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Abstract: Escherichia coli EC121 is a multidrug-resistant (MDR) strain isolated from a bloodstream
infection of an inpatient with persistent gastroenteritis and T-zone lymphoma that died due to septic
shock. Despite causing an extraintestinal infection, previous studies showed that it did not have the
usual characteristics of an extraintestinal pathogenic E. coli. Instead, it belonged to phylogenetic group
B1 and harbored few known virulence genes. To evaluate the pathogenic potential of strain EC121,
an extensive genome sequencing and in vitro characterization of various pathogenicity-associated
properties were performed. The genomic analysis showed that strain EC121 harbors more than
50 complete virulence genetic clusters. It also displays the capacity to adhere to a variety of epithelial
cell lineages and invade T24 bladder cells, as well as the ability to form biofilms on abiotic surfaces,
and survive the bactericidal serum complement activity. Additionally, EC121 was shown to be virulent
in the Galleria mellonella model. Furthermore, EC121 is an MDR strain harboring 14 antimicrobial
resistance genes, including blaCTX-M-2. Completing the scenario, it belongs to serotype O154:H25 and
to sequence type 101-B1, which has been epidemiologically linked to extraintestinal infections as well
as to antimicrobial resistance spread. This study with E. coli strain EC121 shows that clinical isolates
considered opportunistic might be true pathogens that go underestimated.
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1. Introduction

Escherichia coli is one of the most frequent pathogens isolated from bloodstream infections (BSI)
around the world [1–5]. Despite all knowledge of extraintestinal infections due to pathogenic E. coli,
the number of severe infections and outbreaks caused by these pathogens is rising [2,6]. Moreover,
many of these infections are caused by multidrug-resistant (MDR) strains, leading to a higher burden
of disease [7–10].

The term extraintestinal pathogenic E. coli (ExPEC) is used to define strains recovered from any
extraintestinal infection in humans or animals. Although many virulence factors are associated with
the pathogenicity of this group, it is difficult to identify or classify ExPEC strains based on a specific
group of virulence genes [11,12]. Some studies developed molecular virulence patterns that define
strains that harbor intrinsic extraintestinal virulence potential [13] or are capable of causing urinary
tract infection [14]. These molecular patterns are useful tools to track ExPEC both in the gastrointestinal
tract or environment (soil, water, food), enabling the search for some ExPEC reservoirs [13–15].

Even though such methods may recognize the most virulent strains, they fail in identifying a
considerable part of isolates recovered from clinical samples [14,16]. The reason is that infections
take place as a result of an imbalance between the pathogen virulence potential and the host immune
defenses, which makes it sometimes unclear whether the infection is being caused by a true pathogen
or by an opportunistic strain, considering that it is accepted that nonpathogenic commensals can cause
disease in immunocompromised patients [12,17].

The ExPEC prototype strains CFT073, 536, J96, and RS218 belong to phylogroup B2, and all
showed the phenotypic capacity to adhere to and invade a variety of epithelial cells, survival the
complement bactericidal activity, and produce biofilms [18–25]. Nevertheless, these features were
expressed at different levels in clinical isolates [22,26,27]. Moreover, most of the information related to
virulence properties expression assessed in vitro were derived from strains from phylogroups B2 and
D [12,24]. Although strains from phylogroup B1 were isolated worldwide from extraintestinal sites,
they are neglected, and few were the studies that analyzed their virulence potential. In general, these
strains were considered opportunist pathogens causing infection in immunocompromised patients, but
few studies evaluated the patients’ conditions on the course of infection [11,28]. Landraud et al. [29]
have shown that sepsis severity is not exclusively related to the phylogroup origins or the classification
of intrinsic virulence.

Considering this, the use of epidemiologic data and multilocus sequence typing (MLST) for the
identification of strains belonging to major pathogenic clonal groups could help in the determination
of the potential pathogenic role played by an E. coli strain [30–32].

The emergence of MDR E. coli strains calls attention to the spread of clones carrying virulence along
with resistance-encoding genes, making the control of these pathogens potentially difficult [2,33–37].
In this context, ST131 is an MDR high-risk clonal group widely disseminated and studied worldwide.
Other clonal groups, presenting MDR phenotype, like ST405, ST38, and ST648, have also emerged
and are already considered of global risk [38]. On the other hand, some STs presenting MDR
phenotype, although being isolated around the world, have not yet had their pathogenic potential
determined [39–42].

The spread of MDR pathogens is a major public health concern that needs to be adequately addressed
towards efficient control. Based on that, the World Health Organization (WHO) called attention to
this problem and the need for alternative therapeutic options for the treatment of MDR infections [43].
The development of vaccines and antivirulence compounds could be alternative approaches to combat
MDR strains, especially those showing pan drug resistance (PDR) phenotype [44,45]. However, for these
alternatives to be effective, advanced knowledge is necessary, since not all pathogenic strains share the
same virulence factors, and the use of the most prevalent virulence factors as targets can be problematic
as they can adversely affect the gut microbiota.

It is well accepted that the phylogenetic grouping of E. coli keeps a very good correlation with
the virulence potential of bacterial isolates [12,46,47]. Recently, epidemiological data have shown
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that nonvirulent strains are mostly classified in the phylogenetic group A, while diarrheagenic E. coli
(DEC) are B1, and ExPEC are mainly B2 [12,17,48]. However, the fact that most E. coli virulence factors
are carried on mobile genetic elements (e.g., plasmids and pathogenicity islands) may eventually
cross these phylogenetic boundaries and promote the appearance of potential pathogens in atypical
phylogroups [17,49].

Thus, a global analysis of virulence and resistance characteristics of E. coli causing extraintestinal
infections, especially those escaping typical ExPEC classification, is essential for the understanding of
the infections they cause.

This study used various methodological approaches to characterize the pathogenic potential of an
extraintestinal E. coli isolate that would otherwise be considered an opportunistic, despite leading to
the patient’s death. In fact, the withdrawn conclusion is that the pathogenic characteristics of E. coli
strains causing extraintestinal infections are not fully contemplated by the molecular analysis currently
applied. Finally, the more that is known about virulence mechanisms and drug resistance of these
pathogens, the more proper the addressing of measures to implement alternative therapies and control
MDR spread will be.

2. Materials and Methods

2.1. Bacterial Strain

E. coli strain EC121 was isolated from the blood of a patient diagnosed with T-zone lymphoma
and persistent infectious gastroenteritis, who had been hospitalized in a tertiary hospital located
in the city of São Paulo, Brazil, in 2007. The patient died due to septic shock two days
after the isolation of the agent. Strain EC121 was kept frozen in glycerol at −80 ◦C in the
ENTEROBACTERIALES-EXTRAINTESTINAL-EPM-DMIP collection n◦ A27A7C3. The initial
virulence and resistance characterization showed that EC121 strain belonged to phylogroup B1,
presented an MDR phenotype by routine susceptibility testing, and harbored seven known virulence
genes (fim, hra, cvaC, ompA, ompT, sitA, and iroN) among 30 virulence factors related to ExPEC that
were screened (afaBC III, afaE—8, bmaE, tsh, clpG, fimA, hra, iha, mat, papA, papC, sfaDE, ibe10, ompA,
chuA, ireA, iroN, irp2, iucD, sitA, cvaC, kpsMT II, kpsMT III, ompT, traT, cnf1, hlyA, hlyF, sat, and vat).
According to the presence of these genes, it was considered an opportunist strain because it harbored
none of the virulence factors commonly involved in the characterization of ExPEC (presence of two of
the following genes: papA/C, sfaDE, afaBC, iuc/iut, and kpsMTII) [28]. Strain EC121 was obtained from
clinical routine after laboratory procedures. No additional procedure was performed to acquire any
bacterial strain, so the consent form was not required as determined by the Brazilian National Health
Council n◦ 466/12 and 510/16. All patient information was obtained from medical records, and the
research was done with the approval of the local Research Ethics Committee of the Federal University
of São Paulo—UNIFESP/São Paulo Hospital (CEP 2031/08 from December 2008 and CEP N 7140160317
from April 2017).

