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Abstract: Single-shot 3D reconstruction technique is very important for measuring moving and
deforming objects. After many decades of study, a great number of interesting single-shot techniques
have been proposed, yet the problem remains open. In this paper, a new approach is proposed to
reconstruct deforming and moving objects with the structured light RGB line pattern. The structured
light RGB line pattern is coded using parallel red, green, and blue lines with equal intervals to
facilitate line segmentation and line indexing. A slope difference distribution (SDD)-based image
segmentation method is proposed to segment the lines robustly in the HSV color space. A method
of exclusion is proposed to index the red lines, the green lines, and the blue lines respectively and
robustly. The indexed lines in different colors are fused to obtain a phase map for 3D depth calculation.
The quantitative accuracies of measuring a calibration grid and a ball achieved by the proposed
approach are 0.46 and 0.24 mm, respectively, which are significantly lower than those achieved by
the compared state-of-the-art single-shot techniques.

Keywords: 3D reconstruction; single shot; slope difference distribution; line indexing; structured
light; phase map

1. Introduction

Non-contact optical surface 3D imaging technology has made tremendous progress
in the last decades. Traditional methods are challenged by more flexible alternatives [1].
Nevertheless, robust 3D reconstruction of moving and deforming objects remains chal-
lenging. To reconstruct a dynamic scene, the optimum choice is the single-shot method,
and state-of-the-art single-shot methods can be divided into four categories. The first
category is time of flight (TOF), the second category is passive stereo vision (PSV), the
third category is active stereo vision (ASV), and the fourth category is structured light (SL).
Each category has its representative product. For instance, Kinect V2 is the representative
product of the first category. Despite its wide use and great popularity, its performance is
not stable. For instance, it is reported that Kinect V2 is robust in reconstructing rigid scenes
while it fails in providing a reasonable reconstruction result on non-rigidly deforming
scenes [2]. The representative product of both PSV and ASV is Intel D435. The passive
mode of Intel D435 performs poorly while measuring objects that lack textures [3]. The
active mode of Intel D435 adopts an infrared radiation (IR) laser projector to generate the
laser speckle patterns [4]. It performs better than other methods for face identification and
face expression recognition as reported by Luca et al. [5]. The accuracies of ASV and SL
are higher than those of TOF and PSV. In addition, the cost of SL is lower than that of ASV.
Therefore, SL has been favored for reconstructing dynamic scenes for many decades, and a
great number of single-shot SL methods have been proposed based on the different types
of the coded patterns, as reviewed by Wang [1].

Fourier transform profilometry (FTP) [6] is one of the most popular single-shot struc-
tured light methods. It decodes a single high-frequency sinusoidal pattern in the frequency
domain to calculate the phase map and the depth information. The carrier frequency needs
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to be designed as high as possible to reduce the aliasing error. A band-pass filter is used to
obtain the modulated phase in the frequency domain. The drawbacks of FTP include (1)
sensitivity to noise, light interference, and the optical properties of the measured objects;
(2) requirement of a non-trivial phase unwrapping process; (3) low accuracy in measuring
complex surfaces. To overcome the drawbacks of FTP, the structured light line pattern pro-
filometry (LPP) was proposed to reconstruct the 3D profile by single-shot in [7]. Different
from FTP, LPP calculates the depth information solely in the spatial domain. LPP extracts
the distorted line pattern with a series of image processing methods and then indexes the
distorted lines uniquely. Because the extracted lines instead of the full-resolution plane
are used, LPP is more resistant to noise and light interference. A typical example of the
high resistance to noise and light interference can be found in [8] where the laser lines
are extracted robustly under extremely strong arc light while measuring the geometry of
the weld pool. Because of advances in the image segmentation method, the lines can be
extracted robustly while measuring the objects with different optical properties, as shown
by Wang et al. [8]. In addition, the phase map calculated by LPP is not wrapped and thus
does not require the phase unwrapping process. To measure complex surfaces, more subtle
line clustering methods are required by LPP. For instance, a specific line clustering method
was proposed to reconstruct the deforming human face in [9], and the line clustering
method is designed based on the characteristics of the human face. Consequently, it cannot
be used for measuring the 3D shapes of other complex deforming objects, although it
performed better than other methods [10–14] in 3D face reconstruction.

In this paper, we propose an exclusion-based line clustering method that can be used
for measuring any type of deforming shape. To facilitate the clustering process, we designed
the lines in red, green, and blue respectively instead of using a single white color [8,9,15].
The lines in different colors are separated from each other at equal intervals. The minimum
interval between the lines in the same color is three times as large as the minimum interval
between the adjacent lines in the coded pattern. Therefore, the lines in the same color have
little intersection after they are distorted by depth because of their large intervals. After the
projected RGB line pattern is captured by a color charge coupled device (CCD) camera, the
lines in red, green, and blue are segmented in the hue saturation value (HSV) color space.
The segmented red lines, green lines, and blue lines are clustered independently with the
proposed line clustering method. To verify the effectiveness of the proposed approach, we
conducted both quantitative and qualitative experiments that included reconstructing the
static objects for 3D reconstruction accuracy evaluation and reconstructing the moving and
deforming object for the line clustering (indexing) robustness evaluation.

In summary, the major contributions of this paper include:

(1) A fully automatic color stripe segmentation method based on SDD is proposed to
extract the RGB line pattern robustly. State-of-the-art methods rely on manually
specified thresholds obtained by trial-and-error analysis or the classic classification
methods to segment the color stripes. The trial-and-error analysis method is time-
consuming and cannot guarantee that the optimal thresholds are always selected
for each image. In addition, the demonstration in the paper shows that none of the
compared classic classification methods can separate all the adjacent stripes from each
other robustly. Due to the bottleneck problem of image segmentation, there are no 3D
surface imaging products that are based on the segmented structured light patterns
yet, even though the related theory and idea had been proposed for more than three
decades. The proposed SDD segmentation method has the potential to solve this
bottleneck problem for the single-shot dot-pattern- or line-pattern-based structured
light methods.

