 2016). Dysfunctional NO signaling is implicated in
glaucoma pathogenesis and endothelial dysfunction. Inhibitors
of NOS attenuate light-induced vasodilation in the retina
and the ONH (Kondo et al., 1997) and increased levels
of NO are observed in the ONH in response to changes
in neuronal activity in flicker-stimulation (Buerk and Riva,
2002). Reactive astrocytes have been shown to produce excess
amounts of NO through the activation of inducible-NOS (iNOS)
(Neufeld et al., 1997; Liu and Neufeld, 2000), increasing free
radicals and causing damage to local axons. Interestingly,
despite high levels of NO in the ONH, blood flow is still
often impaired. NO signaling represents a double-edged sword
paradigm; NO in excess is detrimental to cells, causing great
damage to cellular components and their dysfunction; this
likely impacts vascular function. However, lower levels of
NO, however, can fine-tune vascular responses. The role of
NO in the NVC response may therefore lie in modulation,
rather than mediation of the response; in the rat retina, high
concentrations of NO leads to vasodilation of nearby blood
vessels, whereas lower concentrations causes vasoconstriction
(Metea and Newman, 2006). Impaired NO signaling in astrocytes
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may indeed contribute to atypical neurovascular responses,
causing reductions in ocular blood flow that ultimately lead to
ischemia and subsequent RGC degeneration.

In the retina and optic nerve, gap junction channels
between cells mediate intercellular communication, such as
the communication between astrocytes and blood vessels. This
communication can occur from glial cell to glial cell, or through
glial cells communication to other cell types. The concept
of neuron-glial connectivity, or ‘gliotransmission,’ was initially
introduced to account for the active transfer of neuroactive
molecules, from glia to neurons (Bezzi and Volterra, 2001).
Initial evidence that connexin channels played a role in neuron-
glial interactions was demonstrated using co-culture models
and ex vivo brain slices (Nedergaard, 1994; Froes et al., 1999;
Giaume and Theis, 2010). Increases in Ca2+ generated in
astrocytes triggered Ca2+ responses in co-cultured neurons; an
effect abolished by connexin channel blockers, suggesting that
astrocytic-neuronal connectivity is mediated, in part by gap
junctions. These junctions are integral to cell-to-cell transfer
of electrical conductance (Na+, K+, and Ca2+) and small
molecules such as ATP/ADP, glutamate, and glucose, and second
messengers (e.g., NO, cGMP, and cAMP; Bloomfield and Volgyi,
2009; Giaume et al., 2020). The five major neuronal classes in
the vertebrate retina form diverse coupling networks by gap
junctions formed by connexin proteins (Sohl and Willecke, 2003;
Sohl et al., 2005). Gap junction channels have been implicated
in numerous cellular processes including in maintaining ionic
balance, synaptic plasticity, metabolic substrate trafficking, and
cellular survival (Andrade-Rozental et al., 2000; Wright et al.,
2001; Bloomfield and Volgyi, 2009; Spray et al., 2013). Gap
junction-mediated gliotransmission is a vastly growing field, and
we refer the reader to a recent review (Giaume et al., 2020).

In the retinal NVU, gap junctions are integral in the
maintenance of the blood–retinal-barrier (Figure 4), and in
glaucoma, changes in gap junction expression may compromise
the blood–retinal-barrier, exacerbating neuronal degeneration
(Figure 4B). Ischemia and ocular perfusion instability in
glaucoma damages astrocyte–astrocyte gap junctions; under
experimental elevated-IOP conditions, there is decreased gap
junction communication between ONH astrocytes (Malone et al.,
2007). This may lead to loss of continuity and communication
between astrocytes and other cells of the NVU, including
pericytes and neurons, which can disrupt ionic and metabolic
homeostasis in the tissue and eventually alter blood flow
(Hernandez et al., 2008). Indeed, expression of Cx43 in pericytes
is important in the development, maturation, and maintenance
of the blood–brain-barrier and also in retinal blood flow
(Trost et al., 2016; Giaume et al., 2020), but changes in
connexin expression in pericytes as they relate to glaucoma
progression have not been investigated to date. In healthy
rabbits, uncoupling the gap junctions between astrocytes impairs
ONH blood flow regulation (Shibata et al., 2011). Ischemia
also differentially regulates the hemichannels of gap junctions
(Thompson et al., 2006). In human glaucomatous eyes, Cx43
expression is upregulated at the level of the lamina cribrosa and
in the peripapillary and mid-peripheral retina in association with
glial activation (Kerr et al., 2012). In vitro studies show that an