2.2. Total DNA Extraction, Whole-Genome Sequencing (WGS), and Genome Assembly

The total bacterial DNA was extracted using Wizard® Genomic DNA Purification Kit (Promega,
Madison, WI, USA) following the manufacturer’s protocol. The extracted DNA was sequenced in
an Illumina® Hiseq1500 (Illumina, San Diego, CA, USA), using the Rapid protocol to obtain 2 × 250
paired-end reads, according to the manufacturer’s recommendations. Raw data were processed with
Trimmomatic, and then the paired-end reads were assembled using SPAdes (version 3.12.0), with
default parameters, and careful mode on [50].

2.3. Genomic Analyses and Annotation

The obtained draft genome was classified by PlasFlow algorithm [51] and submitted to various
online bioinformatics platforms of the Center of Genomic Epidemiology (CGE) pipeline to determine
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(i) sequence types [52] for both E. coli MLST schemes (MLST-2.0); (ii) serotype (SerotypeFinder-2.0) [53];
(iii) presence and types of plasmid replicons (PlasmidFinder-2.0) [54]; (iv) presence of resistance genes
(ResFinder-3.1) [55]; and (v) STEC virulence factors (VirulenceFinder-2.0) [56]. PHASTER [57] and
PHAST [58] were used to detect bacteriophage sequences in each contig of the draft genome.

The genome was annotated using Pathosystems Resource Integration Center (PATRIC)
Comprehensive Genome Analysis service that uses RASTtk [59]. Each sequence that was assigned as a
virulence factor in PATRIC’s database was manually submitted to BLAST/NCBI [60] and UniProt [61] to
validate the virulence factors, to obtain all information about the virulence genes detected, to evaluate
the completeness of the sequence, and to determine its homology concerning the RefSeq protein in
Swiss-Prot. PATRIC [59] service was also used to build a phylogenetic tree using RA×ML-VI-HPC or
Fast tree 2, where all representative E. coli genomes from different pathotypes were used to construct the
tree, as well as the deposited genomes of E. coli strains belonging to ST101 complex from diverse sources.
The tree was built based on the concatenated sequence of all shared proteins among all genomes using
RA×ML or FastTree2. To construct the phylogenetic tree of EC121 and representative E. coli pathotypes,
two Escherichia fergusonni strains ATCC35469 and NCTC12128 were used as outgroups. To build the
phylogenetic trees, a total of 114 public genomes were randomly selected among the published genomes
from the ST101 complex (ST101, ST359, ST2480, ST5957, and ST6388) using the PATRIC´s Genomes
search tool. The E. fergusonni strains ATCC35469, E. coli str IAI1, E. coli O157:H7 str Sakai, E. coli
O104:H4 str 2011c-3493 were used as outgroup. The phylogenetic tree’s final layout and annotation
were completed using iTOL v.4 [62]. The annotated genome was submitted to MacSyFinder from
Galaxy@Pasteur [63] to detect CAS-CRISPR sequence type and the presence of secretion systems [64,65].

2.4. Data Availability

The EC121 Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the
accession VYQD00000000. The version described in this manuscript is version VYQD01000000.

2.5. Serum Agglutination Assay for Typing the O and H Antigens

Serum agglutination assay was carried out following the standard methodology as described by
Orskov and Orskov [66] for serotyping, using O serum against O100 and O154, and H serum against
H25 provided by the Centers for Disease Control and Prevention (CDC, Atlanta, GA, USA).

2.6. Antimicrobial Susceptibility Testing

The minimum inhibitory concentration (MIC) was determined using the broth microdilution
method, following the European Committee on Antimicrobial Susceptibility Testing (EUCAST)
recommendations and breakpoints [67]. The following antimicrobials (Sigma, Saint Louis, MO, USA)
were tested: ampicillin, piperacillin/tazobactam, ceftriaxone, ceftazidime, cefepime, aztreonam,
ertapenem, imipenem, meropenem, ciprofloxacin, amikacin, gentamicin, tigecycline, colistin,
polymyxin B, trimethoprim/sulfamethoxazole, and chloramphenicol. E. coli ATCC 25922 and
Pseudomonas aeruginosa ATCC 27853 were used as quality control strains.

2.7. Plasmid DNA Extraction and Analysis

Bacteria were cultivated in tryptic soy broth (TSB—Difco, Sparks, MD, USA) at 37 ◦C, in a static
incubator for approximately 18 h, and 1 mL of the culture was submitted to plasmid alkaline extraction
protocol [68]. E. coli strain 39R861 was used as a plasmid mass reference ladder and as control of
extraction [69]. The plasmid extract was submitted to electrophoresis in an agarose gel (0.8%) in
tris-borate-EDTA (TBE) buffer, stained with ethidium bromide solution (5 µg/mL), analyzed using
Molecular Imager®Gel Doc™ XR+ with Image Lab™ Software System from Bio-Rad (Hercules, CA,
USA). The molecular weight of each plasmid was calculated as previously described [70], based on its
migration distance in agarose gel of five different extraction assays followed by electrophoresis.
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2.8. In Silico Plasmid Analysis

The following strategies were used to accomplish plasmid analysis. First, the draft genome was
analyzed by PlasFlow [51] to classify the possible source of each contig (as chromosomal or plasmid);
subsequently, it was submitted to CGE to identify the contigs that contained replicons. The contigs
containing replicons were analyzed using the Standard Nucleotide BLAST in the National Center for
Biotechnology Information (NCBI).

2.9. Conjugation Assay

Conjugation assay was conducted to resolve the EC121 conjugative plasmids. In the mating pair,
strain EC121 was the donor strain, whereas E. coli K-12 derived strains, J53 [71] and C600 [72], resistant
to sodium azide, were the recipient strains. Conjugation was performed using overnight cultures of
the donor and the recipient strains grown in LB, in the proportion of 1:2, respectively. One milliliter of
fresh LB was added to the mating mixtures, following 3 h incubation at 37 ◦C under static condition.
After the incubation period, 100 µL of each mating mixture was plated into selective MacConkey
agar plates (Difco, Sparks, MD, USA) supplemented with three different antibiotic combinations
(20 µg/mL gentamycin and 100 µg/mL sodium azide; 2 µg/mL cefotaxime and 100 µg/mL sodium
azide; and 30 µg/mL chloramphenicol and 100 µg/mL sodium azide). The colonies that grew in the
selective medium (transconjugants) were purified in the same selective medium and then stored for
further characterization.

2.10. Characterization of Conjugative Plasmids

The transconjugants obtained were analyzed by PCR for the presence of virulence encoding-genes,
blaCTX-M-2 resistance gene, and determination of the replicon types. Additionally, the susceptibility
profile of the transconjugants was determined by the minimum inhibitory concentration (MIC)
method [16,73,74].