(2) An exclusion-based line clustering method is proposed to index the segmented stripes
robustly. State-of-the-art methods have included different ways to index the seg-
mented lines or dots uniquely. However, they may fail when complex and deforming
objects are reconstructed. In [7], a line clustering method was proposed to index the
lines from top to bottom, but it is only robust for simple and rigid objects. In [8,9],
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the line-slope-based clustering method was proposed to index the lines distorted by
complex and deforming objects. However, its accuracy is easily affected by occlusion
and large discontinuity. The line clustering method proposed in this paper is more
robust than the previous methods [7–9] in indexing the lines distorted by complex and
deforming objects, which is validated by the 3D reconstruction results of a deforming
face and a deforming hand in the attached videos.

(3) An extensive comparison of the proposed method with state-of-the-art single-shot 3D
surface imaging methods (products) was conducted by reconstructing the deforming
face and the deforming hand continuously, which is a necessary condition to verify
the effectiveness of a single-shot structured light method.

2. Related Work

The structured light 3D imaging technique reconstructs the sampled points on the sur-
face of the measured object based on different working principles. Based on the sampling
resolution, state-of-the-art structured light methods can be divided into three categories:
(1) dot-pattern-based method [15–24]; (2) line (stripe)-pattern-based method [7–9,25–30],
and (3) plane-pattern-based method [6,31,32]. The dot-pattern-based methods sample
the surface of the object sparsely with the specifically coded dot patterns. Image seg-
mentation [16–20] or feature detection [21–24] are used to extract the dot pattern from
the acquired pattern image. Each extracted dot is then indexed uniquely for 3D depth
calculation with different principles. The line-pattern-based methods sample the surface
of the object significantly more densely than the dot-pattern-based methods. Similarly,
image segmentation [26,29,30] or feature detection [25,27,28] can be used to extract the line
pattern from the acquired pattern image. The plane-pattern-based methods sample the
surface of the object with the resolution of the projector. The correspondence between the
camera and the projector is pixel to pixel. To distinguish the pixels from each other, the
pixels in the coded plane pattern vary according to the function of a sine wave. Unlike
the dot pattern and the line pattern, the plane pattern is not identifiable spatially within a
single image. As a result, image segmentation or feature detection cannot extract the phase
map from a single image solely based on the spatial information. Currently, there are two
popular ways for phase map calculation. One is FTP [6] and the other is phase-shifting
profilometry (PSP) [30,31]. FTP calculates the phase map in the frequency domain by
selecting the fundamental component of the Fourier transformed pattern image with a
band-pass filter. To reduce the aliasing error, the carrier frequency of FTP is required to
be as high as possible. In reality, alias is unavoidable for FTP to measure the non-planar
objects, and consequently the phase map generated by FTP is usually not accurate enough
for depth calculation. PSP calculates the phase map in the temporal domain by solving
the united equation of the acquired pattern images with different phase-shifting values. In
theory, PSP yields an exact analytical solution of the phase map. The major drawback of
PSP is that it requires the object to be static when projecting multiple plane patterns onto it.
Consequently, PSP is not suitable for measuring deforming and moving objects by nature.
To reconstruct deforming and moving objects, the dot pattern or line pattern is usually
preferred and used for the structured light method development.

One major challenge of dot-pattern- or line-pattern-based structured light methods
is to extract the dots or the lines automatically and robustly. Since the color dots or the
color lines are designed distinctively, threshold selection or color classification should be
able to segment them robustly. Yet few works have described in detail how the dots or
lines were segmented. In [17], the valleys and peaks of the histogram were analyzed and
a threshold was selected manually based on the trial-and-error analysis. Obviously, the
manually selected threshold cannot always guarantee that the dots or lines are segmented
optimally, especially while reconstructing complex deforming objects. In [19], the authors
demonstrated that the reconstruction was incomplete because of the challenge of color
dot segmentation. In [26], the authors mentioned that the stripes could be segmented
by color classification or edge detection, and they basically advocated color classification.
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Unfortunately, they did not disclose what color classification method was used by them.
In [27,28], the authors utilized the local maxima to segment the stripes. In reality, the
captured images are usually affected by color crosstalk, specular reflection, and light
interference. As a result, the local maxima-based method could not segment the stripes
as accurately as the threshold selection methods or the classification methods. In [29],
the authors specified the thresholds for the red, green, and blue stripes as 125, 90, and
95, respectively. Together with the comparison of the gray levels in different channels,
the stripes could be segmented effectively. However, the segmentation accuracy was
affected by the leakage in the color separation filters and poor color alignment. To our
best knowledge, it is difficult to segment the color lines solely based on single-threshold
selection or color classification. In this paper, we will address this challenge by proposing a
robust RGB line pattern segmentation method based on SDD.

The second challenge of dot-pattern- or line-pattern-based structured light methods is
to index the extracted dots or lines uniquely and robustly. Although the stripe indexing
issue has been tackled for many decades, it has not yet been solved for the following two
reasons: (1) there are no line (stripe) indexing-based single-shot 3D imaging products yet,
(2) the proposed line (stripe) indexing methods have not yet been evaluated with deforming
and moving objects extensively. Consequently, the robustness of the proposed methods
cannot be verified. For instance, only one reconstruction result of a face was demonstrated
in [27,28]. Eight reconstruction results of a deforming face were demonstrated in [26], and
18 reconstruction results of a deforming hand were demonstrated in [30]. There are even
some single-shot structured light methods that have not been tested with deforming and
moving objects at all. In this paper, we will validate the proposed method extensively with
the deforming hand and the deforming face. In addition, we extensively compare the 3D
reconstruction results of the moving face and hand by the proposed method with those
reconstructed by state-of-the-art products in the attached videos.

