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The contribution of the immune system to idiopathic pulmonary fibrosis (IPF) remains 
poorly understood. While most sources agree that IPF does not result from a primary 
immunopathogenic mechanism, evidence gleaned from animal modeling and human 
studies suggests that innate and adaptive immune processes can orchestrate existing 
fibrotic responses. This review will synthesize the available data regarding the complex 
role of professional immune cells in IPF. The role of innate immune populations such 
as monocytes, macrophages, myeloid suppressor cells, and innate lymphoid cells will 
be discussed, as will the activation of these cells via pathogen-associated molecular 
patterns derived from invading or commensural microbes, and danger-associated 
molecular patterns derived from injured cells and tissues. The contribution of adaptive 
immune responses driven by T-helper cells and B cells will be reviewed as well. Each 
form of immune activation will be discussed in the context of its relationship to environ-
mental and genetic factors, disease outcomes, and potential therapies. We conclude 
with discussion of unanswered questions and opportunities for future study in this area.
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iNTRODUCTiON

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic disease of unknown etiology 
characterized by the radiographic and histopathologic pattern of usual interstitial pneumonia (UIP) 
(1, 2). It is known to have outcomes similar to some cancers, with mortality approaching 50% within 
3–5 years after diagnosis (1). Although the origin of this disease is not known, several risk factors 
have been identified, including cigarette smoking (3), chronic viral infections (4), gastroesophageal 
reflux (5), and genetic predisposition (6), which will be discussed throughout this article as appropri-
ate. The mechanistic relationship of these risk factors to disease development and progression has 
yet to be determined.

The pathogenic cascade of lung fibrosis is thought to be initiated by perpetuated microinjuries to 
the alveolar epithelium that engenders a dysregulated wound healing response (7). Through poorly 
understood processes involving the recruitment and activation of myofibroblasts, normal lung tissue 
is obliterated by the accumulation of extracellular matrix (ECM) components (8). The basic science 
and translational research conducted throughout the last few decades has allowed substantial insight 
into the mechanisms driving IPF (9). In addition, the tireless efforts of investigators conducting 
clinical trials have resulted in the development of anti-fibrotic therapies with the potential to delay 
the rate of lung function decline in some patients (10, 11). A central concept of these developments 
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FigURe 1 | Changing paradigms regarding the proposed pathogenesis of idiopathic pulmonary fibrosis (IPF). The left column presents previous concepts of IPF. In 
this setting, an initial stimulus affects the alveolar epithelium (blue and pale pink shapes). As shown in the middle panel on the left, this process results in the 
generation of apoptotic epithelial cells (light blue) and the recruitment and activation of various immune cells including various populations of macrophages (blue) and 
lymphocytes (green) that produce cytokines and chemokines (yellow). As shown in the third panel on the left, these inflammatory cells and substances induce the 
activation of fibroblasts (red) and myofibroblasts (orange) to result in TGFβ1 activation (small light green circles) and the deposition of excessively stiff and 
biochemically abnormal extracellular matrix (ECM, red crosshatched lines). Observations gleaned from clinical trials and experimental modeling have refined this 
paradigm, however, to result in the scheme shown on the right. In this newer model, the stimuli affecting the lung epithelium leads to fibroblast activation and ECM 
accumulation that can occur without a primary immunopathogenic component (second panel on left). Once the fibrotic response is established, resident and 
recruited immune cells, such as macrophages and lymphocytes, modulate existing responses through a variety of mechanisms.
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has been the emerging consensus that IPF does not appear to be 
a direct result of immune cell dysfunction but rather that immune 
and inflammatory cells can permit, promote, or suppress fibro-
proliferation driven by native lung fibroblasts (Figure  1). This 
article reviews the evidence in support of this hypothesis.

HiSTORiCAL PeRSPeCTive

In order to understand the controversy surrounding the role of 
the immune system in IPF a brief overview of the disease state 
is required. IPF is defined as the presence of UIP in the absence 
of an identifiable underlying cause. Examination of lung tissue 
from patients with IPF reveals a paucity, but not absence, of 
inflammatory cells, when compared to pathologies, such as 
non-specific interstitial pneumonia, acute respiratory distress 
syndrome, organizing pneumonia (OP), and granulomatous 
processes such as hypersensitivity pneumonitis (HP) (12). 
Similarly, CT scan criteria specify that large areas of ground 
glass opacities—typically reflective of inflammatory process—
are inconsistent with UIP (1). Classical signs of autoimmunity 
are absent on physical examination and laboratory testing, as 
is clinical evidence of an identifiable antigen-driven immune 
response (1). In addition, the long history of failed immuno-
therapies, such as administration of interferon gamma (13), 
neutralization of TNFα (14), and suppression of acute inflam-
matory responses with low dose Prednisone and Azathioprine 
(15), suggests that IPF does not result from a primary immu-
nopathogenic process. These clinical observations have been 
interpreted by some sources as indicating the pathogenesis of 

IPF lacks an immune component (9). However, this array of 
findings is unlikely to suggest that the immune system is not 
involved. On the contrary, the worsening of clinical outcomes 
by classical immunosuppression suggests, if anything, that cer-
tain immune responses might be protective and others might be 
harmful. Thus, better understanding of all forms of immunity 
has the potential to advance the understanding of IPF.

iNNATe vS ADAPTive iMMUNiTY

The immune response is stratified into innate processes, which 
respond immediately to chemical or physical patterns of the 
stimulus, and adaptive immunity, which involves a highly spe-
cific antigen-driven response. Both arms of the immune system 
appear to be activated in IPF. The data supporting this concept 
are presented below.

iNNATe iMMUNe CeLLS

The innate immune system forms the first line of defense against 
pathogens. Its recognition of antigens is mainly dependent on 
pattern recognition by innate immune receptors. These cell popu-
lations are central to both host defense and tissue homeostasis. 
Macrophages and neutrophils are among the best studied innate 
immune cells in regard to IPF, though a contribution of monocyte-
derived cells, such as fibrocytes and myeloid-derived suppressor 
cells (MDSCs), and of innate lymphoid cells (ILCs), has also been 
proposed. It should also be noted that parenchymal cells, such as 
epithelial cells and fibroblasts, also show abnormalities in innate 
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immune activation (16). However, because these stromal popu-
lations are not considered to be classical or professional immune 
cells, their potential and largely speculative contribution to the 
immunopathogenesis of IPF will not be discussed in this review.