2.11. Determination of the Lowest Bacterial Inoculum Which Was Resistant to Human Serum Complement

The lowest bacterial inoculum resistant to serum was determined to access the bacterial
serum-resistance. Lyophilized human complement serum (Sigma, Saint Louis, MO, USA) was
reconstituted in sterile phosphate-buffered saline (PBS). The assay was performed in 96-wells plates,
where complement serum was distributed in each well (90 µL per well). Bacteria were grown overnight
at 37 ◦C, serially diluted (1:10) in complement serum until 10−10, and incubated at 37 ◦C. Aliquots of
10 µL of each well were seeded onto MacConkey agar plates after 30 min, 1 h, and 2 h of incubation.
Simultaneously, another assay was performed with previously heat-inactivated serum as control.
The E. coli strains J96 and C600 were used as resistant and susceptible controls, respectively [75].
The lowest bacterial inoculum resistant to human complement was determined by the last bacterial
dilution, which had bacterial growth onto MacConkey after the challenge. For each assay, the initial
bacterial inoculum was determined by diluting bacteria in PBS, plating in MacConkey agar, and CFU
counting. The data was reported in CFU/mL. Biological assays were performed in triplicates.

2.12. Biofilm Formation on Abiotic Surfaces

Biofilm formation was evaluated on polystyrene and glass surfaces as described by Lima et al. [73]
in a 24 h-assay using the following media: Dulbecco′s Modified Eagle′s Medium (DMEM) high-glucose
and TSB. Each assay was performed in biological and experimental triplicates. The EAEC 042 and
laboratory E. coli HB101 strains were used as positive and negative controls, respectively; in all assays,
a noninoculated well was used as control of dye retention, and the prototype strain CFT073 as an
ExPEC control.
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2.13. Cell Culture and Maintenance

HeLa (ATCC® CCL-2™), intestinal Caco-2 (ATCC® HTB-37™), and bladder T24 (ATCC® HTB-4™)
cell lineages were used to evaluate the ability of strain EC121 to interact with eukaryotic epithelial
cells. HeLa and Caco-2 cells were cultured in DMEM, high glucose, GlutaMax™ (Gibco- ThermoFisher
Scientific, Grand Island, NY, USA), supplemented with 10% bovine fetal serum (BFS) (Gibco, Brazil), 1%
nonessential amino acids (Gibco, Grand Island, NY, USA), and 1× penicillin–streptomycin–neomycin
(PSN) antibiotic mixture (Gibco, Grand Island, NY, USA). T24 cells (ATCC HTB-4) were cultured in
McCoy 5A (modified) media (Sigma, Saint Louis, MO, USA), supplemented with 10% of BFS and 1×
PSN antibiotic mixture. All lineages were kept at 37 ◦C in an atmosphere of 5% CO2. For all assays, cell
suspensions containing 1 × 105 cells/mL were seeded in 24-well plates, with or without glass coverslips
for qualitative or quantitative assays and cultured from two up to 10 days until reaching confluence.

2.14. Adherence Assays in HeLa, Caco-2, and T24 Cells

The adherence properties of EC121 were evaluated qualitatively and quantitatively. In both assays,
the epithelial cells were washed three times with PBS, and 1 mL of DMEM, high glucose, GlutaMax
supplemented with 2% of BFS, was added to HeLa and Caco-2, and 1 mL of McCoy 5A modified media,
supplemented with 2% of BFS was added to T24 cells. After bacterial inoculation, the qualitative and
quantitative assays were incubated for 3 h at 37 ◦C, then washed three times with PBS and processed
according to the type of the assay. The qualitative assays were performed with all cell lineages (HeLa,
T24, and Caco-2) using 20 µL of an inoculum obtained from standardized bacterial cultures grown
overnight; after the incubation period and washes, preparations were fixed and stained as described
previously [76]. The quantitative assay was carried out using HeLa cells in full confluency to evaluate
the efficiency of the EC121 adherence in the presence and absence of 2% D-mannose. The multiplicity
of infection (MOI) of 50, obtained from an overnight culture, washed and adjusted in PBS, confirmed
by O.D. and bacterial count, was used as inoculum. After incubation and washes, the cells were lysed
by adding 1 mL of sterile bi-distilled water, which was recovered, diluted, and plated onto MacConkey
agar for quantification as previously described [77]. The assays were performed in biological duplicates
and experimental triplicates, and the data were expressed as the mean and standard error of the mean
(SEM). The E. coli strains C1845, CFT073, and C600 were used for comparison.

2.15. Short Period Interaction and Invasion Assay in Caco-2 and T24 Cells

The invasion assays were carried out using Caco-2 and T24 cells in full confluency, as described
by Martinez et al. [78], with modifications, in two sets of plates simultaneously. The infection was
done using a MOI of 50, and the assays were incubated for 2 h, at 37 ◦C, in a normal atmosphere. After
this period, one plate set was washed three times with PBS and incubated again with PBS containing
100 µg/mL of amikacin for 1 h at 37 ◦C to kill all extracellular bacteria. After the incubation period,
the assay was washed three times to remove all antibiotics, cells were lysed with water, and the well
contents were collected, diluted, and plated onto MacConkey agar to obtain the number of internalized
bacteria. The other set was washed with PBS three times, the cells were lysed, and contents of each
well were collected, diluted, and plated to obtain the total number of bacteria interacting with the
cells in the period. An aliquot of the PBS recovered from the last wash after incubation with amikacin
was collected and plated without dilution, to ensure that the treatment had killed all extracellular
bacteria. The total interaction value was the percentage of the total bacteria associated with the cells in
relation to the initial inoculum. The invasion index was determined by the ratio between the number of
internalized bacteria and the initial inoculum, expressed in percentage. Escherichia albertii strain 1551-2
eae::Km was used as adherent and noninvasive control [79], E. coli strain C600 as a negative control, and
the CFT073 as an ExPEC control. The assays were performed in biological and experimental triplicates,
and data were reported as SEM.
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2.16. In Vivo Assay in Galleria Mellonella Virulence Model

The full virulence potential of EC121 was evaluated using the virulence model of G. mellonella,
as previously described [80,81]. Briefly, 10 mL of logarithmic phase cultures were washed twice and
adjusted to the optical density of 0.7 (O.D.595) in 0.85% NaCl and serially diluted to obtain a bacterial
concentration of 1 × 106 CFU/mL. Volumes of 10 µL of the bacterial suspension were injected in the
left larvae proleg using a Hamilton syringe (26S gauge, 50 µL capacity). The tests were performed in
three independent assays, each of them using five larvae per bacterial strain tested. The E. coli strains
CFT073 and C600 were used as positive and negative controls, respectively, and saline injection as the
procedure control.

2.17. Statistical Analyses

Student t-test was applied to calculate statistical significance. For biofilm production,
the Wilcoxon matched-pairs test correction was used, and for the cell interaction and invasion
assays, the Wilcoxon–Mann–Whitney test was applied. The Kaplan–Meier survival curve was used for
survival analysis, and the difference between the groups was determined by log-rank (Mantel–Cox)
test and Gehan–Breslow–Wilcoxon test. The threshold for statistical significance was a p-value < 0.05.
The analyses were performed in Prism 5.0 (GraphPad Prism Software, Inc.).

2.18. Ethics Statements

The human cell lineages used in this study were all commercially acquired, T24 (ATCC® HTB-4™)
from Banco de Células do Rio de Janeiro (BCRJ) (Rio de Janeiro, RJ, Brazil), and HeLa (ATCC® CCL-2™)
and Caco-2 (ATCC® HTB-37™) cell lineages from Instituto Adolfo Lutz (IAI) (São Paulo, SP, Brazil).

3. Results

3.1. Genetic Characterization and In Silico Analysis

The genome assembly of the strain EC121 generated 143 contigs, with a total genome, predicted
a size of 5,119,556 bp, and 50.43% of GC content. PlasFlow algorithm identified 43 of 143 contigs as
chromosomal and the other 66 contigs on plasmids. The contigs assigned to plasmids comprised at
least 426,419 bp of the genome.