Although the line (stripe) indexing problem remains unresolved, many interesting
and promising line indexing methods have been proposed in the past decades. For instance,
the flood fill algorithm was proposed by Robinson et al. to index the stripes in [27]. A
maximum spanning tree-based algorithm was proposed by Brink et al. to index the stripes
in [28]. The maximum spanning tree of a graph was used to define potential connectivity
and adjacency in stripes. Despite a significant improvement in accuracy over existing
methods, e.g., the flood fill-based method [27], the maximum spanning tree algorithm
could not address the discontinuity in surface depth effectively. A survival of the fittest
criterion was proposed by Boyer and Kak to index the stripes uniquely in [29]. The stripe
indexing was treated as a labeling problem and formulated as an energy minimization
problem by Koninckx and Van Gool in [30]. To solve the minimization problem, a weighted
least squares solution was proposed to cast the problem into the search for a minimal
cut on a graph. Though the theory sounds good, the reconstructed deforming hands
had serious flaws, e.g., the black holes in the reconstructed palm. In this paper, we will
address this challenge by proposing a robust line clustering method to index the stripes
based on exclusion. With the assumption that the reconstructed surface is continuous
and smooth, a line model is computed for each clustered line to make the reconstructed
surface continuous and smooth. As a result, the occlusion problem, the discontinuity
problem, and other similar problems, e.g., the black hole problem as shown in [30], can be
solved effectively.

The major differences between the proposed method and the existing methods [26–30]
are summarized in Table 1. Compared to the proposed method, the major weaknesses
of the existing methods include: (1) the existing methods were not able to segment the
lines (stripes) as robustly as the proposed method was able to; (2) the existing methods
were not able to index the lines (stripes) as robustly as the proposed method was able to.
Consequently, their results in reconstructing deforming and moving objects are inferior
to those of the proposed method, which can be verified by comparing the reconstruction
results of the deforming hand in this paper and those shown in [30].
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Table 1. Comparison of the major differences between the proposed method and the existing
methods [26–30].

Methods Line Segmentation Line Indexing

[26] Color classification Permutation
[27] Local maxima Flood fill
[28] Local maxima Spanning tree
[29] Manual Unique word
[30] Color classification Graph cut

Proposed SDD thresholds Exclusion

3. The Proposed Approach

The flowchart of the proposed approach is shown in Figure 1. Firstly, the acquired
image is segmented in the HSV color space by the SDD image segmentation method [33,34].
The segmented lines in different colors are then indexed by the proposed exclusion-based
line clustering methods. The indexed lines in different colors are fused together to generate
the final indexing lines. The phase map is computed from the final indexed lines and the
3D shape is reconstructed with the phase map.

Figure 1. The flowchart of the proposed approach.

3.1. The Proposed Pattern Extraction Method

The coded RGB pattern is illustrated in Figure 2. The red lines, green lines, and blue
lines are in the same intervals, parallel and repeated in cycles to form the RGB pattern.
Between the adjacent lines, there are dark parts to separate them from each other. The
intensities in different channels of the RGB color space contain both the color information
and the lighting information, which makes the color segmentation problematic. On the
other hand, color and brightness are separated in different channels as hue and value,
which makes the color segmentation straightforward. Therefore, the RGB color space is
transformed into the HSV color space for line segmentation. The transformation from the
RGB color space to the HSV color space is formulated as follows.

V(i, j) = max(R(i, j), G(i, j), B(i, j)), (1)

M(i, j) = min(R(i, j), G(i, j), B(i, j)), (2)
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S(i, j) =
V(i, j)−M(i, j)

V(i, j)
, (3)

H(i, j) =


60× G(i,j)−B(i,j)

V(i,j)−M(i,j) , R(i, j) = V(i, j)

120 + B(i,j)−R(i,j)
V(i,j)−M(i,j) , G(i, j) = V(i, j)

240 + R(i,j)−G(i,j)
V(i,j)−M(i,j) , B(i, j) = V(i, j)

(4)

where (i, j) denotes the index of the pixel in the acquired pattern image. H represents the
H channel of the pattern image, S represents the S channel of the pattern image, and V
represents the V channel of the pattern image. R represents the R channel of the pattern
image, G represents the G channel of the pattern image, and B represents the B channel of
the pattern image. From the above HSV color model, it is seen that the coded RGB pattern
has the following characteristics: (1) the RGB color is distinguished in the H channel, (2)
the difference between the RGB line part and the adjacent dark part is highlighted in the
S channel, (3) the brightness of the RGB line part is highlighted in the V channel. The
illustrated HSV channels in Figure 3 also correlate with these three characteristics highly.
Figure 3a shows the RGB color image acquired by the CCD camera. Figure 3b–d shows the
H channel, the S channel, and the V channel of the acquired image, respectively.

Figure 2. Illustration of the coded pattern.

Figure 3. Illustration of the acquired pattern image in H, S, and V channels. (a) The acquired RGB pattern image; (b) The H
channel of the acquired pattern image; (c) The S channel of the acquired pattern image; (d) The V channel of the acquired
pattern image.

The line segmentation method is proposed based on these three characteristics: (1) the
lines in red, green, and blue are distinguished in the H channel. Thus, there should be three
clustering centers in the histogram of the H channel that correspond to the red pixels, the
green pixels, and the blue pixels, respectively. The clustering centers are calculated by SDD
as described in [33,34]. For each clustering center, there are two corresponding SDD valleys.
One is on its left and the other is on its right. They are selected as the thresholds to segment
the lines in the corresponding color. The process of selecting the double thresholds for the
red lines, blue lines, and green lines in the H channel by SDD is illustrated in Figure 4a; (2)
the RGB line parts and the dark parts are distinguished in the S channel. Thus, there should
be one global threshold that can distinguish the RGB line part and the dark part. The global
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threshold is calculated with SDD as described in [33,34]. The process of the selecting the
global threshold to separate the line part from the dark part in the S channel by SDD is
illustrated in Figure 4b; (3) because the brightness of the RGB line part is highlighted in the
V channel, the region of interest (ROI) of the RGB lines can be obtained from the V channel
by a global threshold. The global threshold is calculated with SDD as described in [33,34].
The process of the selecting the global threshold to obtain the ROI of the RGB lines in the S
channel with SDD is illustrated in Figure 4c.

