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ABSTRACT

PASMet (Prediction, Analysis and Simulation of
Metabolic networks) is a web-based platform for
proposing and verifying mathematical models to un-
derstand the dynamics of metabolism. The advan-
tages of PASMet include user-friendliness and ac-
cessibility, which enable biologists and biochemists
to easily perform mathematical modelling. PASMet
offers a series of user-functions to handle the time-
series data of metabolite concentrations. The func-
tions are organised into four steps: (i) Prediction
of a probable metabolic pathway and its regulation;
(ii) Construction of mathematical models; (iii) Sim-
ulation of metabolic behaviours; and (iv) Analysis
of metabolic system characteristics. Each function
contains various statistical and mathematical meth-
ods that can be used independently. Users who may
not have enough knowledge of computing or pro-
gramming can easily and quickly analyse their lo-
cal data without software downloads, updates or in-
stallations. Users only need to upload their files in
comma-separated values (CSV) format or enter their
model equations directly into the website. Once the
time-series data or mathematical equations are up-
loaded, PASMet automatically performs computation
on server-side. Then, users can interactively view
their results and directly download them to their lo-
cal computers. PASMet is freely available with no lo-
gin requirement at http://pasmet.riken.jp/ from major
web browsers on Windows, Mac and Linux operating
systems.

INTRODUCTION

Computational approaches have become indispensable for
synthetic biology and metabolic engineering research. In
general, experimental data are subjected to statistical anal-
yses and mathematical modelling to comprehensively un-

derstand the related biological and biochemical systems.
For time-series data, the process includes prediction of
metabolic pathways and their regulation using the estimated
causality from quantitative data, simulation of probable
metabolic behaviours, and analysis of system characteris-
tics using mathematical models. To this end, various the-
ories and algorithms have been proposed to process bio-
logical data systematically. A number of visualisation soft-
ware packages for statistical analyses have also been de-
veloped for both academic and commercial purposes. Al-
though these resources allow researchers to analyse their
data themselves, computational tasks such as mathematical
modelling are not easily accessible for researchers who may
not have a strong mathematical background and computer
programming skills.

Currently, there are several well-known programming
languages for statistical analysis and mathematical mod-
elling. One is the R Project (1), which provides numerous
packages to build statistical analysis programs with strong
support for visualisation. Other products include Matlab
(2) and Python (3), which offer high-performance scientific
computing to develop software programs for mathematical
modelling. In these languages, however, basic knowledge of
software engineering is required to write accurate and ef-
ficient codes. Custom software programs to simulate and
analyse biochemical networks (4–8) also require computer
skills for installation and setup as well as expertise and addi-
tional effort to exploit their functionalities. Web-based ap-
plications such as JWS Online (9) and WebCell (10) low-
ered the hurdle to work on kinetic modelling, dynamic sim-
ulation and system analysis in details. For detailed analysis
of metabolic networks, SoftCADs (11) now offers dynamic
sensitivity analysis for predicting the dynamic responses of
metabolite concentrations.

With an intention to offer a series of functions to eas-
ily handle the time-series data of metabolite concentrations,
we present PASMet (Prediction, Analysis and Simulation
of Metabolic networks), a user-friendly web-based platform
to both predict pathways and construct mathematical mod-
els to systematically analyse metabolic systems. PASMet
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provides an interface to access various algorithms for pre-
dicting probable regulatory mechanisms along with gener-
ating mathematical models from time-series data, simulat-
ing metabolic behaviours and determining metabolic bot-
tlenecks in the model.

