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/is research was designed to explore the effect of Ma Xing Shi Gan decoction (MXD) in alleviating particulate matter less than
2.5 μm in diameter (PM2.5) induced lung injury from the perspective of epithelial barrier protection and inhibition of epithelial-
to-mesenchymal transition (EMT). Rats were exposed to PM2.5 to establish a lung injury model in vivo, and a PM2.5-stimulated
primary cultured type II alveolar epithelial cell model was introduced in vitro. Our results indicated that MXD alleviated the
weight loss and pathologic changes and improved the epithelial barrier dysfunction. MXD also significantly inhibited the TGF-
β/Smad3 pathway, increased the level of ZO-1 and claudin-5, and reversed the EMTprocess. Notably, the protection of MXD was
abolished by TGF-β in vitro. Our results indicated that MXD has a protection against PM2.5-induced lung injury. /e proposed
mechanism is reversing PM2.5-induced EMT through inhibiting TGF-β/Smad3 pathway and then upregulating the expression of
tight-junction proteins.

1. Introduction

Particulate matter (PM) is a major component of air
contamination. /ere is a positive correlation between
PM concentrations and the morbidity (and mortality)
rates, which was evidenced by epidemiologic studies
[1–4].

PMs less than 2.5 μm in diameter (PM2.5) are likely to be
deposited deep in the lungs [5]. Recent studies have testified
that PMs contribute to airway hyperactivity, macrophage
excessive activation, and epithelial damage [6–10].

Clinically, there are no specific medicines for treating
pulmonary diseases related to PM2.5 exposure, facilitating
the discovery of novel, safe, and effective agents. Ma Xing Shi
Gan decoction (MXD), a centuried classical decoction
consisting of ma-huang, ku-xing-ren, gan-cao, and shi-gao
has been used for the treatment of disease of the respiratory

system including cough, bronchial inflammation, pneu-
monia, and asthma for more than 2000 years [11, 12].

As a critical line of defence, the airway epithelium
regularly forms a barrier against invasion of inhaled envi-
ronmental agents including but not limited to pollutants and
pathogens [13]. /e epithelial barrier function largely de-
pends on the tight junction surrounding epithelial cells,
which forms ordered belt-like structure and regulate the flow
of foreign substances [14]. In response to epithelial challenge
(including particulate, radiation, drug stimulation, bacterial/
virus infection), epithelial cells will undergo epithelial-to-
mesenchymal transition (EMT), contributing to the resul-
tant fibrosis [15, 16]. Research studies have indicated that
PM2.5 can initiate the EMT of epithelial cells [17–19]. A
representative event during EMT process is the decompo-
sition of tight junctions, which is evidenced by the redis-
tribution of barrier-related proteins including zonula
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occluden 1 (ZO-1) and claudin-5, concomitant with loss of
the cell polarity and acquisition of fibroblast-like phenotype.
However, it remains unclear whether MXD can inhibit
PM2.5-induced EMT, improve the epithelial barrier func-
tion, and thus attenuate lung injury.

/is research was aimed at evaluating the protection of
MXD in attenuating lung barrier dysfunction induced by
PM2.5, exploring if the effect is mediated by alleviating TGF-
β/Smad-dependent EMT progress, and thus improving the
barrier function of epithelial cell.

2. Materials and Methods

2.1. Reagents. Ephedrae herba (ma-huang) was purchased
from Sanyue Traditional Chinese Medicine Co., Ltd.
Armeniacae amarum semen (ku-xing-ren) was purchased
from Jiangsu Huahong Pharmaceutical Technology Co., Ltd.
Glycyrrhizae radix preparata (gan-cao) was purchased from
Hangzhou Zhende Traditional Chinese Medicine Co., Ltd.
Gypsum fibrosum (shi-gao) was provided by Jiangsu Hua-
hong Pharmaceutical Technology Co., Ltd. Botanical iden-
tifications were authenticated by the Department of
Pharmacology of Chinese Medicine (China Pharmaceutical
University, Nanjing, China). /e quality control of herb
drugs is consistent with rule of related part of Chinese
Pharmacopoeia (2015 edition). Voucher specimens of
Ephedrae herba, Armeniacae amarum semen, Glycyrrhizae
radix preparata, and Gypsum fibrosum have been deposited
in the specimen room of Nanjing Integrated Traditional
Chinese and Western Medicine Hospital and registered
under the numbers No-1518M4, No-15180K3, No-15180G2,
and No-1518S24, respectively.

PM2.5 samples collected from the city of Nanjing (China)
were donated by the EnvironmentalMonitoringOrganization
of Nanjing. /e PM2.5 sample was suspended in ultrapure
water and dispersed with an ultrasonic washer at 40 kHz for
1.5 h. After filtered by an 8-fold gauze, the suspension was
centrifugated at 3000g for 15min to remove the supernatant.
/e deposit was freeze-dried and ultraviolet sterilized for 1 h,
after which the depurated PM2.5 was obtained.

All other reagents (analytically pure) could be purchased
through routine channel.

2.2. Preparation and Analysis of MXD. Ephedrae herba (4 g)
was decocted in ultrapure water (1000mL) for 60min. After
discarding the float foam, Armeniacae amarum semen,
Glycyrrhizae radix preparata, and Gypsum fibrosum (12 g:
8 g: 24 g) were added in and boiled under a reflux condenser
for another 40min. /e dregs were removed by filtration,
and the extract was enriched to 2 g/mL by rotary evaporation
(in terms of the weight of crude drugs). Qualitative and
quantitative determination of the main components of MXD
by UPLC-MS/MS was performed using an external standard
method just as our recently published article (a total of 1.4 L
MXD was prepared, uniformly mixed, and divided into
individual brown reagent bottles, and the same batch of
MXD was used in all the experiments) [20]. Information of
the four herbs is shown in Table 1.