Figure 4. Illustration of the SDD threshold selection process for the acquired pattern image in H, S,
and V channels. (a) The SDD threshold selection process in the H channel; (b) The SDD threshold
selection process in the S channel; (c) The SDD threshold selection process in the V channel.
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With all the thresholds computed in the HSV channels, the RGB lines are segmented
with the following equations.

LR(i, j) =
{

1, TR1 < H(i, j) < TR2, S(i, j) > TS, V(i, j) > TV
0, else

, (5)

LG(i, j) =
{

1, TG1 < H(i, j) < TG2, S(i, j) > TS, V(i, j) > TV
0, else

, (6)

LB(i, j) =
{

1, TB1 < H(i, j) < TB2, S(i, j) > TS, V(i, j) > TV
0, else

(7)

where LR represents the segmentation result of the red lines, LG represents the segmentation
result of the green lines, and LB represents the segmentation result of the blue lines. TR1
denotes the low threshold and TR2 denotes the high threshold for red line segmentation.
TR1 = 0 and TR2 is denoted as the red circle in Figure 4a. TG1 denotes the low threshold and
TG2 denotes the high threshold for green line segmentation. TG1 is denoted as the green
circle and TG2 is denoted as the green tetragonal star in Figure 4a. TB1 denotes the low
threshold and TB2 denotes the high threshold for blue line segmentation. TB1 is denoted
as the blue circle and TB2 is denoted as the blue tetragonal star in Figure 4a. TS denotes
the global threshold to separate the RGB line part from the dark part in the S channel, and
it is denoted as the purple pentagram in Figure 4b. TV denotes the global threshold to
separate the RGB line ROI from the dark background in the V channel, and it is denoted as
the purple pentagram in Figure 4c. The segmented RGB lines with Equations (5)–(7) are
illustrated in Figure 5. By comparing the segmented lines in Figure 5 with the acquired
lines in Figure 3, it is seen that the SDD segmentation method is robust.

Figure 5. Illustration of the segmented lines in different colors. (a) The segmented lines in red; (b)
The segmented lines in green; (c) The segmented lines in blue; (d) The combination of the RGB lines.
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As reviewed in the second section, two existing methods [26,30] use the classifica-
tion methods to segment the lines. To demonstrate the superiority of the proposed line
segmentation method, the classic classification methods were tested to segment the H
channel of the same illustrated image, and the line classification results were refined by
the SDD segmentation results of S and V channels in the same way. The compared classic
classification methods included K-means [35], Otsu’s method [36], and expectation maxi-
mization (EM) [37]. Zoomed-in parts of the classification results around the mouth and
nose by different classic methods are shown in Figure 6. As can be seen, only the segmented
adjacent lines by the SDD method are separate from each other. There are adjacent lines
adhesive to each other in the results of the compared classic classification methods, which
will make the subsequent line clustering fail.

Figure 6. Qualitative comparison of the line segmentation results by state-of-the-art classification
methods and the result by the proposed SDD method. (a) Result of the SDD method; (b) Result of
K-means; (c) Result of Otsu; (d) Result of EM.

3.2. The Proposed line Clustering Method

The proposed line clustering method contains the following steps.
Step 1: The starting line is selected based on its length and centroid in the top to

bottom direction. Then, it is fitted as:

y = a1x7 + a2x6 + a3x5 + . . . + a7x + a8 (8)

where x denotes the coordinate of the pixel on the starting line in the horizontal direction
and y denotes the coordinate of the pixel on the starting line in the vertical direction. The
coefficient of the fitted line is computed by the least squares error method.

[a1, a2, . . . , a7, a8]
T =

(
ψTψ

)−1
ψTY, (9)

ψ =


x7

1 x6
1 . . . x1 1

x7
2 x6

2 . . . x2 1
...

...
...

...
...

x7
m x6

m . . . xm 1

, (10)
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Y = [y1, y2, . . . , ym]
T (11)

where m denotes the total number of pixels on the starting line. The leftmost point of
the starting line and the rightmost point of the starting line are computed as (xl , yl) and
(xr, yr), respectively. The padded line is computed as follows.

y =

{
yl , x < xl
yr, x > xr

. (12)

The fitted line and the padded line are illustrated in Figure 7a,b, respectively.

Figure 7. Illustration of the fitted line and the padded line. (a) The fitted line in red superimposed on
the segmented line; (b) The non-overlapping part of the fitted line is cut off and replaced with the
padded line.

Step 2: A search range rs is defined based on the fitted line and the padded line. rs is
computed as twice the average distance between adjacent lines. As illustrated in Figure 8,
the search range is denoted by the virtual yellow line. All the line segments within the
search rage will be selected for clustering the next line. In this illustration, the starting
line is determined as the fourth segmented line. Consequently, the clustering process will
include downward clustering and upward clustering.

Figure 8. Illustration of the search range.
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Step 3: The line segments are clustered in the search range. Firstly, all the line segments
in the search range are denoted as 1, i.e., all of them belong to the next clustered line by
default. The exclusion method works as follows.

The centroid, the coordinate of the leftmost point, and the coordinate of the rightmost
point are computed as

(
Ci

x, Ci
y

)
,
(
xi

l , yi
l
)

and
(
xi

r, yi
r
)
, respectively, for the i−th line segment

li in the search range. The i−th line segment li is combined with any one of the remaining
line segments, lj and j 6= i. If one of the following conditions is met, the i−th line segment
li will be determined as not belonging to the next clustered line.