Macrophages
Macrophages are innate immune cells that not only act as anti-
microbial phagocytes in the lungs but also play a key role in the 
pathogenesis of fibrotic lung disease (17). Of the immunopatho-
genic mechanisms discussed in this review, macrophage-driven 
processes are among the most extensively studied with reports 
of fibrosis-promoting properties dating back nearly 50  years 
(18). Macrophages can regulate both injury and repair in various 
models of fibrosis and macrophage heterogeneity has emerged as 
an important area of study in IPF (9). Prior classification schemes 
proposed the existing of two phenotypes, namely classically 
activated M1 macrophages that arise in response to INFγ and 
TNFα, and alternatively activated M2 macrophages that arise in 
response to stimulation with IL-4, IL-10, IL-13, and TGFβ1 (19). 
The central concept has been that M1 macrophages suppress, and 
M2 macrophages promote, fibroproliferation and uncontrolled 
repair (17). While recent evidence suggests that a dichotomous 
stratification oversimplifies the functional heterogeneity of these 
highly plastic cells (20), the M1/M2 distinction is useful when 
considering functional distinction in broad terms. In this context, 
a relative excess of M1 macrophages leads to epithelial cell death 
and failure of repair such as that seen in acute exacerbation of 
IPF (AE-IPF), while an excess of M2 macrophages leads to the 
aberrant and dysregulated repair responses that characterize 
progressive fibrosis (21). At least one endogenous macrophage-
driven pathomechanism identified in AE-IPF is characterized 
by M2 macrophage activation and upregulation of M2 cytokines 
(22). Detailed studies performed in several mouse models of 
IPF demonstrate the heterogeneous and highly plastic nature 
of lung macrophages, with a contribution from both long-lived 
resident alveolar macrophages (23), as well as from interstitial 
macrophages that are at least partially bone marrow derived (24). 
While the difference in surface marker expression prevents direct 
translation of highly detailed studies of macrophage subtypes in 
the mouse, synthesis of the currently available data reveals that 
the accumulation of cells expressing various scavenger receptors 
and fibrosis-promoting markers is a common feature of many 
forms of lung fibrosis including IPF (21, 25, 26).

Macrophages display many functions that frame them as a 
central contributor to fibrotic responses. As early as the 1980s, 
alveolar macrophages obtained from patients with IPF were 
shown to stimulate fibroblast accumulation via a paracrine 
mechanism involving the production of soluble mediators 
typically associated with alternative activation (18). More recent 
work using lung-derived macrophages confirms the fibroblast-
stimulating properties of macrophages (21), and also reveals that 
circulating monocytes in patients with IPF appear to be pro-
grammed with this property prior to actually entering the lung 
(21). Further studies using animal modeling reveal that removal 
(27, 28) or repolarizing (27) of interstitial macrophages is both 
preventative and therapeutic in several mouse models of IPF. 
This latter mechanism is the conceptual basis for administration 

of the large pentraxin protein serum amyloid P to patients with 
IPF (27, 29), which is currently under investigation for multiple 
forms of fibrosis including IPF. While several studies indicate 
that macrophages might also participate in other forms of lung 
fibrosis via the regulation of epithelial cell activation (30), this 
area remains largely unexplored in the context of IPF.

A large body of evidence supports the concept that macrophages 
produce soluble mediators that regulate fibrotic responses (17) 
but the mechanism(s) through which they adopt this activation 
state remains incompletely determined. As increasing body of 
evidence, however, indicates that interactions with dead or dying 
cells may be involved (31). In this process, called “efferocytosis,” 
macrophages (either lung resident or recruited) participate in the 
engulfment of apoptotic cells causes the transcriptional activation 
of TGFβ (32). In fact, alveolar macrophages produce TGFβ1 in 
both humans (33) and mice (30) and Cre-mediated removal of 
TGFβ1 expression in LysM-expressing cells prevents collagen 
accumulation and histologic evidence of remodeling in several 
commonly used animal models (30). These results suggest one 
potential mechanism through which macrophages contribute to 
fibrosing lung disease. However, in addition to their role in apop-
totic cell clearance and TGFβ production, macrophages produce 
cytokines, such as TNFα, IL-1, IL-6, IL-8, IL-10, and IL-12, and 
chemokines, such CXCL1, CXCL2, CXCL9, CXCL10, CXCL12, 
CCL5, CCL17, and CCL18 (34). Their production of lipid media-
tors such as eicosanoids might contribute to fibrosis (35), though 
this function has not been specifically studied in either IPF 
samples or currently used mouse models (36). Macrophages also 
participate in ECM remodeling through the secretion of matrix 
metalloproteinases (37) and by direct ingestion and recycling of 
collagen (38). In other clinical contexts and modeling systems, 
macrophages are known to direct the metabolic fate of adjacent 
cells (39), which might carry substantial implications for fibrosis 
where glycolytic reprogramming has been observed to drive 
fibroblast activation (40). Macrophages participate in surfactant 
recycling (41) which could be of critical importance given the 
known association between mutations in surfactant proteins 
and susceptibility to IPF (42). Macrophages produce angiogenic 
factors such as vascular endothelial growth factor (43), which 
can be both pro- (44) or anti-fibrotic (45), depending upon the 
timing of expression and the target cell. Macrophages have been 
shown to rescue intestinal stem cell phenotypes via the delivery of 
WNT-containing exosomes (46) and while a similar effect has yet 
to be seen in IPF, given the recently reported association between 
innate immune activation and lung progenitor cell survival 
(47), it is possible that similar functions may exist in IPF. The 
potential role of macrophages in pulmonary fibrosis is illustrated 
in Figure 2.