3.1.1. EC121 Belongs to Serotype O154:H25, ST101-B1, and is Related to Diarrheagenic E. coli

MLST analyses showed that the EC121 strain belonged to the ST101/ST88, according to the
Warwick and Pasteur MLST schemes, respectively. Serotype determination by sequencing analysis
was inconclusive, because two possible serotypes, O154:H25 and O100:H25, could be assigned. Using
specific serum agglutination assays, it was determined that strain EC121 expressed the O154 antigen.
Thus, it was characterized as belonging to serotype O154:H25. Moreover, group IV capsule- encoding
genes were identified on its genome.

A phylogenetic tree built using reference E. coli strains from all pathotypes showed that EC121
was related to diarrheagenic E. coli (DEC) strains, since it was positioned in a clade closely associated
with Shiga toxin-producing E. coli (STEC) (Figure 1).

A second phylogenetic tree was built with 95 strains available at the NCBI, which belonged
to the ST101 complex and were recovered from distinct sources (Figure 2, Table S1). Analysis of
the tree showed that the majority of the strains of this ST are MDR, many of them carrying mcr-1
(mobile colistin resistance gene), a variety of β-lactamases (blaCTX-M-like, blaOXA-like, and blaNDM-like)
and genes related to fosfomycin resistance (fosA3). Interestingly, these strains were isolated from
food, environment, animals, and humans, as part of the microbiota or involved in both intestinal and
extraintestinal infections, in all continents. Among the strains isolated from human infections (Figure S1
and Table S1), most were diagnosed as extraintestinal pathogens (28 strains), while three were intestinal
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pathogens; among the latter, one was STEC, and one was enterotoxigenic E. coli (ETEC). Regarding
the isolates from food and animals, seven strains were identified as STEC (Figure 2, Figure S1, and
Table S1), showing that ST101 is associated with intestinal and extraintestinal infection, and it is a
clonal group associated with MDR phenotype. The full mobile resistome and isolation data (accession
number, year and country of isolation, etc.), related to strains from the ST101 complex used to build
the phylogenetic trees, are provided in Table S1.
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higher than 90 are denoted in the tree as red dots in the nodes.

3.1.2. EC121 Harbors Genes Involved in Virulence and Stress Response

The EC121 genome annotation showed that strain EC121 contained 5175 coding sequences (CDS),
82 tRNA, and 13 rRNA. One CRISPR locus was identified as type 1-IE and presented two arrays and 30
CRISPR-repeat regions (Figure 3A). Among the CDSs annotated, 702 corresponded to putative proteins
designated as hypothetical proteins, and 4473 CDS to putative proteins with functional assignments.
Of interest, 221 genes were reported as belonging to systems involved in response to stress, virulence,
and defense (Table 1 and Figure 3B,C).
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the ST101 complex (ST101, ST359, ST2480, ST5957, and ST6388) from diverse sources and countries,
using all shared proteins on FastTree2 to build the tree. E. coli strains IAI1, E. coli O157:H7 str Sakai, and
E. coli O104:H4 str 2011c-3493 are used as outgroups. Bootstraps higher than 50 are denoted in the tree
as red dots in the nodes. The strains’ names are colored according to sources or host diseases; Shiga
toxin-producing E. coli (STEC) are in orange independently of the origin; diarrheagenic E. coli (DEC)
strains in yellow; extraintestinal pathogenic E. coli (ExPEC) strains in red; isolates from microbiota
in brown; isolates from retail food or the environment in green; strains with nonreported sources in
black. A strain isolated from Crohn’s disease is in purple. EC121 is in bold and with a lilac label
background. When known, the country where the strain was isolated is in parentheses. * All strains
that are resistant to three or more antimicrobial classes were designed as multidrug resistant (MDR).
The other FQ (fluoroquinolone) resistance genes detected were the mobile genes qepA and aac (6′)-Ib-cr.
Mutations that confer resistance to FQ were not considered to build the antimicrobial resistance (AMR)
genotype information in this tree.
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Table 1. EC121 annotation overview. a

Protein Features Occurrence

Hypothetical proteins 702
Proteins with functional assignments 4473
Proteins with E.C. b number assignments 1300
Proteins with G.O. b assignments 1076
Proteins with pathway assignments 911
Proteins with PLfam b assignments 5063
Proteins with PGfam b assignments 5064

a Results obtained using PATRIC annotation service; b Abbreviations: E.C. number—enzyme commission universal;
G.O.—Gene Ontology Consortium; PLfam- PATRIC genus-specific family; PGfam- PATRIC cross-genus family.

Analysis using the MacSyFinder tool identified ten types of V secretion system proteins, nine of
which were from type T5aSS and one from T5cSS (EhaG) (Table S2). One type III secretion system
similar to Salmonella T3SS, and an incomplete type VI secretion system that carried only tssB, tssD, tssE,
tssH, and tssI genes were also present (Table S2).

All genes that were reported by the PATRIC virulence factor database were manually curated to
provide information about their full sequence. As shown in Table 2, Tables S3 and S4, the genome of
the EC121 strain encodes multiple adhesins, invasins, iron uptake systems, and genes involved with
the evasion of the host immune system. By the position of strain EC121 in the pathotype phylogenetic
tree, some of these virulence factors are related to the pathogenesis of DEC, specifically of STEC and
ETEC (Table 2 and Table S3). Other virulence factors found were related to Salmonella spp. (PagN
adhesin and systems associated with immune evasion and macrophage survival) and Shigella spp.
(genes associated with intracellular survival and spread). Moreover, many accessory genetic clusters
associated with the bacterial ability to cause extraintestinal infections, i.e., genes involved with biofilm
formation, adherence to extraintestinal cells, iron acquisition, and immune evasion, were also detected
in the EC121 genome. Furthermore, other clusters associated with urinary tract infections (UTI) were
detected (Table 2 and Table S3).

Table 2. Complete virulence factors identified.

Virulence Traits Associated with Virulence In
Other Genera DEC ExPEC Various

Colonization and
invasion

MlaA, MsbB, Sfm,
MisL, IcsP

Lpf-1O26, EhaG,
Hcp, Elf, EhaA,
EhaB, CFA-I

FdeC, Pix, Ygi, Yad, Yeh,
Yra, Yfc, YchO, IbeB, IbeC,
EptC, OmpA

Type 1 Fimbriae
(H191), Ecp, Curli

Immune system evasion SodB, TrxA, SirA,
FpkA

Iss, OmpTpa, OmpTca,
Mig-14, HlyF RelA

Iron acquisition system Sit, Iro, Fhu,
Enterobactin

Regulators DsbA, DegP, SlyA,
CpxAR EvgAS DsbAB, PhoPQ QseBC, RcsAB

Toxins and Bacteriocins Microcin V, Colicin B,
Colicin M ClyA, Hly III

Non-LEE effectors
EspL1, EspL4,
EspX1, EspX4,
EspX5, EspR1

DEC–diarrheagenic E. coli, ExPEC–extraintestinal pathogenic E. coli; a OmpTc for chromosomal variant of OmpT
protein, and OmpTp for plasmid variant of OmpT protein.