(1) If the leftmost point of the i−th line segment li falls between the length range
[

X j
l , X j

r

]
of the j−th line segment lj, i.e., Xi

l > X j
l and Xi

l < X j
r, the j−th line segment lj is

fitted with the line model by Equation (8) as f j. If the position of the leftmost point
of the i−th line segment li is below the position of the fitted line model f j for the
downward clustering, i.e., Yi

l − f j(Xi
l) > 0, the i−th line segment li is determined as

not belonging to the next clustered line. If the position of the leftmost point of the
i−th line segment li is above the position of the fitted line model f j for the upward
clustering, i.e., Yi

l − f j(Xi
l) < 0, the i−th line segment li is determined as not belonging

to the next clustered line.
(2) If the rightmost point of the i−th line segment li falls between the length range[

X j
l , X j

r

]
of the j−th line segment lj, i.e., Xi

r > X j
l and Xi

r < X j
r, the j−th line segment

lj is fitted with the line model by Equation (8) as f j. If the position of the leftmost
point of the i−th line segment li is below the position of the fitted line f j for the
downward clustering, i.e., Yi

r − f j(Xi
r) > 0, the i−th line segment li is determined as

not belonging to the next clustered line. If the position of the leftmost point of the
i−th line segment li is above the position of the fitted line f j for the upward clustering,
i.e., Yi

r − f j(Xi
r) < 0, the i−th line segment li is determined as not belonging to the

next clustered line.
(3) (3) If the centroid of the i−th line segment li falls between the length range

[
X j

l , X j
r

]
of the j−th line segment lj, i.e., Ci

x > X j
l and Ci

x < X j
r, the j−th line segment lj

is fitted with the line model by Equation (8) as f j. If the position of the leftmost
point of the i−th line segment li is below the position of the fitted line f j for the
downward clustering, i.e., Ci

y − f j(Ci
x) > 0, the i−th line segment li is determined as

not belonging to the next clustered line. If the position of the leftmost point of the
i−th line segment li is above the position of the fitted line f j for upward clustering,
i.e., Ci

y − f j(Ci
x) < 0, the i−th line segment li is determined as not belonging to the

next clustered line.
(4) If the leftmost point of the j−th line segment lj falls between the length range

[
Xi

l , Xi
r
]

of the i−th line segment li, i.e., X j
l > Xi

l and X j
l < Xi

r, the i−th line segment li
is fitted with the line model by Equation (8) as fi. If the position of the leftmost
point of the j−th line segment lj is below the position of the fitted line fi for the

downward clustering, i.e., fi(X j
l )−Y j

l > 0, the i−th line segment li is determined as
not belonging to the next clustered line. If the position of the leftmost point of the
j−th line segment lj is above the position of the fitted line fi for the upward clustering,

i.e., fi(X j
l )− Y j

l < 0, the i−th line segment li is determined as not belonging to the
next clustered line.

(5) If the rightmost point of the j−th line segment lj falls between the length range[
Xi

l , Xi
r
]

of the i−th line segment li, i.e., X j
r > Xi

l and X j
r < Xi

r, the i−th line segment
li is fitted with the line model by Equation (8) as fi. If the position of the leftmost
point of the j−th line segment lj is below the position of the fitted line fi for the

downward clustering, i.e., fi(X j
r)−Y j

r > 0, the i−th line segment li is determined as
not belonging to the next clustered line. If the position of the leftmost point of the
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j−th line segment lj is above the position of the fitted line fi for the upward clustering,

i.e., fi(X j
r)− Y j

r < 0, the i−th line segment li is determined as not belonging to the
next clustered line.

(6) If the centroid of the j−th line segment lj falls between the length range
[
Xi

l , Xi
r
]

of the

i−th line segment li, i.e., Cj
x > Xi

l and Cj
x < Xi

r, the i−th line segment li is fitted with
the line model by Equation (8) as fi. If the position of the leftmost point of the j−th
line segment lj is below the position of the fitted line fi for the downward clustering,

i.e., fi(C
j
x)− Cj

y > 0, the i−th line segment li is determined as not belonging to the
next clustered line. If the position of the leftmost point of the j−th line segment lj is

above the position of the fitted line fi for the upward clustering, i.e., fi(C
j
x)− Cj

y < 0,
the i−th line segment li is determined as not belonging to the next clustered line.

All the line segments that meet one of the above six conditions will be determined as
not belonging to the next clustered line. For succinct expression and better understanding,
the six conditions are formulated by the following equation.

li =



0 (Xi
l > X j

l & Xi
l < X j

r & Yi
l − f j(Xi

l) > 0)

0 (Xi
r > X j

l & Xi
r < X j

r & Yi
r − f j(Xi

r) > 0)

0 (Ci
x > X j

l & Ci
x < X j

r & Ci
y − f j(Ci

x) > 0)

0 (X j
l > Xi

l & X j
l < Xi

r & fi(X j
l )−Y j

l > 0)

0 (X j
r > Xi

l & X j
r < Xi

r & fi(X j
r)−Y j

r > 0)

0 (Cj
x > Xi

l & Cj
x < Xi

r & fi(C
j
x)− Cj

y > 0)

. (13)

As illustrated in Figure 8, the combination of the line segments l5, l6 and l7 is clustered
as the next line. Their combination is fitted by the line model (Equation (8)) and padded
by Equation (12). Then, the newly fitted and padded line is used for the subsequent line
clustering. As can be seen, the working principle of the proposed exclusion method is
based on the selection of a large search range that includes line segments belonging to more
than one line. If the search range is not large enough, it is easy to miss some line segments
as illustrated in Figure 9.

Step 4: Repeat Steps 2–3 until all the lines are clustered. After all the lines are
clustered, the fitted lines by Equation (8) are used to generate the phase map with the
method proposed in [7].

3.3. Three-Dimensional Reconstruction Based on the Phase Map

Although the method of generating the phase map by a single line pattern was
proposed in [7], its 3D reconstruction principle has not yet been explained systematically.
This missing work is included in this section. As illustrated in Figure 10, the structured
light 3D imaging system is composed of a projector and a camera. The camera coordinate
and the world coordinate are related mathematically by the rule of the pinhole camera
model [38] as follows.

Zc

 xc
yc
1

 = Mint Mext


Xw
Yw
Zw
1

 (14)

where (xc, yc) is the camera coordinate and (Xw, Yw, Zw) is the world coordinate. Mint is
the intrinsic matrix and Mext is the extrinsic matrix. They are formulated as [38]:

Mint =

 fx 0 uc
0 fy vc
0 0 1

, (15)
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Mext =

 r11, r12, r13, T1
r21, r22, r23, T2
r31, r32, r33, T3

 (16)

where
(

fx, fy
)

is the camera’s focal length and (uc, vc) is the camera’s principle point.
[r11, r12, r13; r21, r22, r23; r31, r32, r33] is the rotation matrix and [T1, T2, T3]

T is the translation
vector. For simplicity, Equation (14) can be rewritten as the following format [38].