These data reveal a robust and important relationship between 
macrophages and fibroproliferation in the IPF lung and lead to 
the critical question of whether therapies targeting macrophage 
activation might stabilize or restore lung function in patients with 
IPF. The few clinical trials conducted in this area have yielded 
disappointing results. For example, as direct suppression of M1 
responses with TNFα neutralization with Etanercept failed to 
improve clinical outcomes (14). Similar results were seen in a 
study that sought to inhibit macrophage recruitment via treatment 
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FigURe 2 | Potential role of innate immunity in pulmonary fibrosis. In response to interactions with pathogen-associated molecular patterns or danger-associated 
molecular patterns, or to stimulation with various mediators, macrophages—both alveolar (aqua irregular shape) and interstitial (red irregular shape)—can adopt 
fibrosis modifying properties. These functions include production of TGFβ1, production of soluble mediators that cause fibroblast accumulation and activation, 
production of TIMPS and MMPS that participate in extracellular matrix (ECM) remodeling, production of angiogenic factors, secretion of lipid mediators, regulation of 
structural cell injury and stem cell renewal, and surfactant recycling. Neutrophils (purple polymorphonuclear circle) produce neutrophil elastase (NE), TIMPS, and 
MMPs that dictate whether ECM accumulates or is degraded. Neutrophils also participate in the formation of neutrophil extracellular traps, which may promote 
fibrosis via the production of TGFβ1 and subsequent myofibroblast activation. Circulating fibrocytes (orange spindle shaped cells) are bone marrow-derived 
mesenchymal cells that enter the lung via the vasculature. Once in the lung they adopt multiple functions that would be expected to modulate fibrogenesis including 
the ability to differentiate into fibroblasts and myofibroblasts, production of ECM, contraction of wounds, participate in antigen presentation, production of 
chemokines and cytokines, and regulation of angiogenesis via production of soluble mediators. Myeloid-derived suppressor cells (MDSC, blue) are 
immunosuppressive cells that show an association with ECM remodeling and pulmonary hypertension. Innate lymphoid cells (ILCs) produce cytokines that may 
regulate fibroblast accumulation and ECM production. In the above figure, the functions of each cell are depicted in font matching the cell’s color. Note that cells are 
not drawn to scale.
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with Carlumab, a monoclonal antibody targeting chemokine C-C 
chemokine ligand 2 (48). While these data could be viewed as 
negative, they are in fact incredibly helpful as they reveal that 
targeting the alternative activation state or specific function of 
macrophages, rather than the M1 phenotype or broadly active 
aspect such as recruitment, is more likely to be of benefit in a 
complex disease such as IPF. This concept is the conceptual basis 
for the ongoing Phase II trial of Pentraxin 5, an acute phase reac-
tant that interferes with innate immune activation by binding to 
debris and inhibiting Fcγ receptor driven inflammatory process 
in phagocytic cells (49). The mechanism(s) though which the 
extrinsic features of the lung microenvironment might result in 
sterile inflammation and fibrosis are presented below.

ACTivATiON OF PROFeSSiONAL iMMUNe 
CeLLS iN iPF: PATHOgeN-ASSOCiATeD 
MOLeCULAR PATTeRNS (PAMPs) vS 
DANgeR-ASSOCiATeD MOLeCULAR 
PATTeRNS (DAMPs)

Pathogen-Associated Molecular Patterns
A dominant mechanism through which innate immune cells adopt 
fibrosis-promoting properties likely involves the recognition of 

innate immune agonists by pattern recognition receptors (PRRs). 
Ligands for PRRs fall into two classes. Those derived from invad-
ing microorganisms are called “PAMPs” and those derived from 
injured cells and tissues are called “DAMPs” (50). While both 
inflammatory and parenchymal cells contain PRRs, we will, for 
the sake of clarity, restrict this particular review to the professional 
immune cells that have been classically accepted as the first line 
of host defense (51). Because IPF is not believed to result from a 
primary infectious process, until recently, the concept of PAMPs 
has been little studied (31). However, over the last two decades, 
data gleaned from human and animal studies have linked certain 
viruses and bacteria with IPF.

viruses
Several viruses are proposed as playing a role in the development 
of IPF. For example, Epstein–Barr virus (EBV, a member of the 
Herpes family) is enriched in bronchoalveolar lavage (BAL) 
fluid and lung biopsy tissue of IPF patients when compared with 
healthy controls (52, 53), and is thought to act via upregulating 
TGFβ1 expression and inducing mesenchymal properties in lung 
epithelial cells (54). In addition, Cytomegalovirus is thought 
to accelerate existing fibrosis in bleomycin-treated mice by 
enhancing TGFβ1 activation and increasing detection of both 
phospho-SMAD2 and Vimentin (55). A strong association with 

https://www.frontiersin.org/Medicine
https://www.frontiersin.org
https://www.frontiersin.org/Medicine/archive


5

Desai et al. The Role of Immune and Inflammatory Cells in IPF

Frontiers in Medicine | www.frontiersin.org March 2018 | Volume 5 | Article 43

Herpesvirus saimiri was seen in a human study, wherein the 
infected epithelial cells demonstrated evidence of IL-17 expres-
sion of viral origin (56). Considering the potential contributions 
of viruses, the use of adjuvant antiviral therapy in IPF has shown 
potential benefit both in animal models (57) and a small human 
study (58) although data in this regard are limited.