2.3. Animals and Drug Administration. SPF male Sprague-
Dawley rats (180–200 g, 5-6 weeks) were purchased from the
Qinglongshan Animal Cultivation Farm (Nanjing, China),
and 20 SPF ICR mice (21–25 g, half male and half female,
only for safety evaluation) were purchased from the Com-
parative Medical Centre of Yangzhou University. All ani-
mals were fed with standard complete feed and purified
water. All animals were kept at a relative humidity of 55± 5%
(at 24± 2C) in compliance with institutional guidelines of
China Pharmaceutical University and the National Institutes
of Health guide for the care and use of laboratory animals
(NIH Publications No. 8023, revised 1978). All experiments
were approved by the Institutional Animal Care and Use
Committee of China Pharmaceutical University (SYXK (Su)
2016-0011).

2.4. Experimental Design. After a habituation for one week,
rats were randomly assigned in six groups: blank control
group (sham-operated group), intervention group (16.4 g/
kg), PM2.5 model group, PM2.5 +MXD (4.1, 8.2, and 16.4 g/
kg) groups. /e medium dose (8.2 g/kg) was 6.5 times of the
dosage in clinical application, which was calculated
according to the conversion coefficient between rat and
human [40]. On clinical uses, MXD was administered for 5
to 10 days as a course of treatment. Hence, in this experi-
ment, MXD was diluted with normal saline and adminis-
tered intragastrically once a day for 7 consecutive days. Rats
in the control group and PM2.5 group received the same
amount of normal saline instead of MXD. /e required
number of rats is listed in Table 2 as follows:

/e same animals were used for determination of clinical
signs, body weight, lung edema, hematoxylin and eosin
(H&E) staining, immunohistochemical (IHC) assay, en-
zyme-linked immunosorbent assay (ELISA), and western
blot. Another 36 rats were used for the collection of
bronchoalveolar lavage fluid (BALF) collection.

/e safety of MXD was evaluated in mice and rats
(Supplementary Figure 1).

2.5. Establishment of Acute Lung Injury Model. After anes-
thetization with 3% isoflurane, rats were fixed at supine
position. PM2.5 challenge was introduced by intratracheal
instillation. Briefly, a polyethylene tube (0.6mm in diame-
ter) was inserted into trachea, and then PM2.5 suspension
(0.1mL/100 g) was instilled. /e dosage of PM2.5 was based
on respiratory parameters of rats and the air-quality reports
of Nanjing [41]. /e average tidal volume of rats (200 g) is
0.86mL, and the respiratory rate is 5100 times/h. /e total
respiratory volume for one day is 0.105m3. Based on the
annual average PM2.5 concentration (43 μg/m3) in Nanjing,
the daily exposure of PM2.5 is 4.515 μg. /e modified PM2.5
exposure concentration was determined at 2.3mg/kg body
weight after multiplied by an uncertainty factor of 100-fold.
/e concentrations of 2.3mg/kg, 4.6mg/kg, and 9.2mg/kg
were chosen for preliminary model evaluation. In case of
agglomeration, PM2.5 was well-diversified in ultrapure
water by ultrasound concussion before instillation. /e
intratracheal instillation was performed at the 1st, 3rd, 5th,
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and 7th days. Based on the result of preliminary experiment,
the dose of 9.2mg/kg was selected for establishing lung
injury. MXD was administered 1 h after the last PM2.5
exposure. To date, there is a lack of clinical treatments for
PM2.5-induced lung injury, so patients with similar pul-
monary disease are usually treated with antibiotics. How-
ever, based on our preliminary experiment, subcutaneous
injection of clarithromycin or penicillin showed no thera-
peutic effects in alleviating the lung injury, which may be
attributed to the relatively sterile experimental environment
(data are not shown). Hence, we didn’t set a positive control
group in the animal experiment. /e successful establish-
ment of lung fibrosis was evidenced by the Masson staining
and the expression of Collagen I and III (Supplementary
Figure 2).

2.6. Assessment of Body Weight and Clinical Signs in Rats.
Rats were weighed before and after receiving PM2.5 ex-
posure (13 consecutive days). /e clinical scoring system
including weight loss, piloerection, rapid shallow breathing,

and lethargy were assessed, and each symptom was assigned
one point [42].

2.7. Lung Water Content Assay. Lung edema was estimated
by the wet/dry method. /e left lung was weighed for
obtaining the wet weight, followed by desiccation in a drying
oven (80°C) for 48 h. /en, the dry weight was obtained by
weighing again. /e water containing (%) in the lung was
determined as follows:

water containing �
wet weight − dry weight

lungwet weight
× 100%.

(1)

2.8. Histopathological Evaluation of the Lung Tissue. After
isolating 0.4 g right lung tissue for homogenate preparation
and protein extraction, the rest of right lung tissues were
fixed in 10% formaldehyde for 48 h, followed by dehydration
in graded ethanol and embedding in paraffin. Finally, the

Table 1: Information list of the 4 herbs of MXD.