3.1.3. No Complete Phage Sequences Were Detected in the EC121 Strain

The search for phage sequences in strain EC121 identified 12 regions containing genes from a
variety of different phages, ranging from 6 to 31 kb (Table 3, Table S5). Although the PHASTER
database considered a predicted phage sequence in region 6 as intact, based on their score criteria,
its size (14,400 bp) was not compatible with the size of the predicted “enterobacteria phage Fels-2”
identified by the algorithm to the region, whose complete genome sequence is 33,693 bp (NCBI
database). Remarkably, parts of the cytolethal distending toxin (Cdt-I and Cdt-V), and Shiga-like toxin
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(Stx1a and Stx2c) converting phages, as well as of Shigella serotype-converting phages SfI, SfII, and SfV
were detected among these regions (Table 3 and Table S5). However, Stx and Cdt toxin-encoding genes
were not identified in strain EC121.

Table 3. Predicted phages detected in the EC121 genome.

Region Length Completeness a Most Common Phage/Accession Number GC %

1 6.3 kb Incomplete Bacillus phage G/NC_023719 51.27
2 30.9 kb Incomplete Salmonella phage 118970_sal3/NC_031940 49.82
3 14.2 kb Questionable Enterobacteria phage P88/NC_026014 49.75
4 20 kb Incomplete Shigella phage POCJ13/NC_025434 47.95
5 28.5 kb Incomplete Shigella phage SfII/NC_021857 45.37
6 14.4 kb Intact Enterobacteria phage Fels-2/NC_010463 49.56
7 9.4 kb Incomplete Bacillus phage Shanette/NC_028983 49.50
8 7.5 kb Incomplete Enterobacteria phage phi92/NC_023693 44.44
9 10.2 kb Questionable Enterobacteria phage P2/NC_001895 55.39
10 3.8 kb Incomplete Bacteriophage WPhi/NC_005056 50.16
11 8.4 kb Questionable Phage cdtI/NC_009514 46.05
12 6.7 kb Incomplete Shewanella sp. phage 1

4 /NC_025436 47.92
a Phage completeness was determined by scores obtained in the search algorithm (PHASTER) based on the number
of the phage’s specifics CDSs detected in the analyzed region.

3.1.4. EC121 Has Multiple Resistance Genes, and Several Efflux-Pumps Compatible with its
Antimicrobial Susceptibility Profile

The software ResFinder identified 15 resistance genes in strain EC121, which are involved
in reduced susceptibility to aminoglycosides, β-lactams, macrolides, phenicols, sulphonamides,
trimethoprim, and tetracyclines (Table 4). Mutations in the parE, parC, and in gyrA genes, which
confer resistance to fluoroquinolones, were also observed in the EC121 genome. Additionally, several
efflux-pumps related to resistance to heavy metals (copper and mercury), arsenic, disinfectants (QacE),
and antimicrobials (AcrAB-TolC, AcrAD-TolC, AcrEF-TolC, AcrZ, EmrAB-TolC, EmrD, EmrKY-TolC,
MacA, MacB, MdfA/Cmr, MdtABC-TolC, MdtEF-TolC, MdtL, MdtM, and SugE) were detected.
The MDR phenotype profile of strain EC121 assessed by the microdilution method was consistent with
the genomic findings, as can be seen in Table 4.

Table 4. Antimicrobial resistance genotype and phenotype observed in strain EC121.

Antimicrobial Class Genotype
Phenotype

Antimicrobial Agent MIC b (µg/mL)

Aminoglycosides aph(3”)-Ib, aph(6)-Id, aph(4)-Ia,
aac(3)-Iva

amikacin 2
gentamicin 32

β-lactams blaTEM-1B, blaCTX-M-2

ampicillin ≥256
piperacillin/tazobactam >256/4
ceftazidime 64
ceftriaxone ≥512
cefepime 16
ertapenem ≤0.5
imipenem ≤0.5
meropenem ≤0.5
aztreonam >32

Sulfonamides/Trimethoprim sul2, sul1, sul1′, dfrA14, dfrA7 trimethoprim/sulfamethoxazole >128/2432
Phenicols catA1 chloramphenicol >64

Tetracyclines tet(A)
minocycline 16
tigecycline 1

Fluoroquinolones parE(S458A); parC (S80I); gyrA
(S83L and D87Y) ciprofloxacin >64

Polymyxins - colistin ≤0.25
polymyxin B ≤0.25

Fosfomycin - fosfomycin 0.25

Macrolides mph(A), mdf(A) azithromycin NT
a chromosomal mutations and mobile genes related to antimicrobial resistance identified. b Resistance is highlighted
in bold, following EUCAST (2019) breakpoints. NT—not tested.
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3.1.5. The EC121 Strain Harbors Multiple Plasmids

Four bands were detected by agarose gel electrophoresis, suggesting that EC121 harbor multiple
plasmids (Figure S2). Seven different replicons were found in EC121 using PlasmidFinder (IncHI2A,
IncHI2, IncQ1, IncFII, IncFIB, IncN, and IncM1).

Although the EC121 genome is still in draft, we analyzed the replicon containing contigs identified
by the PlasmidFinder to provide more information about the strain’s plasmid content. A contig of
128,478 bp in length bears both the IncHI2A and IncHI2 replicons. The contig’s BLAST showed high
identity with the pYps.F1 plasmid of the Yersinia pseudotuberculosis strain Yps.F1 (cover: 99%, e-value:
0.0, identity: 99.77%) (Figure S3).

The IncM1 replicon was identified in one contig of 65,565 bp in length, which was circularized in
the assembling, and showed high homology (100% of identity and coverage) with the pASM2 plasmid
(accession No. NZ_CP019841.1) of Enterobacter roggenkampii strain R11 (Figure S4).

The other replicons were segregated into four different contigs, with IncFIB and IncFII into
contigs of 37,695 and 30,674 bp in length, respectively, and IncN and IncQ1 into contigs with less than
3.5 kb each.

The IncFIB replicon’s contig also contained the virulence genes iroN, iss, and traT as identified in
the sequence. The in silico analysis suggested that the plasmid was similar to the pAPEC plasmid that
carries virulence and resistance genes simultaneously. Although the IncFII replicon was identified into
a different contig, the data indicated that both the IncFII and IncFIB replicons represent segments of
the same plasmid. Further studies are required to unravel this plasmid genetic composition.

Conjugation assays were performed to evaluate the presence of conjugative plasmids in EC121.
To this purpose, agar plates with different antimicrobial combinations (sodium azide [100 µg/mL] with
gentamycin [20 µg/mL] or cefotaxime [2 µg/mL] or chloramphenicol [30 µg/mL]) were used to select
the transconjugant strains. While no chloramphenicol-resistant transconjugant colony was detected,
five transconjugants were recovered from the gentamycin and 20 from the cefotaxime selective agar
plates. Thirteen colonies (five from gentamycin and eight from cefotaxime plates) were purified and
then investigated regarding their replicon type and presence of virulence genes that are generally
located in plasmids (hlyF, sitA, and iroN) by PCR. All cefotaxime-resistant transconjugants carried the
IncHI2 and IncHI1 replicons, blaCTX-M-2, and lacked the virulence genes investigated, while all five
gentamycin-resistant transconjugants carried multiple replicons (IncFIB, IncL/M, IncN, IncHI2, and
IncHI1), as well as the hlyF, sitA, and iroN genes (Table 5) and the blaCTX-M-2 resistance gene. These
results suggested that the blaCTX-M-2 gene was inserted into the IncHI2A/IncHI2 plasmid.