Bacteria
The potential contribution of bacteria to IPF pathogenesis is also 
an area of active investigation. Specifically, a relationship between 
total bacterial load and poor prognosis was observed in a study 
in which enriched detection of organisms, such as Haemophilus, 
Streptococcus, Neisseria and Veillonella, was found in BAL fluid 
of IPF patients (59). In addition, BAL samples from patients 
with IPF contain augmented concentrations of certain strains 
of Staphylococcus and Streptococcus (60), the latter of which 
was shown in profiling studies to associate with increased NOD 
receptor signaling and poor outcomes (61). The source(s) of these 
bacteria is not clear though given the association of IPF with 
GERD (62), one possibility is that ongoing microaspiration leads 
to repeated inoculation with oral and gastric organisms. Thus, the 
concept of the microbiome is gaining traction in IPF and forms 
the basis for studies examining antibiotics as a novel treatment 
approach (63).

Danger-Associated Molecular Patterns
Immune responses are also initiated in the absence of pathogen 
recognition. Here, damage to previously intact cells and tissue 
results in the accumulation of substances with the potential to 
function as “DAMPs.” In uninjured tissues, DAMP-mediated 
inflammatory processes contribute to homeostasis by allowing 
the regulated removal of debris, thereby facilitating the resolution 
of injury and the achievement of repair (31). Abnormal responses 
to DAMP recognition has been described as one form of immu-
nosenescence (64) and it is intriguing to consider this concept 
in relationship to the telomerase mutations that are associated 
with the IPF disease state. Excessive accumulation of DAMPs, 
however, activates PRRs to engender a microenvironment rich 
in sterile inflammation (65). These responses may differ from 
PAMP-driven inflammatory responses (66). Another form of 
innate immune ligands derived from homeostatic mechanism 
(HAMPs) has recently been described (67), but because these 
moieties have not been studied in the context of IPF, they will not 
be discussed further in our review.

A number of substances are classified as DAMPs. The easiest 
to conceptualize may be intracellular components such as nucleic 
acids and organelles that are passively released from necrotic cells. 
DAMPs might also be actively released by cells via the exocytosis 
of membrane bound vesicles or endosomes. Still another class of 
DAMPs is generated by the transformation of inert proteins such 
as collagens into signaling molecules such as collagen fragments. 
These entities are recognized by innate immune receptors that for 
the most part have the ability to be activated via pathogens as well 
(31). The activation of these receptors can be protective or harmful 
depending on the nature of the ligand and the specific receptor. 
For example, animal modeling reveals that mice lacking toll-like 
receptor 3 (TLR3) suffer increased fibrosis in the bleomycin model, 

and the Leu412 Phe polymorphism in the gene encoding TLR3 
(which recognizes dsRNA as well as free RNA) has been implicated 
in a rapidly progressive form of IPF (68). Mice lacking toll-like 
receptor 4 (TLR4) manifest increased fibrosis in the bleomycin 
model, and treatment with TLR4 agonists ameliorates fibrosis and 
remodeling in this setting via a mechanism involving lung pro-
genitor cell renewal (47) and augmentation of TGFβ1 and IL-17 
production (69). However, because TLR4 inhibition is protective 
in other settings (70, 71), the role of this PRR is not fully known. 
A connection between TLR4 and IPF may exist, however, as 
enrichment of several endogenous ligands for TLR4, such as high 
mobility group box 1 (72, 73), tenascin-C (74–76), S100 protein 
(73), and hyaluronan fragments (77), has been reported in the BAL 
or lung tissue of patients with IPF (78). Furthermore, the finding 
that a mutation in toll interacting protein, an adaptor protein for 
toll-like receptor 2 (TLR2) and TLR4, increases susceptibility to 
IPF (79), suggests a potential protective role for this pathway.

In terms of pathogenic responses, much more information 
is available. For example, NACHT, LLR, and PYD domains-
containing protein 3 (NALP3) inflammasome activation leads 
to IL-1β production and fibrosis in bleomycin treated animals 
(80, 81). While the relevance of these results to the human 
disease state is not directly established, lung tissue from 
patients with IPF show increased concentrations of uric acid 
(82), and BAL from these patients contained an increase in free 
ATP (83), both of which are known inflammasome activators  
(81, 84). Inflammasome activation in IPF may also occur via 
toll-like receptor 9 (TLR9) as detection of this PRR (85) and 
its endogenous ligand mitochondrial DNA are both increased 
in IPF (86). In fact, direct exposure of previously normal fibro-
blasts to either endogenous TLR9 agonists such as unmethylated 
CpG-rich DNA derived from mitochondria (mtDNA) (86) or 
synthetic TLR9 agonists enacts a transition to an αSMA express-
ing, myofibroblastic phenotype (87). However, because mice 
with ubiquitous deletion of TLR9 develop worsened fibrosis in 
several experimental settings (88), likely due to inflammatory 
nature of these models, the role of TLR9 in IPF has been dif-
ficult to understand. Thus, this is an area that would benefit from 
additional studies and improved models that more accurately 
represent the microenvironment of the diseased human lung.