Latin name Chinese
name

Main phytochemical
fractions Pharmacological effects

Ephedrae herba Ma-huang

Alkaloids,
Essential oils,
Flavonoids,

polysaccharides

Antitussive effect, antiasthma, antipyretic analgesic effect, anti-
inflammation, antiallergic effect, antitumor, antifibrosis [21–27]

Armeniacae
amarum semen

Ku-xing-
ren

Cyanogenic glycosides,
alkaloids,

amino acids,
vitamins,
flavonoids,
essential oils

Antitussive effect, anti-inflammation, abirritation, antitumor,
antifibrosis, immunoregulation [28–32]

Glycyrrhizae radix
preparata Gan-cao

Organic acids,
alkaloids,
flavonoids,
saponins,

polysaccharides

Anti-inflammation, liver protection, anti-ischemia, antifibrosis,
antioxidation, antivirus activity [33–37]

Gypsum fibrosum Shi-gao
Calcium sulfate,

inorganic elements (fe, K,
Al, and so on)

Antifebrile action, antiallergic, treating sepsis [38, 39]

Table 2: Number of animals for different experimental groups.

Control Intervention PM2.5
MXD (g/kg)

Total
4.1 8.2 16.4

Clinical signs 8 8 8 8 8 8 48
Body weight (8) (8) (8) (8) (8) (8)
Lung edema (8) (8) (8) (8) (8) (8)
H&E staining (6) (6) (6) (6) (6) (6)
IHC assay (6) (6) (6) (6) (6) (6)
ELISA assay (5) (5) (5) (5) (5) (5)
Western blot (3) (3) (3) (3) (3) (3)
BALF collection 6 6 6 6 6 6 36
Preparation of medicated serum 5 5 — — — — 10
Primary cell extraction — — — — — — 20
Total 114
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tissues were sliced into sections with 5 μm in thickness and
then H&E staining was conducted. Pathologic examination
was assessed using a light microscope (Olympus, Japan,
BX53). Histological characteristic was scored 0–5 as de-
scribed previously [43].

2.9. IHCAssay. /e alternation in the level of E-cadherin (a
classical epithelial marker) and vimentin (a fibroblastic
marker) during lung injury was studied by the IHC assay.
/e 5-μm slices were deparaffinized in xylene, hydrated by
graded alcohol. To retrieve the antigen, slices were placed in
an autoclave (10min, 121°C). /e endogenous peroxidase
activity was blocked by incubating slices in 3% H2O2 at 25°C
for 0.5 h. Sections were washed with PBS (5min× 3 times),
and sections were incubated with 10% goat serum for 0.5 h at
37°C, followed by incubation with the primary antibodies
against E-cadherin (CST, USA; 1 : 500) and vimentin
(Wanleibio, China; 1 : 500) for 15 h at 4°C./en, the sections
were stained with the peroxidase-conjugated secondary
antibody at 37°C for another 60min. Immunostaining was
then visualized using 3, 3′-diaminobenzidine and counter-
stained with hematoxylin.

2.10. Alveolar Barrier Damage. /e alveolar barrier leakage
was analysed by measuring total protein concentration and
the number of infiltrated cells in the BALF. BALF was
collected 2 h after the last administration. Briefly, a sterile
polyethylene cannula was installed into trachea, after which
a total of 2.0mL normal saline was slowly instilled and
collected by gravity. Finally, the total cell count in BALF was
calculated./e BALF was centrifuged for 15min at 1000 g to
obtain the supernatant, and the total protein concentration
in which was analysed with a bicinchoninic acid (BCA) kit
(Jiancheng Bioengineering Institute, Nanjing, China).

2.11. Measurement of TGF-β1 in Lung Homogenates. 0.2 g
lung tissue was homogenized in 2mL normal saline, fol-
lowed by centrifugation at 1000g for a period of 15min to
obtain the supernatant. /en, the TGF-β1 level was deter-
mined by a corresponding ELISA kit (Tianjin Anoric Bio-
technology Co., Ltd).

2.12. Primary Cell Culture. Primary type II “epithelial cells”
were isolated from SPF male rats (180–200 g) as described
previously with slight modification [44, 45]. Briefly, the rats
were injected intraperitoneally with 750 U heparin and
anesthetized (0.3% pentobarbital sodium, 1mL/100 g) fol-
lowed by endotracheal intubation. /en, the pulmonary
circulation was perfused with normal saline to exclude
blood. /e lungs were lavaged 10 times with D-Hanks so-
lution containing 0.2mM EGTA to remove macrophages.
/e lungs were lavaged with 20mL of porcine pancreatic
elastase (Shanghai Yuanye Bio-Technology Co., Ltd,
Shanghai, China) at 4.5U/mL in D-Hanks solution, after
which elastase solution (4U/mL) was infused into total lung
(about 10mL). /e lung was incubated in D-Hanks solution
at 37°C. /en, the lungs were minced into pieces (1mm3),

and 20mL D-Hanks solution supplemented with 20% FBS
(Gibco) was added in for further inhibiting enzymatic ac-
tivity. After stirred for 5min (in a 37°C water bath at 130
cycle/min), the cell suspension was filtered through three
filters (300 μm, 100 μm, and 20 μm filter nylon mesh) to
exclude debris of tissue and clumps of cells. /e cells in the
filtrate were suspended in DMEM (Gibco) and seeded into a
culture flask with rat IgG (Solarbio Co., Ltd., Beijing, China),
to remove cells bearing Fc receptors [45]. After a 1-hour
incubation, the free cells were primarily type II alveolar
epithelial cells (this step was repeated once). Cells were then
cultured in DMEM supplemented with 15% FBS at 3×105
cells/cm2 in 96-well culture plates (for cell viability assay)
and 6-well culture plates (for morphological observation and
western blot) and incubated in a cell incubator (37°C, 5%
CO2 and 95% air). /e primary alveolar type II cell was
identified by immunocytochemistry staining of pulmonary
surfactant-associated protein (Supplementary Figure 3).