One transconjugant strain of each type was submitted to the microdilution assay to verify the
antimicrobial resistance phenotype. E. coli strain ACC09 (E. coli J53 harboring the IncHI2/IncHI2A
plasmid) obtained from the cefotaxime agar plate showed ceftriaxone and cotrimoxazole resistance
and reduced susceptibility to all beta-lactams (Table 5), whereas E. coli strain ACG04 (E. coli C600
carrying multiple plasmids) showed reduced susceptibility to all the antimicrobials tested, except for
ciprofloxacin and tigecycline, and presented increased MIC values to all beta-lactams when compared
to ACC09 (Table 5).

Although we isolated only the IncHI2/IncHI2A plasmid, multiple plasmids were transferred
efficiently to the receptor strain in a short period of conjugation (3 h) indicating that all high molecular
weight plasmids were conjugative or mobilizable plasmids.

3.2. Virulence Phenotype

To evaluate the expression of the virulence-encoding genes detected, in vitro assays were
performed to analyze the ability of the strain to (i) resist to the bactericidal activity of the serum
complement system; (ii) attach to abiotic surfaces and form biofilms; (iii) adhere to and invade
eukaryotic cells. In vivo assays were performed using the G. mellonella infection model to evaluate the
EC121 virulence potential.
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Table 5. Resistance profile, replicon type, and virulence genes identified in the EC121’s plasmids
transferred to E. coli K-12 strains.

Traits EC121 J53 C600 ACG04 ACC09

Antimicrobial a

ceftazidime 64 0.25 0.25 8 2
ceftriaxone ≥64 ≤0.125 ≤0.125 >64 >64
cefepime 16 0.25 ≤0.125 16 2
piperacillin/tazobactam >256 2 2 8 2
aztreonam >32 ≤0.125 ≤0.125 16 4
amikacin 4 2 2 16 2
gentamycin 16 0.5 0.5 32 0.5
trimethoprim/sulfamethoxazole >128 ≤0.25 ≤0.25 >128 >128
ciprofloxacin >64 ≤0.125 ≤0.125 ≤0.125 ≤0.125
minocycline 16 1 1 4 1
tigecycline 1 0.25 0.125 0.25 0.125
Replicon type b

IncHI2 + - - + +
IncL/M + - - + -
IncFIB + - - + -
IncN + - - + -
Virulence c

hlyF + - - + -
iroN + - - + -
sitA + - - + -
Resistance gene
blaCTX-M + - - + +

a The antimicrobial resistance phenotype of transconjugant strains was assessed by minimum inhibitory concentration
(MIC), performed using the broth microdilution method according to EUCAST guideline, and expressed in µg/mL.
Bold values indicate an increased MIC value when comparing strains bearing plasmids with its receptor strain
which is devoid of plasmids; b replicons identified in EC121 by PlasmidFinder, and screened by PCR; c virulence
genes identified in EC121 genome and screened by PCR; + for the presence of the gene; - for the absence of the gene.

3.2.1. The EC121 Strain Resists the Bactericidal Activity of the Human Complement System and
Adheres to Abiotic Surfaces

Extraintestinal pathogenic bacteria must be able to survive the serum bactericidal activity to
disseminate in the host. To identify such a feature in EC121, we determined the lowest serum-resistant
bacterial inoculum using a pool of normal human sera (NHS). The lowest inoculum of EC121 strain
that resisted serum activity after two hours was 102 CFU/mL, which was similar to the inoculum
obtained for the resistant control strain J96. E. coli strain C600, used as a susceptible control, barely
resisted to a 30 min-exposition period in the highest inoculum tested (108 CFU/mL). To validate that
bacterial survival was associated with resistance to complement activity, assays were repeated with
heat-inactivated serum. In this condition, all strains survived the challenge with similar inoculum
(Table 6).

Table 6. Estimated bacterial inoculum resistant to serum activity (CFU/mL). a

E. coli Strains

J96 EC121 C600
Challenge Period NHS inHS NHS inHS NHS inHS

30 min 101 101 102 101 108 101

1 h 102 101 102 101 NG 101

2 h 102 101 102 101 NG 101

a Values represent the approximate relative mean of the lowest bacterial inoculum that remained viable after the
challenge. All assays were performed in triplicate using 50% serum diluted in phosphate-buffered saline (PBS) (v/v);
NHS—Normal human serum; inHS—inactivated human serum; NG—no growth after the challenge.

The ability to adhere to the abiotic surface and form biofilm can confer many advantages to any
pathogen, including persistence in particular niches and tolerance against antimicrobials and the host
immune system. EC121 strain was able to adhere to borosilicate coverslips and polystyrene when
grown in DMEM and TSB, as shown in Figure 4. Although its adherence to the abiotic surface was
not massive as the adherence presented by the positive control strain (EAEC 042), it was significantly
more intense than that of the negative control strain (HB101) (Figure 4). Furthermore, EC121 produced
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similar (p > 0.05) or higher (p < 0.01) biofilm masses as the ExPEC prototype strain CFT073 in DMEM
and TSB, respectively (Figure 4b).Microorganisms 2020, 8, x FOR PEER REVIEW 6 of 31 
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tryptic soy broth (TSB), at 37 °C, for 24 h, comparing the capacity of strain EC121 to produce biofilm 
in polystyrene surface. EAEC 042 was used as a positive control, UPEC prototype strain CFT073 was 
used as an ExPEC control, and Laboratory strain HB101 was used as a negative control. p values: ** < 
0.01; *** < 0.001; ns > 0.05. 
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At first, we accessed, qualitatively, the ability of strain EC121 to adhere to HeLa, T24, and Caco-
2 cells, using a 3-h adherence assay without D-mannose. Strain EC121 interacted efficiently with all 
cells tested (Figure S5). Subsequently, a quantitative 3-h adherence assay in HeLa cells using an initial 
inoculum of 1 × 107 was performed in the absence of D-mannose, except for EC121, which was also 
tested in the presence of 2% D-mannose. EC121 was able to adhere, both in the presence or absence 
of D-mannose, which abolishes the adherence mediated by type-1 fimbriae. However, the presence 
of D-mannose reduced the adherence ability of strain EC121 significantly, reducing the adherence in 
about 90% (Figure 5), from 1.3 × 107 CFU/mL to 1.58 × 106 CFU/mL (Figure 5). Noteworthy, the EC121 
adherence levels in the absence of D-mannose was higher than all controls tested in the same 
conditions (p < 0.01) (Figure 5). 

Figure 4. Biofilm formation on borosilicate glass and polystyrene abiotic surfaces. (A) Qualitative
assay showing that EC121 strain adhered to glass coverslips after 24 h of incubation at 37 ◦C, in DMEM.
EAEC prototype strain 042 and E. coli HB101 were used as positive and negative controls, respectively.
Bacteria were stained with crystal violet, observed by optical microscopy (OM) 400×. (B) Quantitative
biofilm assays were performed in Dulbecco′s Modified Eagle′s Medium (DMEM) and tryptic soy broth
(TSB), at 37 ◦C, for 24 h, comparing the capacity of strain EC121 to produce biofilm in polystyrene
surface. EAEC 042 was used as a positive control, UPEC prototype strain CFT073 was used as an ExPEC
control, and Laboratory strain HB101 was used as a negative control. p values: ** < 0.01; *** < 0.001;
ns > 0.05.