IMPLEMENTATION

PASMet was written in Python with server-side algorithms
using NumPy (12) and SciPy (13) for modelling, StatsMod-
els (14) for statistical analysis and Matplotlib (15) for graph-
ical plots. The client-side interface was developed as a web-
based application built on top of the Django framework
(16). Users without enough knowledge of computing or
programming can easily and quickly analyse their local data
without software downloads, updates or installations. Users
are only required to upload their file in comma-separated
values (CSV) format or type their model equations directly
into the website. Then, PASMet automatically performs
computations in a server-side environment. Accordingly,
users can interactively view the results and directly down-
load them to their local computers. For stability checking,
load tests were performed using Locust (17) by simulating
50 users performing five requests per second. To support
long-running tasks, an asynchronous task queue was also
implemented on the front-end using Ajax, while the back-
end services used Celery (18) and RabbitMQ (19).

PROGRAM DESCRIPTION AND METHODS

PASMet provides four functionalities (Figure 1): (i) Pre-
diction, (ii) Construction, (iii) Simulation and (iv) Analy-
sis. The Prediction function is divided into two principal
approaches (Prediction 1 and 2). All functions can be per-
formed independently or in combination. Documentations
and tutorial with detailed examples are provided on our
website. Sample files of time-series data and three mathe-
matical models, a lactate model, an aspartate model and a
simple linear model using Michaelis–Menten equations, are
also available for download. To assist new users, these files
can be uploaded directly for each function on the website.

To experience and test the prediction of a metabolic
pathway and its regulatory mechanism (Prediction 1 and 2
functions), a 48-point time-series data set of the metabo-
lite concentrations for the glycolysis pathway in Lactococ-
cus lactis MG1363 (20–22) (lactate model) was prepared.
The data for five metabolites in the glycolysis pathway are
included: glucose (Glc), glucose 6-phosphate (G6P), fruc-
tose bisphosphate (FBP), lactate (Lac) and acetate (Ace).
To test the Construction function, a simple but stiff model
of the aspartate-family amino acid biosynthesis pathway
in Arabidopsis thaliana (23) (aspartate model) was pre-
pared. The 21-point time-series data of metabolite con-
centrations in this biosynthesis pathway encompass seven
metabolites: aspartate-4-phosphate (A4P, x1), aspartate-
semialdehyde (ASA, x2), lysine (LYS, x3), homoserine (HS,
x4), O-phospho-homoserine (OPH, x5), threonine (THR,
x6) and isoleucine (ILE, x7). In the Simulation and Analy-
sis functions, the model equations for the lactate, aspartate
and simple linear models are available.

Prediction 1

A comprehensive understanding of metabolic networks and
their regulatory mechanisms is important in genetic and
metabolic engineering research. However, a lack of infor-
mation could result in not identifying previously unknown
pathways, which may lead to an insufficient or incorrect un-
derstanding of the network of interest. The in silico pre-
diction of a probable pathway has the potential to iden-
tify such unknown pathways. One of the computational
methods to predict a probable pathway is by combining
causal relationships among metabolites, which can be es-
timated from time-series data of metabolite accumulation.
Two common approaches applying statistical methods for
generating a causal network are dynamic Bayesian network
inference and Granger causality test. Both approaches have
their own advantages and theoretical limits and their pre-
dictive performances depend on the nature of data and way
to process raw data. For example, the dynamic Bayesian net-
work inference is rather suitable for time-series data of short
length (small number of data point) whereas the Granger
causality test is suitable for time-series data of long length
(24).

The ‘Prediction 1’ function was built to support pre-
diction of a probable pathway using time-series data by
Granger causality test (25). Users can predict a metabolic
pathway using their time-series data of metabolite concen-
trations without prior information on pathways and their
regulation. The prediction begins by preparing time-series
data. In the data file, the first row contains the metabo-
lite names, followed by their concentrations in the subse-
quent rows. If files are created in a spreadsheet, they should
be saved in CSV format. In terms of the calculation in
Prediction 1, there is no limit on the number of metabo-
lites, so it is possible to generate a causality network by us-
ing data with hundreds of metabolites. However, it is ideal
to use less than 20 metabolites for the calculation to ap-
propriately predict a reasonable network. Also, the time-
series data of each metabolite concentration should show
dynamic change. This is because the algorithm theoretically
works well with data which show apparent changes and im-
ply consecutive conversion of a metabolite (or substrate of
an enzyme) to subsequent metabolites (or products).