Zc

 xc
yc
1

 =

 mwc
11 , mwc

12 , mwc
13 , mwc

14
mwc

21 , mwc
22 , mwc

23 , mwc
24

mwc
31 , mwc

32 , mwc
33 , mwc

34




Xw
Yw
Zw
1

. (17)

Figure 9. Comparison of the clustering result with different search ranges. (a) The clustering result
with a small search range; (b) The clustering result with a proper search range.
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Figure 10. The illustration of the SL 3D imaging system.

To decrease the number of unknown parameters, we let mwc
34 = 1. Equation (17) is

then expanded into the following three equations.

Zcxc = mwc
11 Xw + mwc

12 Yw + mwc
13 Zw + mwc

14 , (18)

Zcyc = mwc
21 Xw + mwc

22 Yw + mwc
23 Zw + mwc

24 , (19)

Zc = mwc
31 Xw + mwc

32 Yw + mwc
33 Zw + 1. (20)

Substituting Equation (20) into Equation (18), the following equation is obtained.

mwc
11 Xw + mwc

12 Yw + mwc
13 Zw + mwc

14 = xcmwc
31 Xw + xcmwc

32 Yw + xcmwc
33 Zw + xc. (21)

Substituting Equation (20) into Equation (19), the following equation is obtained.

mwc
21 Xw + mwc

22 Yw + mwc
23 Zw + mwc

24 = ycmwc
31 Xw + ycmwc

32 Yw + ycmwc
33 Zw + yc. (22)

Equation (21) can be rewritten into the following format [31]:

[Xw, Yw, Zw, 1, 0, 0, 0, 0,−xcXw,−xcYw,−xcZw]θc = xc (23)

where
θc = [mwc

11 , mwc
12 , mwc

13 , mwc
14 , mwc

21 , mwc
22 , mwc

23 , mwc
24 , mwc

31 , mwc
32 , mwc

33 ]
T .

In the same way, Equation (22) can be rewritten into the following format [31]:

[0, 0, 0, 0, Xw, Yw, Zw, 1,−ycXw,−ycYw,−ycZw]θc = yc. (24)

Equations (23) and (24) are combined into the following equation.

Xcθc = Yc (25)

where Xc =

[
Xw, Yw, Zw, 1, 0, 0, 0, 0,−xcXw,−xcYw,−xcZw
0, 0, 0, 0, Xw, Yw, Zw, 1,−ycXw,−ycYw,−ycZw

]
and Yc = [xc, yc]

T .
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During SL 3D system calibration, Xc and Yc are known, the unknown θc can be solved
by least squares method [31].

θc = (Xc
TXc)

−1
Xc

TYc. (26)

The mathematical relationship between the projector coordinate system and the world
coordinate system also follows the rule of the pinhole camera model that is formulated
as follows.

Zp

 xp
yp
1

 =

 mwp
11 , mwp

12 , mwp
13 , mwp

14
mwp

21 , mwp
22 , mwp

23 , mwp
24

mwp
31 , mwp

32 , mwp
33 , mwp

34




Xw
Yw
Zw
1

 (27)

where
(

xp, yp
)

is the camera coordinate. To decrease the number of unknown parameters,
we also let mwp

34 = 1. Equation (27) is then expanded in the same way as Equation (17) into
three equations. Since the projected pattern only changes in the y direction, only yp will be
used for 3D measurement. Thus, only the following equation is used.

mwp
21 Xw + mwp

22 Yw + mwp
23 Zw + mwp

24
= ypmwp

31 Xw + ypmwp
32 Yw + ypmwp

33 Zw + yp
(28)

Equation (28) can be rewritten into the following format:

Xpθp = Yp (29)

where Xp =
[
Xw, Yw, Zw, 1,−ypXw,−ypYw,−ypZw

]
, θp =

[
mwp

21 , mwp
22 , mwp

23 , mwp
24 , mwp

31 , mwp
32 ,

mwp
33

]T
and Yp =

[
yp
]
.

During calibration, Xp and Yp are known, the unknown θp can be solved by the least
squares method [31].

θp = (Xp
TXp)

−1
Xp

TYp. (30)

After θc and θp are obtained, they are used for 3D measurement by the following equa-
tion.  Xw

Yw
Zw

 = H−1

 xc −mwc
14

yc −mwc
24

yp −mwp
14

 (31)

where H =

 mwc
11 − xcmwc

31 , mwc
12 − xcmwc

32 , mwc
13 − xcmwc

33
mwc

21 − ycmwc
31 , mwc

22 − ycmwc
32 , mwc

23 − ycmwc
33

mwp
11 − ypmwp

21 , mwp
12 − ypmwp

22 , mwp
13 − ypmwp

23

.

The coded line pattern contains L indexed parallel lines. When the coded line pattern
is projected onto the object, the parallel lines will be distorted by the depth of the object.
The camera acquires the distorted pattern image with resolution M× N. The distorted
lines in the acquired pattern image are clustered according to their indexes in the coded
line pattern. yp is computed as the y coordinate of the pixel on the distorted line. The
computed yp is stacked into an N × 1 vector for each clustered line. All the vectors are
then stacked into an L× N matrix. To make yp correspond to the (xc, yc) one by one, the
L× N matrix is transformed into an M× N matrix by spline interpolation. As a result, the
object can be reconstructed with the same resolution of the camera. Both the reconstruction
resolution and the reconstruction accuracy can be increased when the number of indexed
lines in the coded pattern is increased. On the other hand, it will be more challenging to
segment and cluster dense lines.
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4. Results and Discussion