3.2.2. The EC121 Strain Adheres to and Invades Epithelial Cell Lineages

At first, we accessed, qualitatively, the ability of strain EC121 to adhere to HeLa, T24, and Caco-2
cells, using a 3-h adherence assay without D-mannose. Strain EC121 interacted efficiently with all
cells tested (Figure S5). Subsequently, a quantitative 3-h adherence assay in HeLa cells using an initial
inoculum of 1 × 107 was performed in the absence of D-mannose, except for EC121, which was also
tested in the presence of 2% D-mannose. EC121 was able to adhere, both in the presence or absence
of D-mannose, which abolishes the adherence mediated by type-1 fimbriae. However, the presence
of D-mannose reduced the adherence ability of strain EC121 significantly, reducing the adherence in
about 90% (Figure 5), from 1.3 × 107 CFU/mL to 1.58 × 106 CFU/mL (Figure 5). Noteworthy, the EC121
adherence levels in the absence of D-mannose was higher than all controls tested in the same conditions
(p < 0.01) (Figure 5).
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We also investigated whether the EC121 strain was able to invade T24 and Caco-2 cells. In a 
short-period invasion assay, the EC121 strain interacted with T24 cells as efficiently as the ExPEC 
prototype strain CFT073 but invaded this cell lineage significantly more (p < 0.005) (Figure 6). On the 
other hand, its interaction with differentiated and polarized Caco-2 cells was lower when compared 
with CFT073, although there was no difference related to their capacity to invade this type of cell 
lineage in the conditions tested.  

Figure 5. Quantitative adherence assay on HeLa cells. Quantitative assay performed in HeLa cells (3-h
of incubation at 37 ◦C) in the absence of D-mannose, except when indicated.; M+, assay performed in
the presence of 2% D-Mannose. The E. coli strains CFT073, C1845, and C600 were used for comparison.
Experiments were done in biological duplicates and experimental triplicates. p values: * < 0.05, ** < 0.01.

We also investigated whether the EC121 strain was able to invade T24 and Caco-2 cells. In a
short-period invasion assay, the EC121 strain interacted with T24 cells as efficiently as the ExPEC
prototype strain CFT073 but invaded this cell lineage significantly more (p < 0.005) (Figure 6). On the
other hand, its interaction with differentiated and polarized Caco-2 cells was lower when compared
with CFT073, although there was no difference related to their capacity to invade this type of cell
lineage in the conditions tested.Microorganisms 2020, 8, x FOR PEER REVIEW 8 of 31 
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mannose-sensitive adhesins contributed to both adherence and invasion of EC121, although it was 
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3.2.3. EC121 Strain Is Virulent in the Galleria mellonella Virulence Model 

Figure 6. Interaction and invasion in different eukaryotic cell lineages. Short period quantitative
invasion assay was performed in Caco-2 and T24 cells using a multiplicity of infection (MOI) of 50
in confluent cell cultures. All assays were carried out in the absence of D-mannose, except for EC121
M+, where 2% D-mannose was added in the assay medium; E. coli CFT073 was used as ExPEC control,
E. albertti strain 1551-2 eae::Km was used as an adherent noninvasive control, and E. coli C600 as was
used as a noninvasive control. The assays were performed in experimental triplicates and biological
duplicates. p values: ** < 0.01; ns > 0.05.
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The capacity to interact and invade eukaryotic cells in the presence of D-mannose was also assessed
to evaluate whether the interaction and invasion abilities of EC121 were dependent on type-1 fimbriae
or another mannose-dependent adhesin. The EC121 interaction with both lineages reduced significantly
in the presence of D-mannose, like in HeLa cells, showing that mannose-sensitive adhesins contributed
to its capacity to interact with the cell lineages tested. Additionally, EC121 remained invasive in the
presence of D-mannose but with reduced bacterial counts in T24 cells (p< 0.003). However, there
was no difference in the invasiveness in Caco-2 (Figure 6), showing that mannose-sensitive adhesins
contributed to both adherence and invasion of EC121, although it was not the only factor associated
with these traits.

3.2.3. EC121 Strain Is Virulent in the Galleria mellonella Virulence Model

In the G. mellonella virulence model, strain EC121 promoted higher mortality rates than the
nonpathogenic E. coli strain C600 (p < 0.005) and the mock-injection (p < 0.0001). Although the E. coli
strain CFT073 killed more larvae than EC121, there was no significant difference between their survival
curves (Figure 7), showing that EC121 is virulent in the model used.
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Figure 7. Galleria mellonella infection model. The virulence of EC121 was assessed using an inoculum of
104 CFU per G. mellonella larvae. The larvae survival rate, expressed by Kaplan–Meier plots indicated
that EC121 was more virulent than the negative control (saline) and the nonpathogenic K-12 derived
E. coli C600, while there was no significant difference between the survival rates of EC121 and the
ExPEC prototype strain CFT073. p- value: ** < 0.005; **** < 0.0001). The assay was performed three
times, with five larvae per group.

4. Discussion

EC121 strain was isolated in 2007 from a bloodstream infection of an inpatient that presented
persistent gastroenteritis and T-zone lymphoma. Since initial analyses showed that it belonged
to phylogenetic group B1 and carried few virulence markers commonly related to extraintestinal
pathogenic E. coli, it was classified as ExPEC negative (ExPEC-) [28] and therefore considered as an
opportunistic pathogen. However, considering that about 40% of extraintestinal infections are caused
by strains devoid of virulence factors [14,16] and that EC121 was an MDR strain, its genome was
sequenced to understand its virulence potential further.

Interestingly, EC121 strain belongs to ST101, which has been previously reported to be involved
in nosocomial outbreaks caused by Metallo-β-lactamases-producing strains in many countries from
Europe, Asia, and Oceania [39,40,83–85]. Furthermore, ST101 has also been detected among strains
of nonoutbreak related extraintestinal infections [86–93], water [94], poultry infection [95], retail
food [86,96–98], and human and animal intestinal microbiota [93,99–102], mostly presenting an MDR
phenotype. Shrestha et al. [103] drew attention to ST101 due to the pan drug resistant (PDR) phenotype
presented by some strains of this ST, and mainly because it is not considered a pandemic clone,
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although it has been isolated worldwide. We, therefore, analyzed the data about the infection type,
isolation source, and resistance genetic markers presented by strains of the ST101 complex that were
previously deposited in the NCBI (Table S1). Such analysis evidenced that MDR strains of this
complex were spread worldwide. In addition, such ST complex is related to STEC strains as well as
strains isolated from extraintestinal infections, human and animal microbiota, retail food, and the
environment. Moreover, many strains simultaneously carry the blaCTX-M-55, mcr-1, fosA3, and qnrS1
genes. Interestingly, one strain presents aac(6′)-Ib-cr, blaCTX-M-55, blaNDM-5, blaOXA-1, mcr-1, fosA3, and
other 19 resistance genes simultaneously.

Likewise, the EC121 strain showed multiple antimicrobial resistance genes, including genes
that confer resistance to third-generation cephalosporins (blaCTX-M-2). It is worth mentioning that
the EC121 strain was isolated in 2007, and its MDR phenotype was relevant since, at that period,
EC121 was susceptible only to carbapenems, polymyxins, and amikacin. Recently, the E. coli strain
ICBEC72H, which belongs to ST101 and carries only blaCTX-M-8 and mrc-1 [87], was isolated from a
human extraintestinal infection in Brazil. Similarly, the ST101 E. coli strain 200H (Table S1) was isolated
from a human urinary tract infection and carried blaOXA-9, mcr-1, and aac(6’)-Ib-cr. These reports show
that MDR strains belonging to the ST101 complex have been circulating in Brazil for a long time.

Previous studies showed that the usage of antimicrobial agents in animals selected E. coli strain
912 (ST101) and that it was able to colonize human and pig gut and spread through the environment,
reaching and colonizing animals that were not under antimicrobial treatment [104,105]. These studies
have also shown that ST101 strains can naturally acquire and transfer plasmid-borne antimicrobial
resistance genes in the gut [104,105]. Such a feature is important for various reasons. First, strain EC121
carried multiple plasmids, which harbored different combinations of antimicrobial-resistance genes,
all of which were successfully transferred to E. coli K-12 derived strains in a 3-h conjugation assay.
Besides, E. coli strains belonging to ST101 were recovered from retail meat in Europe and Asia [97,98],
and from extraintestinal infections in Brazil and the USA in the same regions in which they were
detected from retail meat [86,95].

