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Spatiotemporal dynamics of information encoding
revealed in orbitofrontal high-gamma
Erin L. Rich1,2 & Joni D. Wallis1,3

High-gamma signals mirror the tuning and temporal profiles of neurons near a recording

electrode in sensory and motor areas. These frequencies appear to aggregate local neuronal

activity, but it is unclear how this relationship affects information encoding in high-gamma

activity (HGA) in cortical areas where neurons are heterogeneous in selectivity and temporal

responses, and are not functionally clustered. Here we report that populations of neurons and

HGA recorded from the orbitofrontal cortex (OFC) encode similar information, although

there is little correspondence between signals recorded by the same electrode. HGA appears

to aggregate heterogeneous neuron activity, such that the spiking of a single cell corresponds

to only small increases in HGA. Interestingly, large-scale spatiotemporal dynamics are

revealed in HGA, but less apparent in the population of single neurons. Overall, HGA is

closely related to neuron activity in OFC, and provides a unique means of studying large-scale

spatiotemporal dynamics of information processing.
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In order for a basic understanding of brain function to
emerge across disciplines, we must determine how the activity
of single neurons relates to larger voltage fluctuations recorded

as local field potentials (LFPs) or electrocorticographic (ECoG)
potentials. These mesoscale signals are a valuable source of
information: compared to single unit activity, they are easier to
obtain and maintain over time, particularly in human subjects.
Their accessibility allows us to draw comparisons between human
and animal studies1, 2, and the chronicity makes mesoscale
potentials a promising input for brain machine interfaces3–6. In
addition, devices recording these signals, particularly ECoG, can
cover more cortical territory than single neuron recordings,
allowing a larger-scale perspective of neurophysiology7. There-
fore, understanding the information carried in these signals is
critical to both basic and translational neuroscience.

Previous studies demonstrate strong links between neuron
spiking and amplitudes of high-frequency LFPs/ECoG8–13. Not
only are there temporal and trial-wise correlations1, 13, but tuning
properties observed in the local neuron population, typically a
cortical column, align with those of the LFP at frequencies above
~60–80 Hz6, 8. These findings have led to the suggestion that
high-frequency signals reflect aggregate activity of a local popu-
lation of neurons, and could be used as a proxy for neuronal
responses14, 15. However, it remains unclear whether a similar
relationship exists when neurons are not functionally organized,
but exist in heterogeneous pools. Neurons in the prefrontal cortex
(PFC), for example, do not cluster anatomically by common
tuning or response properties. Instead, anatomically intermingled
neurons respond to multiple task variables with a plethora of
temporal dynamics. Given this heterogeneity, it is not uncommon
to record two neurons with entirely different response properties
from the same electrode. As previous studies relating neuron
spiking and high-frequency LFPs have focused on cortical areas
where neural responses form organized maps, it is not clear how
aggregation of PFC neurons might be reflected in high-frequency
signals. As neural interface applications move beyond the motor
field and into realms such as psychiatry16, we must consider how
generalizable observations from sensory and motor regions are
elsewhere in the brain, and whether the cognitive information
encoded by PFC neurons can be discerned from HGA.

To address this, we investigated the relationship between
neuron spiking and high-frequency voltage fluctuations in a
region of PFC, the orbitofrontal cortex (OFC). We focused on the
OFC because of the known responsiveness of neurons in this area
to motivational task features17, 18. The OFC is critically involved
in value-based decision-making19–21, and neuropsychiatric dis-
orders are frequently associated with OFC dysfunction22–24.

Using a task with a rich structure of reward-related stimuli,
we determined how information was encoded by OFC neurons
and high-frequency LFPs. Our results show that HGA carries
abundant task-related information and reflects the aggregate
activity of OFC neurons. Rather than obscuring the hetero-
geneous information encoded by individual neurons, however,
the aggregated signal revealed spatial and temporal structure at
the mesoscale that was not observed in the single neuron
recordings.

Results
Task and behavior. Two monkeys performed a reward expecta-
tion task that included a variety of reward-related information
expected to drive neural responses in OFC. Eight familiar pictures
predicted rewards of different amounts and types (Fig. 1): either
primary reward (juice) or a secondary reinforcer. Pictures were
probabilistically associated with trial outcomes, allowing us to
distinguish encoding of expected and actual rewards. In pre-
liminary training, amounts of juice and secondary reinforcer were
titrated so that outcomes of the same ordinal value (1 to 4) were
approximately equally preferred, and rewards of higher ordinal
value were chosen over those of lower value regardless of reward
type25.

On each trial, subjects fixated on a reward-predicting picture
for 450 ms, after which one of two response-instruction pictures
appeared; one instructed the monkey to move a joystick to the
right, the other to the left. These were selected independent of the
preceding reward-predicting picture. If the joystick response was
executed correctly, a reward was delivered. Requiring a joystick
response ensured that the animals were attending to the task and
confirmed that they recognized the values associated with reward-
predicting pictures, as higher value pictures were followed by
faster joystick responses25.

The secondary reinforcer was a blue reward bar visible on the
task screen, whose length represented the amount of juice the
subject would receive after completing a trial block. The bar grew
in length when monkeys received a secondary reward, and was
automatically cashed in after four trials of any type. We
previously found that OFC neurons encoded both secondary
reinforcer amount and trial number within a block18. Therefore
these features were also assessed when comparing neuronal and
LFP encoding.