In our established structured light 3D imaging system, a BENQ MU706 projector with
the resolution 1920 × 1200 was used to project the RGB line pattern. The projector was
calibrated manually as follows: (1) the projection angle of the projector with reference to
the object was selected as 90◦; (2) the distance between the projector and the object was
adjusted to make sure that the projected pattern could cover the object completely. In the
conducted experiments, the distance was chosen as 70 cm; (3) the focus of the projector was
adjusted manually to make sure that the RGB lines were clearly shown on the surface of
the object; (4) the contrast and brightness of the projector were adjusted manually to make
sure that the RGB lines acquired by the camera were clear enough for line segmentation.
A Blackfly BFLY-PGE-50A2C-CS camera with the resolution 2592 × 1944 was used to
acquire the pattern images. The camera was calibrated with the MATLAB camera calibrator
toolbox to calculate the distortion parameters {k1, k2, p1, p2} and they were calculated
as k1 = −0.34995, k2 = 0.15753, p1 = −0.0003, and p2 = 0.000377, respectively. The
structured light 3D imaging system was calibrated by a calibration grid with Equation (26)
and Equation (30) to compute the parameters θc and θp, respectively. The θc computed by
the calibration grid with 24 known marker points was [3.7747, 0.0174, −1.0601, 974.6918,
−0.0827, 3.8175, −0.8671, 383.6297, −0.0000, −0.0000, −0.0010] and the θp computed by
the calibration grid with 24 known marker points was [−0.1332, 3.5434, 0.4618, 335.1717,
−0.0000, −0.0002, −0.0009]. After 3D calibration, the calibration grid was used to compute
the reconstruction accuracy of the structured light 3D imaging system and the computed
mean root squared error (MRSE) was 0.4581 mm.

The proposed method was compared with state-of-the-art single-shot 3D surface
imaging methods (products) in measuring both static and moving objects. The compared
methods included: (1) passive stereo vision (Intel realsense D435 SV); (2) active stereo vision
(Intel RealSense D435 ASV); (3) light coding (Kinect V1); and (4) time of flight (Kinect V2).
To compare the reconstruction accuracy quantitatively, these single-shot imaging systems
were used to reconstruct the calibration grid and a ball. The reconstruction error was
evaluated with MRSE, and the reconstruction errors of the different methods are compared
in Table 2. As can be seen, the accuracy of the proposed method was significantly better
than those of existing methods. The reconstructed calibration grids and the reconstructed
balls of different methods are shown in Figures 11 and 12, respectively. As can be seen,
the reconstruction results of the existing methods contained significantly more noise. In
addition, there were obvious distortions in the reconstruction results of existing methods.
The angle between the two planes of the calibration grid was 90◦, and the proposed method
restored the angle much better than the other methods.

Table 2. Quantitative accuracy comparison of the proposed method with existing single-shot methods
(products) (The bold values denote the best results).

Methods\Objects Grid Ball

Intel D435 SV 5.83 mm 5.3 mm

Intel D435 ASV 0.79 mm 0.86 mm

Kinect V1 14.36 mm 1.18 mm

Kinect V2 3.05 mm 0.36 mm

Proposed 0.46 mm 0.24 mm
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Figure 11. Reconstructed calibration grids by different methods. (a) The image of the calibration
grid; (b) The acquired pattern image of the calibration grid; (c) Reconstructed calibration grid by
the proposed method in view 1; (d) Reconstructed calibration grid by the proposed method in view
2; (e) Reconstructed calibration grid by Kinect V2 in view 1; (f) Reconstructed calibration grid by
Kinect V2 in view 2; (g) Reconstructed calibration grid by Kinect V1 in view 1; (h) Reconstructed
calibration grid by Kinect V1 in view 2; (i) Reconstructed calibration grid by Intel D435 ASV in view
1; (j) Reconstructed calibration grid by Intel D435 ASV in view 2; (k) Reconstructed calibration grid
by Intel D435 SV in view 1; (l) Reconstructed calibration grid by Intel D435 SV in view 2.
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Figure 12. Reconstructed balls by different methods. (a) The image of the ball; (b) The acquired
pattern image of the ball; (c) Reconstructed ball by the proposed method in view 1; (d) Reconstructed
ball by the proposed method in view 2; (e) Reconstructed ball by Kinect V2 in view 1; (f) Reconstructed
ball by Kinect V2 in view 2; (g) Reconstructed ball by Kinect V1 in view 1; (h) Reconstructed ball by
Kinect V1 in view 2; (i) Reconstructed ball by Intel D435 ASV in view 1; (j) Reconstructed ball by
Intel D435 ASV in view 2; (k) Reconstructed ball by Intel D435 SV in view 1; (l) Reconstructed ball by
Intel D435 SV in view 2.
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These single-shot imaging systems were used to reconstruct two colorless and static
objects for qualitative comparions. One colorless object was a simple cone with cylinder,
and its reconstruction results by different methods are shown in Figure 13. The other
colorless object was a complex face statue, and its reconstruction results by different
methods are shown in Figure 14. As can be seen, the reconstruction results of the proposed
method looked better than those of existing methods. In addition, these imaging sytems
were used to reconstruct three static objects with colors. The reconstruction results are
shown in Figures 15 and 16, respectively. As can be seen, the reconstruction results of the
proposed method also looked better than those of the existing methods. Finally, these single-
shot imaging systems were used to recontruct deforming and moving objects. The typical
results of reconstructing a deforming face by different methods are shown in Figure 17, and
more reconstruction results of deforming objects by different methods are available in the
attached videos (Deforming face and Deforming hand). From all the reconstruction results
by different methods, it is seen that the proposed method is significantly more accurate
than state-of-the-art single-shot 3D imaging methods.

Figure 13. Cont.
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Figure 13. Reconstruction results of a cone with cylinder. (a) The cone with cylinder image; (b)
The acquired pattern image of the cone with cylinder; (c) Reconstructed cone with cylinder by the
proposed method in view 1; (d) Reconstructed cone with cylinder by the proposed method in view 2;
(e) Reconstructed cone with cylinder by Kinect V2; (f) Reconstructed cone with cylinder by Kinect
V1; (g) Reconstructed cone with cylinder by Intel D435 ASV; (h) Reconstructed cone with cylinder by
Intel D435 SV.