Additionally, strains belonging to the ST101 complex carrying multiple resistance genes were
recovered from the intestine of healthy humans and animals in many countries. Therefore, even if
these strains do not cause infection directly, they could potentially transfer plasmids to other bacteria,
even from distinct genera. Such cross genera plasmid transfer could be easily identified in the plasmids
reported in the present study; IncM1 plasmid, for example, is closely related to plasmids found in
Klebsiella spp. and Enterobacter spp., while IncHI2/HI2A is related to Salmonella spp. and Yersinia spp.
plasmids. Together, these findings reinforce the high risks associated with strains belonging to the
ST101 complex due to their ability to colonize the gut of humans and animals, to easily disseminate via
retail food and water, and to acquire and spread antimicrobial resistance-encoding genes.

Strains from the ST101 complex are included in the phylogenetic group B1, which implies that they
do not have all the classical virulence factors that are usually associated with the most virulent ExPEC
strains [46,47]. Many studies reported phylogroup B1 E. coli strains as commensals or as intestinal
pathogens, but not as extraintestinal pathogens [46,47,106].

The genomic analysis of the EC121 strain showed a high number of virulence genes, demonstrating
that it presents all the traits necessary to be considered as an extraintestinal pathogenic agent, like
adhesins, iron acquisition systems, and genes related to immune system evasion. Moreover, like
other ExPEC strains, EC121 displayed multiple virulence genes related to each feature, reflecting the
redundant phenotype that ensures its pathogenicity. However, even considering the completeness of
each sequence and each operon, observed by manual checking, the presence of virulence genes per se
does not guarantee that they are all expressed. Therefore, to evaluate the expression of such traits,
distinct phenotypic assays were performed and confirmed the virulent genetic background of EC121.

To test the bacterial ability to resist the serum complement activity that could be conferred by the
presence of traT, iss, and ompT, a two hours challenge assay was performed, in which one particle can
traverse the whole circulatory system at least twice. Therefore, a pathogen that resists complement’s
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activity during this period, even with a small bacterial load, is, in theory, more capable of reaching
different niches and of spreading through the bloodstream or cause a bloodstream infection. EC121
strain resisted the NHS for two hours with an inoculum similar to the resistant E. coli J96 control strain,
thus confirming the EC121 serum resistant phenotype. Serum complement is the first immunological
barrier to control pathogens that reach the bloodstream. Complement resistance confers bacteria the
ability to spread to different body sites through the bloodstream. Hallström et al. [107] reported the
relationship of bacterial resistance to NHS with sepsis severity, and other authors have associated it
with different kinds of extraintestinal infections [108–110].

The ability to colonize and attach to surfaces is also an important trait for any pathogenic bacteria;
in this way, the assays carried out showed not only that EC121 strain was able to adhere to and
invade different cell lineages, including bladder T24 cells, but that it could also attach and produce
biofilm on abiotic surfaces. Peirano et al. [111] showed that ExPEC-negative ST101 MDR strains
isolated from extraintestinal infections could interact with HEp-2 and Caco-2 cells more efficiently
than strains belonging to the epidemic clones ST131 and ST405, which are ExPEC positive [111]. Strain
EC121 interacted with all cell lineages tested, but its interaction was significantly higher in T24 cells.
Besides, its interaction’s capacity was similar to the ExPEC prototype strain CFT073, but it invaded
T24 cells more efficiently, suggesting that EC121 might be capable of producing intracellular bacterial
communities (IBC). IBCs were related to bacterial persistence and recurrent infections in the host [112].
Overall, the EC121 invasiveness might be more related to its persistence ability than to its capacity
to transpose epithelial barriers, since persistence may help bacteria to evade the immune system
and confer protection against antimicrobial agents. However, further studies are required to prove
this hypothesis.

Ten virulence encoding-genes involved with biofilm production were identified in the EC121
genome (Table S3). The capacity to produce biofilm might confer many advantages to bacteria, like
protection against the immunological system and antibiotics, assisting its persistence and spreading
in the environment. However, biofilm production depends on many factors, like temperature and
presence of specific nutrients in the media or environment [113–115]. Moreover, the ability to produce
biofilm has been reported to vary among ExPEC strains and strains with this capacity are considered
to be more pathogenic [27].

Interestingly, many of the EC121 virulence factors detected in the draft genome are related to
diarrheagenic E. coli, even though none of them are implicated in the DEC pathotype definition.
The presence of many genetic features related STEC strains, e.g., Hcp, EhaG, and Lpf-1O26, as well as
the proximity of EC121 to the clade that contains STEC strains and the heteropathogenic EAEC/STEC
E. coli O104:H4 strain 2011C-3493, draw attention to its potential diarrheagenic background.

Many features identified in the EC121 genome reinforce its linkage with STEC strains.
Phenotypically, EC121 expressed the O154:H25 serotype, but it possesses the group IV capsule-encoding
genes. This kind of capsular group is known to be thermoresistant and expressed as KLPS or O-antigen
capsule. This property could explain the expression of the O154 instead of O100 antigen, despite
the presence of all genes related to the expression of the latter. Interestingly O100 is a STEC
related serogroup.

Moreover, much of the phage remains detected in the EC121 strain were related to Stx-converting
phages; besides, ST101 strains carrying the stx1a gene have been reported in food sources [96,116].
In humans, ST101 strains were already reported in a patient with hemolytic uremic syndrome
(HUSEC) [116–118] and in nonbloody diarrhea related to a Stx1a-producing E. coli strain [119].
Although only one of these strains had its genome sequenced, some ST101 E. coli strains recovered
from animals and food were found to carry stx1. Interestingly, most Stx-converting phages remains
found in EC121 were similar to those commonly related to Stx1a production, corroborating the results
presented here. The genome of three non-STEC strains from diarrheic patients was found in GenBank,
one of which was devoid of DEC virulence factors. Likewise, EC121 was isolated from a bloodstream
infection of one inpatient with persistent infectious gastroenteritis, which was probably the source of
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EC121 infection. Unfortunately, the E. coli isolated from stool was not stored, not allowing further
comparison between the bloodstream and stool E. coli isolates.

Several studies evaluated E. coli pathogenicity in the surrogate G. mellonella model [15,80,120–123].
These studies point to the model efficiency in differentiating pathogenic from nonpathogenic strains,
especially using a bacterium inoculum of 105 CFU per larvae or lower [15,123]. Moreover, Jønsson et al. [120]
have shown that pathogenic E. coli needs an inoculum of at least 103 CFU to lead larvae to death. A bacterial
inoculum of 1 × 104 CFU was used to evaluate the EC121 virulence. In the assayed conditions, EC121
was as virulent as the ExPEC prototype strain CFT073, thus corroborating the in silico and in vitro data,
showing that some strains from the ST101 are truly pathogenic.

5. Conclusions

In summary, our extensive in silico, in vitro, and in vivo analyses of virulence and resistance
properties of E. coli strain EC121, an O154:H25 B1-ST101 strain isolated from a human bloodstream
infection, confirmed its virulence potential and increased the knowledge on the complex scenario of
virulence traits presented in the group of MDR ExPEC-negative E. coli strains, contributing to the
potential development of strategies to control the spread of such pathogens.
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