For predicting a probable pathway, Prediction 1 provides
an option for processing time-series data before estimating
a causal relationship and formulates the predicted relation-
ship into probable pathways. Two data processing meth-
ods, which are Average and Principal Component Analysis
(PCA), are provided. The selection of the method depends
on the nature of the data. PCA is suitable for users who
want to observe significant changes throughout the data
or when the data have a high standard deviation. In other
general cases, processing using Average is recommended.
Three data smoothing methods are also available for refin-
ing time-series data with missing values or insufficient data
points. These methods allows users to smooth data con-
taining high deviations, as well as to generate more data
points from original data before performing the Granger
causality test. The spline and polynomial smoothing meth-
ods are recommended for data that fit a sine-shaped curve.
If the number of data points is large (i.e. more than 20),
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Figure 1. Processing overview of the functions of PASMet, including Prediction, Construction, Simulation and Analysis.

locally estimated scatterplot smoothing (LOESS) is recom-
mended. Once all prediction parameters are specified, Pre-
diction 1 performs Granger causality tests between all pairs
of metabolites. Combinations with a statistically significant
value are chosen for creating a probable network. The pro-
cessed data and probable metabolic pathways are visualised
using Matplotlib and NetworkX (26), and the calculated re-
sults become available for download. The prediction can be
repeated many times with different parameters without re-
quiring re-uploads.

As an example, we evaluated the time-series data of
metabolite concentrations in the glycolysis pathway of L.
lactis. Since there was only one experimental replicate in this
data, the processing type (PCA or Average) did not affect
the result. We also did not perform data smoothing. Given
these conditions with p-value set to be 0.01, PASMet cal-
culated Granger causality among the five metabolites and
predicted that Glc is converted to G6P, then FBP, and fi-
nally Ace, as shown in Figure 2A. This result agrees with
the glycolysis pathway widely accepted in the literature and
databases. Prediction 1 also predicted that Lac affects the
concentrations of G6P and FBP. More details on the regu-
latory mechanisms are provided in Prediction 2.

Prediction 2

Although Prediction 1 suggests the causal relationship
among metabolites, it does not prune the regulatory infor-
mation. The ‘Prediction 2’ function is designed for specify-
ing regulations, based on the time-series data of metabo-
lite concentrations. To this end, the BST-loglem method
(27) is employed to evaluate the relationships by two cri-
teria of causal effects. One is the significant causality on

influx for each metabolite (focused metabolite) using the
Granger causality test. At least one input is considered es-
sential for each metabolite in the given model. The other
is the ‘influx/efflux causalities’ for each metabolite, esti-
mated from the S-system equations in the framework of bio-
chemical systems theory (BST) (28). The latter ‘influx/efflux
causalities’ are obtained by an automated parameter esti-
mation on the whole model, and weaker causal relation-
ships on influx/efflux of each metabolite can be manu-
ally deleted stepwise until a sufficiently simple regulatory
mechanism is obtained. There are two rules in the dele-
tion step. First, an interaction that has the strongest signifi-
cant causality for each metabolite should not be removed
from the beginning state. Second, the efflux from the fo-
cused metabolite should not be removed even though it may
be recommended due to its weakest causation. In case there
are a large number of metabolites to be considered, Predic-
tion 2 may be used in combination with Prediction 1.

The preparation of time-series data of metabolite concen-
trations for Prediction 2 is the same as described for Pre-
diction 1. Although our algorithm can handle an unlim-
ited number of metabolites, we recommend users to sup-
ply less than 10 metabolites. Once a time-series data file is
uploaded, a focused metabolite is selected. For the calcula-
tion of causal effects, the StatsModel and the Levenberg–
Marquardt algorithms (29) via the ‘optimise’ package of
SciPy are used for statistical calculations and parameter
estimation for mathematical modelling, respectively. After
removing a relationship having the weakest causation on
fluxes of the focused metabolite, a probable network for
each iteration is visualised using NetworkX.