Neutrophils
Neutrophils are innate immune cells that possess several functions 
through which they might participate in fibrosis. Neutrophilia in 
BAL fluid has been associated with early mortality in IPF (89) and 
concentrations of the neutrophil chemoattractant, CXCL8, are 
increased in IPF (90). Furthermore, levels of alveolar epithelial 
marker, cytokeratin 19, in BAL fluid correlated to neutrophil 
concentrations, suggesting an association between neutrophils 
and epithelial injury in this context (91).

Neutrophils might also contribute to fibrosis via their regula-
tion of ECM turnover. Neutrophil elastase (NE), the main pro-
teolytic product of alveolar neutrophils, is increased in BAL fluid 
of IPF patients (92). NE generates DAMPs by degrading various 
ECM components, such as collagens I, II, III, IV, fibronectin, 
laminin, and elastin (93, 94), and ex vivo work demonstrates 
that NE can induce fibroblast proliferation and myofibroblast 
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differentiation (95). NE deficient mice are protected from the 
fibrosis seen in both the bleomycin and asbestos models (93, 95), 
and the NE inhibitor, Sivelestat, is protective in the bleomycin 
model (96). Neutrophils also control ECM homeostasis through 
their regulation of the net balance between MMPs and TIMPs 
(97, 98), particularly the pro-fibrotic MMP-2, MMP-8, and 
MMP-9 (99). Batimastat, a synthetic inhibitor of MMP, when 
used in bleomycin-induced mice, resulted in reduced MMP-2, 
MMP-9, and TIMP-1 level in BAL fluid and was, therefore, useful 
in preventing pulmonary fibrosis (100), though the relevance of 
these findings to human IPF remains unclear.

One newly described fibrosis-promoting function of neutro-
phils is the generation of extracellular neutrophil traps. These 
pro-inflammatory collections of chromatin and neutrophils regu-
late both immune cell function (101) and fibroblast activation 
(102). While enhanced detection of intrapulmonary neutrophil 
extracellular traps (NETs) has been reported in both the bleo-
mycin model and in some forms of fibrotic ILD (102), a specific 
association with IPF has yet to be fully described. Further studies 
are warranted to understand whether NETS play a role in IPF 
pathogenesis.

To summarize, neutrophils are innate immune cells that are 
associated with the production of cytokines and chemokines, 
presence of injury, regulation of ECM turnover, and generation 
of NETs. All of these functions would be expected to result in 
fibroblast activation and ECM accumulation (Figure 2). However, 
because the pathology of UIP is not characterized by neutrophil 
accumulation—and, in fact, the presence of neutrophils would 
lead to a pathologic diagnosis other than UIP—the role of neu-
trophils remains unclear.

Fibrocytes
Fibrocytes are circulating, bone marrow-derived mesenchymal 
progenitor cells that can migrate into lung tissue and further 
differentiate into fibroblasts and myofibroblasts (103). These 
cells are believed to derive from monocyte-based progenitors. 
They comprise only a small fraction of circulating leukocytes 
in normal humans, but are found abundantly in pathologic 
conditions characterized by macrophage-driven inflammation 
and persistent fibroblast activation such as IPF (104). These cells 
express hematopoietic and progenitor cell markers, CD45 and 
CD34, and also produce ECM proteins such as collagens I and III, 
vimentin and fibronectin (105). Similarly, they can be induced 
to express αSMA (106) and participate in the contraction of 
artificial wounds (107, 108). However, despite their documented 
ability to both produce ECM and display functions of myofi-
broblasts in a variety of modeling systems, consistent evidence 
of these properties in human lung tissue remains scarce. Thus, 
in recent years, attention has focused on alternate functions of 
these highly plastic cells. Fibrocytes not only express receptors 
for chemokines, such as CCR3, CCR5, CCR7, and CXCR4, but 
also produce inflammatory cytokines, TNF-α, IL-6, IL-8, and 
IL-10, and chemokines, MIP-1α, MIP-1β, MCP-1, and GRO-α 
(109, 110). They participate in antigen presentation (111, 112) 
and angiogenesis (113), and in some settings are able to control 
the activation of adjacent fibroblasts via paracrine means (114). 
Thus, fibrocytes display an array of functions that would be 

expected to influence the development and progression of lung 
fibrosis (Figure 2), though their specific contribution to IPF is 
currently not defined and requires further investigation.

Myeloid-Derived Suppressor Cells 
(MDSCs)
Myeloid-derived suppressor cells are a heterogeneous group of 
immature myeloid immune cells, which appear to be related to 
poor prognosis in certain forms of cancers (115). MDSCs play a 
role in the immune system through their suppressive action on 
T cells (116). They promote regulatory T cell (Treg) expansion and 
restrain T-cell activation (117) and are associated with a number 
of diseases characterized by fibrosis and pathologic remodeling. 
Thus, it is perhaps not surprising that one recent study found that 
elevated concentrations of peripheral blood MDSCs, defined by 
the surface markers HLA-DR, CD33, CD11b, CD14, and CD66b, 
reflect poor lung function in patients with IPF (118). Another 
experiment with bleomycin-induced mice showed that MDSCs 
triggered vascular remodeling and pulmonary hypertension, and 
that preventing their recruitment via neutralization of CXCR2 
normalized the pulmonary pressure (119). While the relation-
ship between vascular abnormalities and parenchymal fibrosis 
remains poorly understood, accumulating evidence suggests that 
these events might significantly impact parenchymal homeostasis 
during injury and repair (45). Thus, therapeutic strategies target-
ing the activity of MDSCs or restricting their accumulation and 
expansion in peripheral blood may be a novel approach to disease 
modification, though more work is needed to understand their 
relevance to human disease (118).