2.13. Preparation of MXD-Medicated Serum. As an aqueous
herbal extraction, MXD is a complex dispersion system
containing small molecule alkaloids, polysaccharide, gelat-
inoid, aggregation, and precipitates, which restrict its direct
application in vitro [46, 47]. /erefore, the method of serum
pharmacology was introduced. Twenty rats (weighing
180–200 g) were divided into two groups: blank control
group and MXD intervention group. /e rats were raised in
the same condition as described in Section 2.3. /e MXD
intervention group was treated with MXD at 16.4 g/kg once
daily for 7 days. Two hours after the last administration,
blood was drawn from the abdominal aorta, followed by
centrifugation at 3000g for 15min to obtain MXD-medi-
cated serum. /e serum from the same group was pooled,
inactivated at 56°C for 30min, filtered with filters (0.22 µm in
bore diameter) and frozen at −80°C for further use. Rats in
the control group were administrated intragastrically with
0.9% NaCl in the same protocol, after which preparation of
nonimmune serum was conducted (nonimmune serum was
used to dilute the medicated serum for uniformity).

2.14. Cytotoxicity Assay. Optimal concentration selection of
PM2.5 was evaluated with CCK8 kits (Solarbio, Beijing,
China), and the concentration ranges of which were de-
termined by referring to the published study [48]. Cells were
stimulated with series concentrations of PM2.5 (5, 10, 15, 20,
25, 30, 35, and 40 μg/cm2) for 48 h. /en, 20 μL CCK8 so-
lution was added, followed by an additional 2-hour incu-
bation in an incubator at 37°C./e absorbance (450 nm) was
determined with a microplate reader (/ermo scientific,
USA, Multiskan FC).

Considering that the serum volume fraction (concen-
tration) in a medium generally does not exceed 20%, the
total serum volume fraction was strictly restricted to 20%.
Cells were cultured in MXD-medicated serum at the fol-
lowing four concentrations (20% nonimmune serum; 5%
medicated serum plus 15% nonimmune serum; 10% med-
icated serum plus 10% nonimmune serum; 20% medicated
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serum) for 48 h, followed by a cell viability assay to deter-
mine the nontoxic concentration range.

To analyse the protection of MXD-medicated serum
against PM2.5-induced injury, rat primary cultured type II
alveolar epithelial cells were grouped as follows: control
group, PM2.5 group, and medication groups. Cells in the
control group were treated with 20% nonimmune serum.
Cells in the PM2.5 group and medication groups were ex-
posed to PM2.5 (25 μg/cm2). Cells in medication groups
were treated with medicated serum at the volume fractions
of 5%, 10%, and 20% (the volume fraction of serum was
added to 20% using nonimmune serum for uniformity). /e
total serum volume fraction was strictly restricted to 20% for
uniformity. Medicated serum was added simultaneously
with PM2.5. After a 48-hour incubation, cell viability was
determined using CCK8 kits.

2.15. Morphological Observation. After incubation with
PM2.5 (25 μg/cm2) and medicated serum (5%, 10% and
20%) for 48 h, the morphological changes induced by ex-
posure of PM2.5 were observed under an inverted micro-
scope at 400x magnification and photographed.

2.16.MeasurementofTGF-β1 inMedium. After alveolar cells
were incubated with PM2.5 (25 μg/cm2) and medicated
serum (5%, 10%, and 20%) for 48 h, the culture medium was
collected, centrifugated at 3000g for 15min to obtain the
supernatant. /e level of TGF-β1 in the supernatant was
determined by ELISA kits (Tianjin Anoric Biotechnology
Co., Ltd).

2.17. Western Blot. Primary alveolar cells were extracted,
inoculated onto a 6-well plate and cultured for 24 h, after
which cells were exposed to PM2.5 and the selected volume
fractions ofMXD-medicated serum. Cells were harvested for
western blot after the 48-hour incubation.

Proteins in lung tissues and alveolar cells were extracted
with radioimmunoprecipitation assay (RIPA) lysis buffer
and quantified by a BCA kit. /e proteins were separated on
SDS polyacrylamide gel and transferred onto the poly-
vinylidene fluoride (PVDF) membrane (Merck Millipore
Ltd.). After the blockage with 5% nonfat dry milk, the
membrane was immersed into solutions containing specific
primary antibodies: E-cadherin (CST, USA; dilution 1 :
2000), vimentin (Wanleibio, Shenyang, China; dilution 1 :
1000), ZO-1 (Bioss Antibodies, Beijing, China; dilution 1 :
1000), occludin (Wanleibio, Shenyang, China; dilution 1 :
1000), claudin-5 (Wanleibio, Shenyang, China; dilution 1 :
1000), Smad3 (Wanleibio, Shenyang, China; dilution 1 :
1000), and p-Smad3 (Abways, dilution 1 : 800) at 4°C
overnight. /e PVDF membranes were then washed with
TBST, followed by incubation with the secondary antibody
conjugated with HRP (Abways, Shanghai, China; dilution 1 :
5000) at room temperature for 1 h. Blots were washed with
TBST and then developed with the enhanced chem-
iluminescence kit (Wanleibio, Shenyang, China).

Semiquantitative analysis of the protein expression was
performed using the ImageJ software (version 1.41).