To illustrate, we used the same data set as in Prediction
1, which is the time-series data of metabolites related to
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Figure 2. Examples of some of the graphical outputs and analyses available from PASMet. (A) Probable metabolic pathway calculated from Prediction 1
using the lactate model. (B) Probable metabolic pathway and its regulation related to G6P calculated from Prediction 2. The dot in an ellipse indicates an
unspecified metabolite. (C) Metabolic pathway for lactate model and bottleneck ranking indicator calculated with the Analysis function.

the glycolysis pathway of L. lactis. Since Prediction 1 deter-
mined that Lac affects the concentration of G6P and FBP,
G6P was selected as a focused metabolite for discovering a
probable regulatory mechanism. Figure 2B shows that all
considered metabolites are suggested in the first iteration
to have effects on flux to/from G6P (the focused metabo-
lite). After removing the weakest causal relationships on
flux to/from the focused metabolite for five times, only four
possible regulations are left. These include a positive regu-
lation from Glc on influx of G6P, negative regulation from
Lac on influx of G6P, negative regulation from Ace on ef-
flux of G6P, and efflux of G6P. Among these four, nega-
tive regulation from Ace on efflux of G6P is suggested to
have the weakest effect because it has the lowest absolute
value. Thus, after this relationship is removed, Prediction 2
predicted that lactate is a probable inhibitory regulator of
the formation of G6P (30). The parameter values indicat-
ing causal relationships obtained from the Prediction 2 are
available for download on the website. The combination of
parameter values obtained from the calculations of many
focused metabolites related as a network can also be used
to construct a mathematical model to aid in the comprehen-
sive understanding of the metabolic reaction network using
the Simulation and Analysis steps.

Construction

The ‘Construction’ function provides a simple algorithm
to estimate parameter values for constructing a mathemat-
ical model from time-series data of metabolite concentra-
tions. This function uses the Levenberg–Marquardt algo-
rithm coupled with an ordinary differential equation (ODE)
solver via the ‘optimise’ and ‘odeint’ packages of SciPy (13)
to estimate model parameters. In addition to time-series
data, Construction also needs information on the metabolic
pathway and its regulation to symbolically build mathe-
matical formulations. Although the Construction is appli-
cable to estimate parameters of kinetic equations such as
Michaelis–Menten kinetics, its performance is predominant
for equations which contain a small number of parameters
such as the S-system equations on the basis of BST, es-
pecially, simplified equations using the PENDISC method
(23). Although there is no input limits on the number of pa-
rameters to be estimated, it is recommended to decrease the
number of parameters as much as possible.

Users can construct a mathematical model by uploading
two CSV files, one for time-series data and the other for
model equations. The time-series data should be prepared
in the same format as in Prediction 1. Model equations
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with initial values for parameter estimation are prepared
by setting the number of dependent variables (ND) (i.e. the
number of metabolites), the number of independent vari-
ables (NI) (i.e. the number of parameters to be estimated),
and simulation conditions such as start time, end time and
intervals. In addition, the initial values of metabolite con-
centrations and estimation parameters are necessary. Nor-
mally, the initial values of metabolite concentrations are
taken from experimental data, whereas the initial values for
parameter estimation may be simply set to 10 or 1. Finally,
users set formulas for model equations in the form of dif-
ferential equations. More information on the simple process
for setting up equations is provided in our previous publica-
tion (23), and examples of various mathematical equations
are also available from in the website. Once the Construc-
tion is performed, parameter values are estimated and the
fitting results are visualised by Matplotlib. Users can use
the constructed model which can be downloaded for further
simulation of metabolic behaviours or analysis of metabolic
systems in the Simulation and Analysis steps.