FIGURE 4 | Cell communication in the NVU. (A) In healthy tissues, retinal
ganglion cell (RGC) neurons, astrocytes and endothelial cells communicate
through gap junctions which permit the movement of electrical conductance
(Na+, K+, and Ca2+) and small molecules such as ATP/ADP, glutamate, and
glucose, and second messengers. Gap junctions exist in the retina and ONH
between neurons, glia and between vascular cells. (B) In glaucoma, several
changes occur that affect communication between the cells of the NVU. (1)
RGCs are vulnerable to stressors that lead to apoptosis; (2) cell–cell
communication is lost as astrocytes and other glial cells become reactive and
gap junction expression is reduced; (3) a reduction in gap junction expression,
and loss of tight junctions between vascular cells leads to a leaky
blood–retinal-barrier (BRB), allowing the infiltration of circulating monocytes
into the retina and ONH.

increase in hydrostatic pressure leads to loss of gap junction
communication and redistribution in human astrocytes (Malone
et al., 2007). Conversely, in other models of retinal ischemia,
blockade of Cx43 reduced overall cell death and injury in the
retina and ONH (Kerr et al., 2012).

In the optic nerve and ONH, the processes of astrocytes
are interconnected via gap junction proteins Cx30 and Cx43,
allowing intercellular communication that contributes to
maintaining a homeostatic cellular environment (Quigley,
1977; Rose and Ransom, 1997; Rash et al., 2001). Expression
of Cx43 on astrocytes increases during chronic stress (Frisch
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et al., 2003; Giaume and Theis, 2010; Kerr et al., 2011).
In vitro, elevated hydrostatic pressure causes astrocytes to
alter localization and phosphorylation state of Cx43 (Malone
et al., 2007). Increased phosphorylation of Cx43 leads to gap
junction uncoupling (Warn-Cramer et al., 1998), whereas
decreased phosphorylation is correlated with a decrease in
gap junction communication (Godwin et al., 1993) or an
increased in gap junction conductance (Moreno et al., 1994).
These studies do not provide direct in vivo evidence for
increased connectivity between astrocytes under glaucoma
stress but suggest that glaucoma-related stresses can alter
the connectivity of astrocyte gap junction proteins and
their activity.

The role of gap junctions in the vasculature of the retina and
ONH is less well established. Direct electrical communication of
vascular cells via gap junctions has been shown to mediate the
vasomotor tone and propagation of vasomotor response in the
retina (Ivanova et al., 2017). Most recently, expression of another
gap junction, Cx45, was shown to form electrical synapses on
RGC axons in the optic nerve (Smedowski et al., 2020). In other
degenerative eye diseases, such as diabetic retinopathy, down-
regulation of gap junctions leads to the breakdown of the blood–
retinal-barrier (Oku et al., 2001; Bobbie et al., 2010; Tien et al.,
2016). There is evidence elsewhere in the CNS for gap junction
association with tight junctions; in the porcine blood–brain-
barrier, Cx43- and Cx40-containing gap junctions are required
for the endothelial barrier (Nagasawa et al., 2006). In mice,
connexins Cx43 and Cx40 are expressed throughout the retina
on glia and retinal vasculature, whilst Cx37 is expressed along
endothelial cells throughout the retinal vascular tree (Ivanova
et al., 2019). In particular, Cx43 is expressed at tight junctions
and between astroglia and endothelial cells, suggesting that
these gap junctions have an integral role in maintenance of
the blood–retinal-barrier (Ivanova et al., 2019). Another gap
junction, not yet linked to vascular communication in the retina,
is Cx36 which is found throughout the inner retina, but not
the optic nerve. The expression of Cx36 been shown to increase
with elevated IOP in a mouse model of glaucoma (Akopian
et al., 2017). Blockade of Cx36 prevents RGC degeneration,
suggesting a role of Cx36 in promoting apoptosis through
inter-neuronal communication of death-signals, however, a
role for Cx36 in the function of the blood–retinal-barrier is
yet to be explored.