innate Lymphoid Cells
Innate lymphoid cells are newly identified lymphoid cell popula-
tions that do not express the recombination activating gene and 
are classified into three subgroups: ILC1, which include natural 
killer cells that produce IFN-γ as well as CD127lo and CD127hi 
ILCs (120); ILC2, which produce type 2 cytokines, such as IL-5 
and IL-13; and lastly, ILC3 that produce IL-17 and IL-22 (121). 
ILCs in the lung interact with epithelial cells, natural killer T cells, 
and myeloid cells to form an immune system network (122). ILC2 
are activated quickly by environmental antigens and pathogens 
to release large quantities of IL-13, thereby suggesting a potential 
role in pulmonary fibrosis (123). ILCs have been identified in the 
IPF lung (124) though studies of their role in this disease remain 
in the nascent stages. Thus, this is an area that would benefit from 
additional study.

ADAPTive iMMUNe ReSPONSeS:  
T CeLLS AND B CeLLS

As noted above, the role of lymphocytes in fibrosis is poorly 
understood and controversial. The failure of IPF to improve in 
response to lymphocyte-modulating therapies, and the obser-
vation that lymphocytes are not required for the development of 
experimentally induced fibrosis in mice (125), has contributed 
to this situation. However, substantial and outcome predictive 
abnormalities in lymphocyte subsets and activation have been 
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FigURe 3 | Putative role of adaptive immunity in idiopathic pulmonary fibrosis. Th1 (grey) cells may suppress fibroblast responses through the secretion of  
pro-inflammatory cytokines, such as interferon gamma and TNFα. Th2 (pink) and Th17 (green) cells stimulate fibroblast proliferation, activation, and extracellular 
matrix (ECM) production through their secretion of IL-4 and IL-13 (Th2) and IL-17 (Th17). Tregs (purple) may either promote fibrosis through production of PDGFβ 
and TGFβ1, or suppress fibrosis via poorly understood effects on fibrocyte accumulation. Note that image is not drawn to scale.
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described in the lungs and blood of IPF patients, and animal 
modeling shows that certain lymphocyte populations are suf-
ficient to induce or modify mammalian lung fibrosis. Thus, 
lymphocytes might participate in fibrosis via as yet undefined 
mechanisms. The evidence supporting this concept is reviewed 
below.

T Lymphocytes
Relative to samples obtained from normal individuals, lung 
tissue and BAL fluid from patients with IPF are enriched for 
several population of T lymphocytes (126). In the tissue, these 
lymphoid aggregates contain CD3+ T lymphocytes (127) and 
evaluation of the peripheral blood supports these findings to 
some extent. Specifically, transcriptional profiling of PBMCs 
found that a signature characterized by reduced expression 
of T  cell regulatory genes related to the immune checkpoint 
CTLA-4 was associated with reduced event free survival (128) 
and these findings were recently recapitulated in a landmark 
study involving six independent IPF cohorts from centers 
across the US and Europe (129). These findings recapitulate an 
earlier study in which reduced expression of the costimulatory 
molecule CD28 on circulating T cells was seen to be a predictor 
of poor outcomes (130). Because treatment with the lympho-
cyte-modulating agent Azathioprine results in impaired func-
tion of molecules that function as immune checkpoints (131), 
it is intriguing to speculate that the worsened outcomes seen 
in the Azathioprine-treated subjects in the PANTHER trial 
(15) relates to aberrant activation of CD4+ T lymphocytes. In 
this light, it is also interesting that the checkpoint inhibitors 
used as cancer immunotherapy can cause inflammatory ILD 
(132) though to date a specific relationship with IPF has not 

been shown. CD4+ T  lymphocytes are divided into several 
subpopulations, among which the best studied in IPF are 
T-helper cells, as shown in Figure 3. T-helper cells comprise 
several classically defined subpopulations based on their pat-
tern of cytokine expression. In the below paragraphs, the data 
regarding specific T-helper populations in the context of IPF 
will be presented.

Th1/Th2 Cells
Perhaps the most studied concept in T-helper biology as it relates 
to pulmonary fibrosis is the contributions of Th1 and Th2 cells. 
Animal modeling, and some human data, suggests that the relative 
proportions of these populations might enact the balance between 
injury and repair. Here, Th1 cells and their secretory products are 
thought of as being anti-fibrotic and Th2 cells and their mediators 
are considered pro-fibrotic (133). For example, Th1 cells release 
IL-12, which is a potent inducer of IFNγ, and several studies have 
reported a relative reduction in IFNγ levels in the BAL or circulation 
of patients with IPF (134). In addition, a bleomycin study in mice 
found that IL-12-attenuated pulmonary fibrosis via modulation 
of IFNγ production, thus presenting a protective role of Th1 asso-
ciated mediators in fibrosis (135). These findings are supported 
by other work showing that attenuation of Th1 differentiation via 
targeting of the transcription factor T-bet increased bleomycin-
induced lung injury (136). Conversely, studies that focused on the 
Th2 cytokines IL-4 and IL-13 showed them to stimulate fibroblast 
proliferation, collagen production, and fibroblast to myofibroblast 
differentiation—thereby rendering Th2 cells fibrogenic (137).  
In addition, detection of Th2 cells and their secretory mediators 
appears to be enhanced in the lungs and blood of patients with 
IPF (137–140). However, systemic administration of recombinant 
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IFNγ (which would simulate the presence of Th1 biology) and 
monoclonal antibody-mediated neutralization of IL-13 (which 
would specifically target Th2 responses) failed to demonstrate 
efficacy in randomized, placebo-controlled trials of patients with 
IPF (141, 142). Therefore, the concept of the Th1/Th2 balance 
as a central mediator of IPF may require re-evaluation and the 
development of strategies to better and more efficaciously target 
their secretory products. The potential role of Th1 and Th2 cells 
is shown in Figure 3.