The aspartate model was chosen as a case study for this
function. This model has two parameters to be estimated.
Once the data and model files were uploaded, Construction
estimated values for the two parameters by fitting calculated
lines to the time-series data of seven metabolites simulta-
neously. The results showed that even for this stiff model,
PASMet could provide parameter values with at least five
digits of accuracy, which is comparable to those obtained
by the in-house parameter estimation algorithms integrat-
ing the Levenberg–Marquardt method and the highly accu-
rate differentiation method (11).

Simulation

The ‘Simulation’ function enables researchers, especially bi-
ologists and biochemists, to utilise a mathematical model
represented by ODE for observing the dynamic behaviours
of metabolite concentrations over time. Simulation also pro-
vides a mode for setting up the initial values of metabolite
concentration so that users can perform in silico metabolic
perturbations. To perform simulations, a mathematical
model is necessary. Users may use a kinetic model available
from the literature, a model constructed by the Construc-
tion or a model with simple power-law formulations with
most parameters set to unity according to the U-system ap-
proach (31). The Simulation contains various methods to
solve ODEs (32) of metabolite concentrations. The meth-
ods from the SciPy ODE integration package include the
Runge–Kutta method, Adams method and backward dif-
ferential formula (BDF). Users can select a calculation
method based on characteristics of their models. Runge–
Kutta is a simple method for solving ODEs, whereas Adams
and BDF are suitable for solving non-stiff and stiff prob-
lems, respectively. The methods also include the LSODA li-
brary (33), which automatically switches between non-stiff
(Adams) and stiff (BDF) methods depending on system be-
haviours.

Simulation provides four options. The first and second
options are for the direct input of equations for metabo-
lites (ODEs), and that for metabolites and fluxes (enzymatic
reactions), respectively. In these two options, a simulation

starts by selecting the calculation method and the number of
metabolites. Once the number of metabolites is determined,
the names and initial values of each metabolite are entered.
Users then write down equations as well as edit start time,
end time and intervals for examining probable metabolic be-
haviours. In ‘Direct inputs of equations for metabolites’, the
equations can be either enter whole ODEs or just combined
flux equations for each metabolite. In the ‘Direct inputs of
equations for metabolites and fluxes’, equations for enzy-
matic reactions of each flux need to be filled out separately
before balancing them in an equation for each metabolite.
In both options, parameter values should be written down
explicitly in equations. Once the model equations are deter-
mined, a quick simulation is performed and visualised by
Matplotlib. Users can also re-simulate dynamic behaviours
by changing a condition or the model equations. As exam-
ples, the lactate and aspartate models are provided in the
‘Direct inputs of equations for metabolites’ while the simple
linear model using Michaelis–Menten equations is provided
in ‘Direct inputs of equations for metabolites and fluxes’.

The third and fourth options are for uploading a model
file in CSV and SBML (Systems Biology Markup Lan-
guage) formats, respectively. In these options, a model file
can be directly uploaded without any input limits on the
number of metabolites. Once a simulation is performed, cal-
culated results and the model file parsing to another for-
mat are available for download. A model in CSV-format
model is converted to SBML-format model and vice versa.
It is to be noted that although PASMet generates an SBML
model using the parser in the libSBML Python API (34), it
does not provide full SBML support, especially for proper
graphical visualisation. This is because some kinds of ki-
netic models such as a model using S-system equations are
approximated and sometimes do not precisely separate flux
equations according to mass balance. In case users require
more proper SBML models, the ‘Direct inputs of equa-
tions for metabolites and fluxes’ option for building a ki-
netic model is provided.