CONCLUSION AND FUTURE
DIRECTIONS

The observation that systemic and ocular vascular dysfunctions
are correlated with the incidence of glaucoma raises an important
question; does vascular dysfunction precede glaucomatous optic
neuropathy, increasing the sensitivity of RGCs to pressure
at the ONH, or is it merely a secondary consequence of
other pathological changes in the disease, e.g., increased
inflammation? Treatments so far have focused on the anterior
chamber with current therapies aimed at lowering IOP, the
only modifiable risk factor for the disease. Such drugs address

IOP by modulating the amount of aqueous humor produced
by the ciliary body, or by improving outflow through the
trabecular meshwork (Weinreb et al., 2014). These treatments
have variable success rates, with many patients requiring
additional invasive surgery. A good proportion of patients
continue to progress despite adhering to these treatment
regimens – visual field loss is inevitable. In most cases
treatments that target IOP serve only to delay progression
of the disease, they do not prevent degeneration of RGCs
and their axons.

The fact that glaucomatous optic neuropathy occurs at
all levels of IOP, and that patients progress regardless of
interventions to regulate IOP suggests that there are other
factors that contribute to the degeneration of RGCs and
their axons in the visual projection. As we have outlined,
these factors include increased vascular dysfunction, and ocular
hemodynamics are critical players in the progression of glaucoma
(Flammer, 1994). Systemic vascular diseases such as hypertension
and hypotension are correlated with glaucoma (Tielsch et al.,
1995), and changes in the vasculature of glaucoma patients,
for example, disc hemorrhages are also evident in both early
and late stages of the disease. Ischemia at the ONH leads to
increases in oxidative stress and inflammation, as well as a
decrease in the supply of essential nutrients and metabolites.
Such stressors not only lead to degeneration of RGCs directly,
but also render RGCs more sensitive to mechanical stresses
conveyed at the ONH. An important question is how all of
these glaucomatous stressors interplay to cause sensitivity of
RGCs. A novel hypothesis that may marry together vascular
dysfunction with inflammation and biomechanical stress of tissue
in the retina and ONH is the idea that the eye possesses
an ocular glymphatic system (Wostyn et al., 2017). Such a
glymphatic system would have a similar role in the eye as
it does in the brain, primarily as an exit for toxic waste
products. It would be interesting to investigate whether there is
paravascular communication between the surroundings of the
retinal vascular system and the surroundings of the central retinal
vessels in the optic nerve, and how vascular factors may alter
glymphatic flow.

As technologies for in vivo imaging of vasculature in the
retina and ONH of glaucoma patients improve, evidence is
mounting in support of vascular abnormalities coinciding with
optic neuropathy in glaucoma. A key question moving forward
in glaucoma research is how can we target vascular function
in the design and development of new treatments? Vascular
dysfunction in glaucoma likely arises from impaired functioning
of cells in the NVU, and a loss of connectivity between neurons,
glia, and endothelial cells. Thus, future research into the pathways
involved in this intercellular communication, as outlined in
this review, is key to our understanding of the role of NVC
in glaucomatous disease and efforts to delineate the temporal
changes in NVC and RGC death require urgent investigation.
Vascular dysfunction occurs at all levels of IOP and can affect
RGC health directly, however, we do not fully understand the
role of these pathways in RGC survival. Further work in these
areas will lead to therapies that are aimed at mediating proper
vascular regulation and therapies that promote neurovascular
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interactions. Both of these are attractive novel areas to explore in
the search for neuroprotective therapies in glaucoma.
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