2.18. Verification Experiment Using Recombinant TGF-β
(rTGF-β). To elucidate whether the protection of MXD was
mediated by the inhibition of the TGF-β/Smad3 signal
pathway, a verification experiment was conducted using
rTGF-β (Neobioscience, Shanghai, China). Briefly, cells were
grouped as follows: (1) control group; (2) PM2.5 group; (3)
treatment group, cells challenged by PM2.5 exposure were
incubated with 20%MXD-medicated serum; and (4) rTGF-β
group, cells undergone PM2.5 stimulation were incubated
with 20% MXD-medicated serum+ rTGF-β (10 ng/mL).
Medicated serum (or nonimmune serum) and rTGF-β were
added simultaneously right after the stimulation of PM2.5.
After a 48-hour incubation, cells were photographed and
harvested. /e expression of E-cadherin, α-SMA (Wanlei-
bio, Shenyang, China; dilution 1 :1000), vimentin, p-Smad3,
ZO-1, and claudin-5 was semiquantitatively analysed.

2.19. Statistical Analysis. Data were visualized using
GraphPad Prism 5.0. All statistical analyses were performed
using SPSS 19.0 software and analysed by one-way analysis
of variance (ANOVA) followed by the LSD post hoc test
(variance homogeneity) to compare the difference between
groups. When the variance was heterogeneous, Welch’s
ANOVA would be introduced followed by Games Howell
test. A value of P< 0.05 was considered as statistically
significant.

3. Results

3.1. MXD Mitigated Clinical Sign and Promoted Weight
Recovery. In comparison with rats in the control group, rats
exposed to PM2.5 alone exhibited more serious weight loss
(Figure 1(a), P< 0.01) and severe clinical signs (Figure 1(b)),
which indicated that PM2.5 instillation resulted in obvious
injury. Administration with MXD (16.4 g/kg) significantly
promoted weight recovery and improved the clinical signs
(P< 0.01), preliminarily suggesting that MXD has the po-
tential of mitigating lung injury and promoting weight
recovery.

3.2. MXD Improved PM2.5-Induced Lung Histopathological
Changes. /e lung tissue structures and morphological
changes were evaluated with H&E staining 2 h after the last
drug administration.

As shown in Figure 1(c), the lungs in PM2.5-challenged
groups showed classical characteristic of lung injury, in-
cluding the thickening of alveoli septum, haemorrhage, and
edema cavitation, which were obviously improved by MXD
(8.2 g/kg and 16.4 g/kg). /e quantitative analysis also in-
dicated that PM2.5 elevated the pathological score of lung
tissue (P< 0.01), and treatment with MXD (8.2 g/kg and
16.4 g/kg) significantly reduced the pathological score
(Figure 1(d), P< 0.05).
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3.3. MXD Attenuated Lung Edema after PM2.5 Exposure.
As shown in Figure 1(e), PM2.5 instillation significantly
increased the water content in the lungs (P< 0.01 vs. the
control group), indicating the exposure of PM2.5 resulted in
serious lung edema. However, treatment with MXD (8.2 g/
kg and 16.4 g/kg) decreased the lung water content (P< 0.05
vs. the PM2.5 group), suggesting the protection of MXD
against lung edema.

3.4. MXD Protected Lung Epithelial Barrier Function In Vivo.
Except for resulting in lung edema, the disruption of alveolar
capillary barrier after serve lung injury may also result in the
leakage of hematocytes and plasma proteins into alveolar
spaces. Hence, 2 h after the last drug administration, the

evaluation of the total cell count and protein concentration
in BALF was conducted.

As can be seen in Figures 2(a) and 2(b), the total cell count
and protein concentration in BALF of the model group were
significantly higher than those of the control group (P< 0.01),
indicating that PM2.5 challenge contributed to the disruption of
alveolar barrier function. Notably, treatment with MXD (8.2 g/
kg and 16.4 g/kg) attenuated the leakage of cell and protein into
BALF (P< 0.05 and P< 0.01), suggesting that MXD protected
the barrier function of lungs against PM2.5 stimulation.

3.5. MXD Inhibited PM2.5-Enhanced Pulmonary EMT in
Rats. /e IHC staining assay was first introduced for the
detection of E-cadherin, an epithelial marker, and
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Figure 1: A 7-day continuous treatment with MXD attenuated PM2.5-induced lung injury. (a) Changes in body weight. (b) Clinical score
assessment. (c) Representative lung slices of H&E staining, scale bars: 20 μm. (d) Pathological score of lung tissue. (e) Lung water content.
Data are shown as mean± SD, n� 8 for body weight assay, clinical score, and lung water content; n� 6 for H&E staining and pathological
score. ∗∗P< 0.01 vs. the control group; ▲P< 0.05 and ▲▲P< 0.01 vs. the PM2.5 group.
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vimentin, a mesenchymal marker. As shown in
Figure 3(a), lung tissues from rats exposed to PM2.5
showed fewer E-cadherin positive cells when compared
with the control group and intervention group. /e re-
duction in the expression of E-cadherin could be partially
reversed by MXD administration. In contrast, the ex-
pression of vimentin increased in PM2.5-stimulated rats,
which was decreased significantly after MXD intervene
(Figure 3(b)).

As shown in Figures 3(c) and 3(d), exposure to PM2.5
significantly downregulated E-cadherin expression
(P< 0.01) and upregulated that of vimentin (P< 0.01),
which was reciprocally regulated by MXD at 8.2 g/kg and
16.4 g/kg (P< 0.05 and P< 0.01). Results derived from
western blot were in accordance with the IHC staining
results (Figures 3(c) and 3(d)). Western blot results showed
that MXD inhibited the PM2.5-initiated EMT in rat lung
tissues.