Analysis

PASMet also offers the ‘Analysis’ function for a deeper anal-
ysis of a metabolic reaction network using mathematical
models. The analysis underlies three indicators: sensitivity,
logarithmic gain and the bottleneck ranking (BR) indica-
tor (35), which are defined as S(Xi, Yj), L(Xi, Yj) and B(Xi,
Yj), respectively, where Xi and Yj represent metabolite con-
centrations and enzyme activity. Sensitivity analysis is typ-
ically used for observing robustness and uncertainty in the
metabolic behaviours of a mathematical model. Logarith-
mic gain is the relative sensitivity defined as the change in a
dependent variable (metabolite concentration) in response
to an infinitesimal change in an independent variable (en-
zyme activity). The BR indicator is defined as the product
of dynamic logarithmic gain and metabolite concentration
and is used in the quantitative determination of bottleneck
enzymes. For variable parameters such as enzyme activi-
ties in the model, the BR indicator can identify the effects
of metabolic perturbation by quantitative comparison of
metabolite concentrations, which dynamically change in re-
sponse to parameter changes. Sensitivity results in PASMet
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are analytically obtained by a direct differential method (36)
in which the sensitivity equations are symbolically obtained
by SymPy (37).

In Analysis, users can elucidate dynamic characteristics
of a metabolic system by setting a parameter value that
refers to enzyme activity. First, users start from writing
down metabolite names, initial values of metabolite con-
centrations, equations for each metabolite and calculation
conditions in the similar way in ‘Direct input of equations
for metabolites’ option in Simulation. Then, users select a
number of enzymes to be considered as well as write down
names and parameter values of those enzymes. The param-
eter values of considered enzymes which may be explicitly
written down in equations should be replaced by the names
of those enzymes. Dynamic behaviours of metabolite con-
centrations are observed in response to a change of consid-
ered enzymes.

As two examples, the lactate and aspartate models are
provided. In the lactate model, for instance, the effect of
influx to Glc on metabolite concentrations was considered
(Figure 2C). The parameter value for this flux was defined
as y1 whereas other parameter values in the model were
explicitly filled out in equations. The result of BR indica-
tor indicated that B(Lac,y1), the BR indicator of Lac in re-
sponse to an increase of y1, continuously increases faster
than B(Ace,y1). This implied that Lac is formed more eas-
ily than Ace, which was consistent with experimental results
(20,38).

DISCUSSION

The PASMet web service has several distinctive features
compared to other available mathematical modelling soft-
ware. Many of the well-known modelling tools contain
excellent functions and interfaces for mathematical mod-
elling, but they are not as easy to operate as PASMet. Also,
most of the high-functioning kinetic modelling software do
not include a function for predicting metabolic networks us-
ing only experimental data. Since PASMet is designed as a
user-friendly tool for biologists and biochemists, it rather
focuses on the Prediction and Simulation functions instead
of the Construction function. The Prediction function is
intended to support biologists and biochemists in quickly
analysing their time-series data of metabolite concentra-
tions to discover an unknown pathway, which can then be
further studied. The Simulation and Analysis functions are
intended to support users who may not be familiar with
mathematical models, but wish to explore the dynamics of
metabolic systems from a mathematical modelling aspect.
For the Construction function, PASMet does not support
global optimisations such as genetic algorithms and sim-
ulated annealing for the process of parameter estimation.
This is because different levels of mathematical expertise are
needed to configure the initial values and boundaries for
those methods. Thus, the Construction in PASMet is suit-
able for building a model of a specific pathway containing
less than 10 parameters for simple simulations. Construc-
tion does not yet support model construction using large-
scale data such as metabolome data. More options to sup-
port precise calculations and large-scale data applicable for
theoretical researchers will be added in the near future.

CONCLUSIONS

PASMet is a user-friendly web-based tool primarily de-
signed to handle time-series data which contain important
information in their network structure. It offers four major
functions to predict metabolic pathways, construct a math-
ematical model, simulate metabolic behaviours and analyse
a metabolic system. Each function can be applied indepen-
dently. The comprehensive mathematical approaches for ex-
ploiting time-series data to extract biological insights can
be performed without strong background on mathematical
modelling. PASMet also has a detailed tutorial document
for every function available on the homepage.
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