Figure 14. Reconstruction results of a face statue. (a) The face statue image; (b) The acquired
pattern image of the face statue; (c) Reconstructed face statue by the proposed method in view 1; (d)
Reconstructed face statue by the proposed method in view 2; (e) Reconstructed face statue by Kinect
V2; (f) Reconstructed face statue by Kinect V1; (g) Reconstructed face statue by Intel D435 ASV; (h)
Reconstructed face statue by Intel D435 SV.
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Figure 15. Reconstruction results of a colorful toy. (a) The toy image; (b) The acquired pattern image;
(c) Reconstructed colorful toy by the proposed method in view 1; (d) Reconstructed colorful toy by the
proposed method in view 2; (e) Reconstructed colorful toy by Kinect V2; (f) Reconstructed colorful
toy by Kinect V1; (g) Reconstructed colorful toy by Intel D435 ASV; (h) Reconstructed colorful toy by
Intel D435 SV.
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Figure 16. Reconstruction results of a cone with RGB color. (a) The RGB cone image; (b) The
acquired pattern image of the cone; (c) Reconstructed cone by the proposed method in view 1; (d)
Reconstructed cone by the proposed method in view 2; (e) Reconstructed cone by Kinect V2; (f)
Reconstructed cone by Kinect V1; (g) Reconstructed cone by Intel D435 ASV; (h) Reconstructed cone
by Intel D435 SV.
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Figure 17. Reconstruction results of a deforming human face. (a) The acquired pattern image of the
human face; (b) Reconstructed human face by the proposed method; (c) Reconstructed human face
by Kinect V2; (d) Reconstructed human face by Kinect V1; (e) Reconstructed human face by Intel
D435 ASV; (f) Reconstructed human face by Intel D435 SV.

To verify the advantage of the proposed method over existing line indexing meth-
ods [28,30], the results of reconstructing similar objects are compared in Figures 18–23. The
red lines detected by local maxima [28] are shown in Figure 18a and the red lines extracted
by the proposed method are shown in Figure 18b. It is seen that the lines extracted by the
proposed method are more accurate and more complete. In addition, the lines detected
by local maxima could not be clustered robustly by the method proposed in this paper
and the methods proposed previously in [7–9]. By comparing the reconstructed face by
the proposed method in Figure 18c,d and the reconstructed face from [28] in Figure 18f,
it is seen that the ear part reconstructed by the proposed method is significantly better.
Similar to [30], a moving and deforming hand was reconstructed by the proposed method
and the reconstructed hands were compared with those with similar gestures from [30] in
Figures 19–23. As can be seen, the reconstruction results of the proposed method are more
accurate and more complete than the reconstruction results from [30].



Sensors 2021, 21, 4819 24 of 28

Figure 18. Qualitative comparison of the proposed method with the method proposed in [28]. (a) The
detected red lines by local maxima superimposed on the acquired pattern image; (b) The extracted
red lines by the proposed method superimposed on the acquired pattern image; (c) The reconstructed
human face by the proposed method in view 1; (d) The reconstructed human face by the proposed
method in view 2; (e) The acquired pattern image in [28]; (f) The reconstructed human face by the
method in [28].

Figure 19. Qualitative comparison of the proposed method with the method proposed in [30]. (a)
The acquired pattern image in [30]; (b) The reconstructed hand in [30]; (c) The acquired pattern image
in this study; (d) The reconstructed hand by the proposed method.
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Figure 20. Qualitative comparison of the proposed method with the method proposed in [30]. (a)
The acquired pattern image in [30]; (b) The reconstructed hand in [30]; (c) The acquired pattern image
in this study; (d) The reconstructed hand by the proposed method.

Figure 21. Qualitative comparison of the proposed method with the method proposed in [30]. (a)
The acquired pattern image in [30]; (b) The reconstructed hand in [30]; (c) The acquired pattern image
in this study; (d) The reconstructed hand by the proposed method.

Figure 22. Cont.
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Figure 22. Qualitative comparison of the proposed method with the method proposed in [30]. (a)
The acquired pattern image in [30]; (b) The reconstructed hand in [30]; (c) The acquired pattern image
in this study; (d) The reconstructed hand by the proposed method.

Figure 23. Qualitative comparison of the proposed method with the method proposed in [30]. (a) The acquired pattern
image in [30]; (b) The reconstructed hand in [30]; (c) The acquired pattern image in [30]; (d) The reconstructed hand in [30];
(e) The acquired pattern image in this study; (f) The reconstructed hand by the proposed method; (g) The acquired pattern
image in this study; (h) The reconstructed hand by the proposed method.

As verified by the experimental results, the usability of the proposed method includes
profile measurement, 3D motion reconstruction and other related or similar applications.
To use the proposed method correctly and to reduce the measurement uncertainties, users
must know the limitations of the proposed method as follows.

(1) The measurement distance between the object and the structured light 3D imaging
system is constrained in a relatively small range to make sure that both the camera and
the projector are in focus, which is a common limitation of structured light technology.

(2) The proposed method is not suitable for applications that require the reconstruction
results to be full of accurate 3D details, such as defect detection.
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5. Conclusions

In conclusion, a RGB line-pattern-based single-shot structured light method is pro-
posed in this paper. The proposed method addresses the challenges of line segmentation
and line indexing more effectively and systematically than existing methods [26–30]. The
RGB lines are segmented by SDD multiple-threshold selection in the HSV color space,
which is significantly more accurate than classic classification methods. The guaranteed line
segmentation accuracy makes the subsequent line indexing feasible. In this paper, a more
robust line clustering method is proposed to index the segmented lines by an exclusion
scheme, which is more effective than existing methods in dealing with the occlusions and
large discontinuities. The proposed single-shot structured light method was verified by
extensive experimental results of reconstructing a deforming face and a deforming hand.
In addition, the accuracy of the proposed approach in measuring a calibration grid was
0.46 mm, which is significantly better than the second-best accuracy, 0.79 mm achieved by
Intel D435 ASV. The accuracy of the proposed approach in measuring a ball was 0.24 mm,
which is significantly better than the second-best accuracy, 0.36 mm achieved by Kinect V2.
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