3.6. MXD Suppressed PM2.5-Activated TGF-β/Smad Signal-
ing and Upregulated the Tight-Junction Expression in Rats.
Considering the TGF-β/Smad signal pathway is com-
monly tangled in fibrotic lung diseases, and we therefore
explored whether MXD affected this classical fibrosis-
related pathway in rat lung tissues. As can be seen in
Figure 4(a), PM2.5 instillation increased the concentra-
tion of TGF-β1 in lung tissue (P< 0.01). Administration of
MXD (8.2 g/kg and 16.4 g/kg) significantly inhibited the
increase in TGF-β1 concentration in lung tissue (P< 0.01
and P< 0.05). Meanwhile, MXD (8.2 g/kg and 16.4 g/kg)
significantly inhibited PM2.5-strengthened phosphory-
lation of Smad3 (Figure 4(b), P< 0.05 and P< 0.01), in-
dicating a negative regulation of MXD on TGF-β/Smad
pathway activation in rat lungs after PM2.5 stimulation.
Besides, the expression of ZO-1 and claudin-5 was re-
duced after PM2.5 stimulation (P< 0.01), which was re-
versed by 16.4 g/kg of MXD (Figures 4(c) and 4(d),
P< 0.01). Our results indicated the maintenance of MXD
on the expression of tight junctions.

3.7.Determinationof theOptimalConcentrationofPM2.5and
MXD-Medicated SerumInVitro. /e optimal dose of PM2.5
and MXD for the present study was determined using the
CCK8 kits. Primary alveolar cells were continuously exposed
to PM2.5 at different concentrations (5, 10, 15, 20, 25, 30, 35,
and 40 μg/cm2) for 48 h. PM2.5 at the dose of 25 μg/cm2

significantly decreased the cell viability by about 50%, which
was chosen for the follow-up experiments (Figure 5(a)).

To evaluate the protection of MXD-medicated serum
against PM2.5-induced epithelial injury, the nontoxic
concentration ranges of medicated serum and the protective
effects of different concentrations of medicated serum were
examined. As shown in Figure 5(b), compared with the
control group, MXD-medicated serum (5%–25%) showed
no significant cytotoxicity (P> 0.05), indicating medicated
serum was nontoxic at the selected concentrations. Ac-
cordingly, the three concentrations (5%, 10%, and 20%) were
selected for the subsequent experiments.

Furthermore, as shown in Figures 5(c) and 5(d), after
PM2.5 stimulation, the cell viability decreased significantly
(P< 0.01) and the cell shape changed from a cobblestone-
like appearance to an elongated spindle-shaped appearance,
which was alleviated by incubation with 10% and 20%
medicated serum (P< 0.05 and P< 0.01).

3.8. MXD Attenuated TGF-β/Smad-Dependent EMT and
Upregulated Tight-Junction Protein Expression in Primary
Type II Alveolar Cells. As presented in Figures 6(a) and 6(b),
compared with cells in the control group, PM2.5 incubation
significantly weakened the expression of E-cadherin
(P< 0.01) and increased vimentin expression (P< 0.01). In
accordance with the results observed in rat lung tissues,
treatment with 20% MXD-medicated serum reciprocally
regulated the expression of E-cadherin and vimentin
(P< 0.01). As shown in Figure 6(c), 20% MXD-medicated
serum significantly inhibited the PM2.5-enhanced release of
TGF-β (P< 0.01). As can be seen in Figure 6(d), PM2.5
enhanced the phosphorylation of Smad3 (P< 0.01), and 20%
medicated serum inhibited the phosphorylation of Smad3
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Figure 2: A 7-day continuous treatment with MXD protected lung barrier function. (a) Total cell count in BALF. (b) Protein content in
the supernatant of BALF. Data are shown as mean± SD, n � 6. ∗∗P< 0.01 vs. the control group; ▲P< 0.05 and ▲▲P< 0.01 vs. the PM2.5
group.
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Figure 3: A 7-day continuous treatment with MXD ameliorates EMT in rat lungs. (a) IHC staining of E-cadherin in rat lungs, scale bars:
20 μm. (b) IHC staining of vimentin in rat lungs, scale bars: 20 μm. (c) Protein blots and quantitative analysis of E-cadherin. (d) Protein blots
and quantitative analysis of vimentin. Protein expression was expressed as a ratio to endogenous control β-actin. Data are expressed as
mean± SD, n� 3. ∗∗P< 0.01 vs. the control group; ▲P< 0.05 and ▲▲P< 0.05 vs. the PM2.5 group.
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(Figure 6(d), P< 0.05). Figures 6(e) to 6(f ) show that PM2.5
significantly downregulated the expressions of ZO-1
(P< 0.05) and claudin-5 (P< 0.01), which were reversed by
20% medicated serum (P< 0.01). /ese results revealed that
MXD-medicated serum suppressed PM2.5-induced EMT,
blocked TGF-β/Smad pathway, and protected against tight-
junction disruption in alveolar epithelial cells.