Th17 Cells
The role of Th17  cells in IPF is also incompletely defined. 
Th17 cells produce cytokines, such as IL-17 and IL-22, which 
are host-defensive cytokine in many infectious conditions but 
also promote inflammatory pathology in various diseases such 
as autoimmune conditions (143). As shown in Figure  3, the 
functions of IL-17 include stimulation of ECM production, 
collagen disposition, and mediation of TGF-β signaling (144). 
Increased detection of IL-17 in the lung tissue, BAL, and serum 

of IPF patients suggests a potential relationship with disease. 
These human findings are supported by murine studies in 
which administration of IL-17A is sufficient to induce collagen 
accumulation and fibrotic lesions (144, 145), and that neu-
tralization of IL-17 can reduce fibrosis in several animal models  
(146, 147). Furthermore, in silica-induced lung fibrosis, neu-
tralization of IL-17A delayed T-cell-driven immune responses 
and consequently slowed the progression of lung inflammation 
and fibrosis (148). Interestingly, recent work has expanded the 
concept of IL-17 in fibrosis beyond lymphocytes, as one recent 
studying in an experimental model of HP found neutrophils and 
monocytes/macrophages to be a dominant source of IL-17A 
(149). Similar findings have not been described in IPF. While 
IL-22, another product of Th17 cells, appears to be protective 
in the bleomycin model (150) BAL concentrations do not differ 
between IPF and control (151). Because anti-IL-17 treatment 
has not been tested in IPF, the efficacy of neutralizing Th17 cells 
and their secretory products as a therapeutic approach in IPF is 
currently not known.

FigURe 4 | Unifying schematic of immunopathogenic mechanisms of idiopathic pulmonary fibrosis (IPF) reveals that many important fibrosis-promoting processes 
may be regulated by input from both the innate and adaptive immune systems. Currently available data suggest that innate mechanisms may dominate. For 
example, both alveolar and interstitial macrophages respond to innate immune ligands present in pathogen-associated molecular patterns or danger-associated 
molecular patterns to assume adopt fibrosis modifying properties, including production of TGFβ1, paracrine regulation of fibroblast accumulation and activation, 
production of TIMPS and MMPS that participate in extracellular matrix (ECM) remodeling, production of angiogenic factors, secretion of lipid mediators, regulation of 
structural cell injury and stem cell renewal, and surfactant recycling. Macrophages might also suppress fibrosis by stimulating a regenerative program in epithelial 
stem cells, by regulating MMPs and TIMPS, and by directly degrading collagen and ECM. Neutrophils may promote fibrosis via the formation of neutrophil 
extracellular traps (NETs), which may promote fibrosis via the production of TGFβ1 and subsequent myofibroblast activation. However, neutrophils may also 
suppress fibrosis by regulating the MMP:TIMP balance and producing neutrophil elastase (NE) which degrades ECM. Circulating fibrocytes possess several 
fibromodulatory, including the ability to differentiate into fibroblasts and myofibroblasts, production of ECM, contraction of wounds, participate in antigen 
presentation, production of chemokines and cytokines, and regulation of angiogenesis via production of soluble mediators. Myeloid-derived suppressor cells (blue) 
display show an association with ECM remodeling and pulmonary hypertension. Innate lymphoid cells (ILCs) produce cytokines that may regulate fibroblast 
accumulation and ECM production. In terms of the adaptive immune response, Th1 cells may suppress fibroblast responses through the secretion of pro-
inflammatory cytokines while Th2 and Th17 cells stimulate fibroblast proliferation, activation, and ECM production. Tregs either promote fibrosis through production 
of PDGFβ and TGFβ1, or suppress fibrosis via poorly understood effects on fibrocyte accumulation. B cells are not shown in this figure given the largely speculative 
nature of their role in IPF. The redundancy and opposing effects of these functions likely accounts for the failure of IPF to respond to classical forms of 
immunosuppression. Given the pronounced contribution of the innate immune system, interventions targeting the recognition of, or response to, innate immune 
ligands might be of benefit.
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Regulatory T Cells
The role of Tregs in pulmonary fibrosis has been gaining accept-
ance in the recent years. Due to their ability to produce both 
IL-10 and TGFβ1, Tregs have the potential to both promote or 
suppress fibrosis depending on the context. For example, a now 
seminal 2009 study reported marked suppression of functional 
CD4+, CD25high, FoxP3+ cells in the BAL and peripheral blood 
of IPF patients (152), thereby showing, for the first time, a rela-
tionship between impaired Tregs and IPF. However, more recent 
studies in this area have actually shown an increase in Tregs, 
and an imbalance of the Treg/Th17 axis in IPF patients (153). 
In addition, a population of aberrantly activated Tregs identified 
by expression of the neuroimmune molecule Semaphorin 7a+ 
was sufficient to engender TGF-β1 induced fibrosis in the adult 
mouse lung (154) via undefined mechanisms. A synthesis of 
this information suggests that recruited or lung resident Tregs 
might be fibrosis-suppressive or fibrosis-stimulatory depending 
on their interaction with the local milieu (155). This concept is 
supported by experimental data from a bleomycin model show-
ing that Tregs may stimulate TGFβ1 production and collagen 
accumulation when present during the injury phase, but might 
reduce these endpoints when present during the later stages of 
the model (155). These studies are complemented by data from an 
LPS model of lung injury showing that Tregs suppress fibrocyte 
recruitment and fibrosis via interruption of the chemokine C-X-C 
motif ligand 4/stromal cell-derived factor 1 (CXCL4/SDF1) 
axis (156), but promote fibroblast activation via production of 
PDGFβ in a model of silicosis (157). In summary, Tregs play a 
controversial role in pulmonary fibrosis and depending on the 
stage of fibrosis, they can be both harmful as well as protective. 
The putative contribution of Tregs to mammalian lung fibrosis is 
depicted in Figure 3.