3.9. MXD Exerts Protection against EMT in Primary Alveolar
Cells through TGF-β/Smad Pathway. Results from experi-
ments both in vivo and in vitro indicated that MXD
inhibited PM2.5-triggered fibrosis rat lung tissues. Besides,
previous studies have shown that PM2.5-induced EMT was
TGF-β dependent to a certain extent [17, 18, 49–51]. Hence,
a verification experiments in vitro was conducted for further
exploration of the underlying mechanisms. As shown in
Figure 7, the primary alveolar cells treated with nonimmune
serum alone showed a cobblestone-like morphology with

clear cell adhesion. After stimulation with PM2.5, primary
alveolar cells exhibited a long shuttle shape with increased
space between cells which was in accordance with our results in
Section 3.7. /e alternation in morphology was reversed by
20% MXD-medicated serum. In line with expectations, the
maintenance of lining epithelium morphology by MXD-
medicated serum was abolished by coincubation with rTGF-β.

As Figure 8 shows, western blot results revealed that the
stimulatory effect of PM2.5 and the therapeutic effect of
MXD-medicated serum on the expressions of EMT-related
proteins and tight-junction proteins were in accordance with
the results above. Notably, coincubation with rTGF-β
inhibited E-cadherin expression (P< 0.01) and restored
vimentin expression (P< 0.05) and a-SMA (another mes-
enchymal marker, P< 0.05) in contrast with the treatment
group. Moreover, coincubation with rTGF-β also enhanced
the phosphorylation of Smad3 (P< 0.01) and blocked the
effects of MXD-medicated serum in upregulating the ex-
pression of ZO-1 (P< 0.05) as well as claudin-5 (P< 0.01) in
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Figure 4: A 7-day continuous treatment with MXD suppressed TGF-β/Smad signaling pathway and upregulated the expression of tight
junctions. (a) Content of TGF-β in the supernatant of lung tissue homogenates. (b) Representative protein bands and quantitative analysis of
p-Smad3 in rat lung tissues. (c) Representative protein bands and quantitative analysis of ZO-1. (d) Representative protein bands and
quantitative analysis of claudin-5. Data are expressed as mean± SD, n� 3. ∗∗P< 0.01 vs. the control group; ▲P< 0.05 and ▲▲P< 0.01 vs. the
PM2.5 group.
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comparison with the MXD-medicated serum treatment
group.

4. Discussion

As a major environmental risk factor, air pollution con-
tributes to human health risks [52]. As is determined by the
World Health Organization, two million deaths were caused
by respirable PM annually worldwide [19]. /e most im-
portant pollutant during the hazes is PM2.5, which will be
stranded deep in the bronchi upon inhalation, and then the
gas exchange in lung will be severely affected [53].

Alveolar epithelial barrier is composed of windpipe
surface mucus and fluids, and tight-junction complexes that
formed by contribution of surrounding epithelial cells [54].
/e upper tight junctions and the adherent junctions below
interact with each other to form the functional barrier [55].
/e extracellular domain of homophilic E-cadherin interacts

with each other to form an intercellular contact, the so-called
adherent junction, which contributes to the integrity of
barrier function [56]. E-cadherin stabilizes contacts between
cells through interacting with β-catenin and forming the
E-cadherin/β-catenin complex. /e diminishment in
E-cadherin-mediated interactions between cells has been
observed during the lung injury in an animal model, con-
tributing to the disruption of epithelial barrier. Except for
the underlying adherent junction, the apical tight junctions,
mainly composed of ZOs, claudins, and occludin, are also
indispensable for the epithelial barrier function. Due to the
direct contact with the outside world, the epithelium is more
sensitive to experience structural alterations faced with
particle challenge.

Clinical and preclinical studies both have shown that
ambient PM2.5 mainly does harm to the respiration system
and the cardiovascular system [8, 57]. Recent research
studies have demonstrated that the critical mechanisms
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Figure 5: A 48-hour incubation with MXD-medicated serum reduced PM2.5-induced primary alveolar cell injury. (a) Cytotoxic analysis of
PM2.5. (b) Optimal concentration selection of MXD-medicated serum. (c) Protective effect of MXD-medicated serum on PM2.5-induced
primary alveolar cells injury. (d) MXD-medicated serum improved morphologic changes of primary alveolar cells, scale bars: 60 μm. Data
are shown as mean± SD, n� 6. ∗P< 0.05 and ∗∗P< 0.01 vs. the control group; ▲P< 0.05 vs. the PM2.5 group.
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Figure 6: A 48-hour incubation with MXD-medicated serum attenuated TGF-β/Smad-dependent EMT and upregulated tight-junction
protein expression in primary alveolar cells. (a) Western blot analysis of E-cadherin. (b) Western blot analysis of vimentin. (c) Content of
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effect of MXD-medicated serumwas alleviated, evidenced by most of the cells exhibited a long shuttle shape, and the space between cells was
increased, scale bars: 60 μm (400x).
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Figure 8: Continued.
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mediating respiratory and cardiovascular injury induced by
PM2.5 are mainly associated with inflammatory response
and fibrosis [58–60]. PM2.5-induced inflammatory reaction
is closely related to the release of inflammatory cytokines
including TGF-β, IL-1β, and TNF-α. Among these cyto-
kines, TGF-β, an efficient profibrotic cytokine, is one of the
most essential factors initiating the phenotypic transition of
fibroblasts to myofibroblasts, which mediates the EMT
progress [61–63]./e critical role of TGF-β-mediating Smad
(mainly Smad3) signaling has been demonstrated in EMT
associated with PM2.5 stimulation, bleomycin challenge,
and tumour progression/development [18, 19, 64–69]. TGF-
β signals are transduced through transmembrane serine/
threonine kinase receptors. /e type I receptors will be
internalized into endosome after binding with TGF-β. /en,
the Smad anchor for receptor activation (SARA) mediates
formation of complexes with Smad (Smad2 or Smad3), after
which Smad will be phosphorylated at serine residues. /e
phosphorylation results in the interaction between Smad2/3
and Smad4, followed by translocation to the nucleus where
they interact with other transcription factors to regulate the
transcription of EMT-related genes such as vimentin and
α-SMA, by interacting with Smad-binding elements
[17, 70, 71]. Based on the fact that Smad3 plays a more
critical role in TGF-β-mediated EMTprocess, we focused on
the phosphorylation level of Smad3 in this research [72–74].
During the EMT process, alterations of morphology in
epithelial cells could be observed, evidenced by the di-
minishment of epithelial cell markers, such as E-cadherin
and the acquisition of mesenchymal cell markers (vimentin
and α-SMA) [63]. With loss of differentiated columnar cells,
the barrier function is often compromised [75]. In addition,
EMTalso promote the degradation of E-cadherin-supported
adherent junctions and downregulates the tight-junction
expression, further deteriorating the disruption of the epi-
thelial barrier and resulting in fibrosis [76]. Drastic changes