B Cells
B cells represent another arm of the adaptive immune system. 
Functioning primarily as producers of antibodies, increased 
detection of CD20+ B  cells has been reported for IPF lungs 
(158). A variety of novel autoantibodies targeting neoepitopes 
have been reported in IPF (159–163), with many of the targets 
being structural cell proteins, such as desmoplakin (164) and 
periplakin (159). In addition, while the presence of clinically 
relevant positive serology effectively rules out IPF as a diagnosis, 
recent work demonstrates that patients with low level titers of 
autoantibodies might have worsened clinical outcomes than 
those patients lacking these findings (160). Presence of autoan-
tibodies can be linked to poor survival as seen in a recent study 
wherein high levels of anti-vimentin were associated with wors-
ened pulmonary function and prognosis (165). Similar findings 
were observed with the presence of anti-HSP70 autoantibodies 
in patients with IPF (166). Further evidence of a potential role 
for humoral responses in the pathogenesis of IPF is provided by 
the detection of antibodies targeting BPI fold containing family 
B, member 1 (167) though to date the mechanistic impact of 
these observations remain elusive. While B  cell subtypes and 
function have not been specifically phenotyped in large-scale 
clinical studies, evidence does exist supporting a role for B cells 
in some forms of this disease. For example, detection of B 

lymphocyte stimulator, which is also known as B-cell-activating 
factor (BAFF), is enriched in the lungs and blood of patients 
with IPF (168). The potential of B cells to serve a mechanistic 
role in this disease is shown by a retrospective study in which 
stable outpatients with end stage ILD who received CD20 tar-
geted therapy (which removes B cells) showed a trend toward 
improved lung function (169). A beneficial role of B-cell-targeted 
therapies is further supported by the finding that patients with 
respiratory failure due to an AE-IPF showed clinical improve-
ment after undergoing combined plasmapheresis (which would 
be presumed to remove offending antibodies) and anti-CD20 
therapy (170). These human observations are complemented by 
animal modeling in which neutralization or genetic ablation of 
BAFF attenuates pulmonary fibrosis (168). However, because 
data gleaned in other models show that B  cells may actually 
suppress fibrotic response (171), precise understanding of the 
relationship between B  cells and IPF remains elusive and the 
potential contribution these cells to IPF pathogenesis remains 
a query in need of further study. Due to the largely speculative 
nature of their relationship with fibrosis, B cells are not included 
in Figure 3.

CONCLUSiON

As can be seen, the cells of the immune system show a rich and 
multifaceted contribution to IPF. When viewed in contrast with 
the epithelial cells that are believed to be the primary site of injury, 
and with fibroblasts, which are viewed as the driver of matrix 
deposition and remodeling, the more heterogeneous contribution 
of the innate and adaptive immune systems shown in Figure 4 is 
nuanced and unlikely to respond to a single intervention. This 
aspect, combined with the relative ease of isolating immune 
cells and substances from the BAL and circulation renders 

BOx 1 | Unanswered questions regarding the immune and inflammatory 
cells in idiopathic pulmonary fibrosis (IPF).

•	 To what extent do data obtained from mouse models reflect the situation in 
the fibrotic human lung? Can mimetics be developed that more accurately 
simulate the IPF disease state?

•	 Do events in the peripheral blood truly reflect events occurring in the 
diseased lung?

•	 Do the innate immune abnormalities seen in IPF represent a unique form 
of immunosenescence?

•	 Can therapies targeting macrophage activation stabilize or restore lung 
function in patients with IPF?

•	 Does the altered microbiome cause pathogen-associated molecular 
pattern-driven innate immune activation in IPF and are antimicrobial the-
rapies efficacious in IPF?

•	 Does perpetuated microinjury cause danger-associated molecular pattern 
(DAMP)-driven innate immune activation in IPF and are therapies targeting 
DAMPs and their receptors efficacious in IPF?

•	 Are neutrophil extracellular traps an important part of IPF pathogenesis?
•	 What is the role of fibrocytes and myeloid-derived suppressor cells in IPF?
•	 Do innate lymphoid cells participate in IPF?
•	 How does the relative balance of T-helper cells participate in IPF and can 

this contribution be targeted in a safe and efficacious manner?
•	 Are B cells involved in the development of IPF?
•	 Can immune events detected in the circulation be used to guide persona-

lized therapies in IPF?
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the immune system an attractive area for the development of 
immunopathogenesis-based personalized therapies based on 
easily accessible biomarkers. Areas of particular interest and 
important questions in this context, which are shown in Box 1, 
would benefit from concerted efforts performed in large-scale 
multicenter recruitment efforts, leveraging of existing datasets 
and registries, and the generation of improved modeling systems 
that more faithfully recapitulate the complex microenvironment 
of the fibrotic human lung and improve the understanding and 
treatment of IPF on a global scale.
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