in cellular phenotype are observed in oncogenic transfor-
mation, metastasis formation, and tumour invasiveness by
epithelium-derived tumours. Exposure to PM2.5 can lead to
bronchus asthma, pulmonary fibrosis, and even lung car-
cinoma [77–79].

In the present research, we observed the protection of
MXD against lung injury induced by PM2.5 in rats. Treatment
with MXD limited the weight loss, decreased clinical signs,
reduced lung edema, and inhibited the disruption of epithelial
barrier. Histological analysis further verified that MXD sig-
nificantly attenuated lung tissue injury in vivo. Moreover,
MXD also alleviated the development of EMT in the pul-
monary parenchyma following PM2.5 challenge, together
with the restored expression of tight junction. A previous
study has reported that inhibition of the TGF-β/Smad signal
pathway inhibits EMT and attenuates the pulmonary fibrosis
diseases [80]. Considering TGF-β/Smad signaling is impli-
cated in fibrosis-related lung diseases and PM2.5-initiated
pulmonary fibrosis is partly TGF-β dependent, we hypoth-
esized that MXD prevented lung fibrosis via suppressing
TGF-β-mediated EMT process and examined the regulatory
effect of MXD on the TGF-β/Smad signal pathway [81].
Notably, MXD alleviated the content of TGF-β1 and atten-
uated the phosphorylation of Smad3, suggesting the anti-
fibrosis effect of MXD through inhibiting the TGF-β/Smad
signal pathway. Although the alveolar barrier is composed of
endothelial and epithelial cells, the critical role of the epi-
thelium is emphasized attributing to the fact that changes in
epithelial permeability alone are sufficient result in pulmonary
edema [82]. Hence, we used primary alveolar cells to verify the
protection of MXD on EMT progress and epithelial barrier
disruption. Our results revealed that MXD-medicated serum
reciprocally regulated E-cadherin and vimentin expression
and suppressed PM2.5-initiated EMT. In accordance with
results in vivo, PM2.5 enhanced the secretion of TGF-β1 and
the activation of Smad3. In addition, MXD-medicated serum
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Figure 8: Effect of rTGF-β on the regulation of EMT-related proteins and tight-junction proteins after incubation for 48 h. (a) Effect of
rTGF-β on the expression of E-cadherin. (b) Effect of rTGF-β on the expression of α-SMA (another fibroblastic marker). (c) Effect of rTGF-β
on the expression of vimentin. (d) Effect of rTGF-β on the phosphorylation of Smad3. (e) Effect of rTGF-β on the expression of ZO-1. (f )
Effect of rTGF-β on the expression of claudin-5. Data are expressed as mean± SD, n� 3. ∗P< 0.05 and ∗∗P< 0.01.
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upregulated the ZO-1 and claudin-5 expression, supporting
the protective effects of MXD in vitro. As most of the results
above are correlative evidence, a verification experiment was
designed using rTGF-β. /e regulatory effect of MXD-
medicated serum was abolished by r-TGFβ, indicating that
MXD-medicated serum exerted protection at least partially
through inhibiting the TGF-β/Smad pathway. We have
demonstrated that MXD protected alveolar epithelial cells
from PM2.5-triggered EMT, which had not been shown
before (Figure 9).

Nevertheless, several limitations must be acknowledged.
Except for TGF-β/Smad, other signals related to EMT
progress including PI3K/Akt and ERK should be studied.
TGF-β signal-dependent EMTis also under the regulation of
other EMT-related transcription regulators (including but
not limited to Snail, Twist, and ZEB families of transcription
factors). /e influence of MXD on these factors requires
further study. Besides, a burgeoning system science on the
basis of a holistic theory integrated with reductionism which
has been utilized to systematically elucidate the synergistic
mechanisms underlying combination therapy, especially for
exploring the mechanism underlying the efficacy of the
traditional Chinese medicine compound, maybe a good
choice for the deeper mechanism research of MXD [83–88].
Moreover, in lung tissue, resident macrophage and infil-
trated neutrophil play critical roles during lung injury,
whose effects in fine particles induced pulmonary injury
remain to be further explored.

5. Conclusion

In summary, we demonstrated in this research that MXD
showed protection against PM2.5-induced lung injury both in
vivo and in vitro. /e mechanism may be reversing the
PM2.5-activated TGF-β/Smad3 signal pathway, thereby
inhibiting the EMTprocess andmaintaining the expression of
tight-junction proteins./ese results suggest thatMXD shows
high potential in the therapy of PM2.5-induced lung injury.
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