HGA reflects local neuronal activity. We recorded LFPs from a
total of 460 electrodes (256 subject M, 204 subject N) and focused
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Fig. 1 Behavioral task. To initiate a trial, subjects fixated a point in the center of the task screen for 450ms. A picture that predicted the amount and type of
reward appeared, and the subject was required to acquire and hold fixation on the picture for an additional 450ms. Then one of two images instructed the
subject to move a joystick to the right (R) or left (L). If the joystick response was executed correctly, the subject received a reward probabilistically
predicted by the initial picture. Half of the pictures predicted juice reward and half predicted secondary reinforcement
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on the amplitude of high-frequency responses. We chose a fre-
quency range from 75 to 150 Hz, which optimized the detection
of task-evoked responses in our set-up (Supplementary Fig. 1).
These frequencies consist of a broadband signal14 commonly
referred to as “high-gamma” (HG).

We first validated that HGA in this range correlated with local
neuron spiking, as expected from previous studies8–13. We
examined neuron–HG pairs recorded from the same electrode to
determine whether spiking correlated with changes in HG
amplitudes (n= 441, 259 pairs subject M, 182 subject N,
respectively). We aligned HGA to the occurrence of a spike and
computed spike-triggered HG amplitudes. There was a time-
locked increase in HGA when a spike occurred (Fig. 2a) that we
quantified by measuring amplitudes as the number of standard
deviations above a baseline measure (200 to 100ms prior to the
spike). This gave a positively skewed distribution, with most
electrodes showing an increase relative to baseline (Fig. 2b). The
shift was modest in magnitude with a mean and median change
of 0.32 and 0.23 standard deviations, respectively. For each
electrode, the mean HG amplitude ±10 ms from spike occurrence
was compared across trials to the same baseline period with a
t-test, and 90% of electrodes (397/441) showed a significant

increase (p≤ 0.01). Only nine electrodes (2%) recorded a
significant decrease in HG amplitude at the time of a spike.

We also assessed whether neurons differentially contributed to
HGA. Single units were separated into two clusters based on
waveform characteristics suggested to differentiate pyramidal
neurons and interneurons. Pyramidal neurons tend to have wider
waveforms and longer trough to peak durations, whereas
interneurons have narrower waveforms and shorter trough-peak
times26 (Fig. 2c). To ensure that cluster assignments were not the
result of variability in unit isolation, we calculated signal-to-noise
ratios (SNRs) for each neuron27, and found no differences
between the two clusters (mean SNRs for putative pyramidal cells
4.75, putative interneurons 4.65, Wilcoxon rank-sum, n= 356, 90
p= 0.58). Units in the second cluster had higher average firing
rates, consistent with their designation as putative interneurons
(Wilcoxon rank-sum n= 356, 90 p= 1.28 × 10−7) (Fig. 2d).

We computed the spike-triggered HGA for neurons in each
cluster. Putative pyramidal cells had stronger effects, evoking a
median HGA increase of 0.26 standard deviations during a spike,
compared to putative interneurons, which evoked a median
increase of 0.11 standard deviations (Wilcoxon rank-sum test
n= 349, 87 neuron–HG pairs per cluster, p= 5.9 × 10−11)
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Fig. 2 Effects of spikes on local HGA. a Spike-triggered HG responses for all neuron–HGA pairs recorded on the same electrode. The heatplot shows the
average HGA per electrode, and the overlaid line is the average across all electrodes. HGA was z-scored to the entire recording session to obtain
normalized amplitudes shown by the right y axis and colorbar. b Histogram of the magnitude of HGA changes observed on each electrode at the time of a
spike. Changes were quantified as the number of standard deviations from the mean HGA in a pre-spike baseline epoch. Averages and standard deviations
were calculated across spike occurrences. c All neurons were clustered into two groups (red, blue) based on their average waveforms. The mean waveform
of each group is shown, and gray lines indicate the parameters used for clustering. d Firing rates were higher among putative interneurons (blue) than
putative pyramidal cells (red). Boxes show the median, 25th, and 75th percentile of each cluster, with + indicating outlier neurons. *p< 0.001. e Histogram
of the magnitudes of spike-triggered HGA changes, separated into groups corresponding to the clusters identified in (c). f Histogram of
trial-wise partial correlations between neuron firing rate and HG amplitude when both were recorded on the same electrode (purple), or when they were
recorded simultaneously on different electrodes (shuffled, green). Electrode counts were converted to proportions, and Gaussian probability functions were
overlaid
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(Fig. 2e). Even with these differences, the majority of single
neurons of both types exhibited significant increases in HGA at
the time of a spike: 96% of electrodes recording a putative
pyramidal neuron showed a significant increase in HGA relative
to baseline (p≤ 0.01 by t-test), as did 77% of electrodes recording
putative interneurons.

Finally, if spiking contributes to HGA, trial-wise variability in
firing rates should also be reflected in HGA. We assessed trial-by-
trial correlations between neuron–HG pairs from the same
electrode with partial correlations, where the effects of all trial
variables from the multiple regression were partialed out. This
approach is similar to assessing the noise correlations between
neurons and HGA, which are high elsewhere in sensory cortex13.
The outcome was compared to correlations between neurons and
HGA recorded simultaneously, but where the electrode assign-
ments were shuffled. This was done to account for any correlated
activity within OFC as a whole. There were small but consistent

correlations between neurons and HGA when they were recorded
on the same electrode. Effects were similar across the trial epochs,
so we used the median Pearson R-value to compare same
electrode to shuffled-electrode pairs (Fig. 2f). The distributions of
R-values differed significantly (median 0.09 for paired, 0.007 for
shuffled data, t-test t880df= 10.6, p= 6.4 × 10−25). Therefore, there
were small but consistent trial-wise correlations between HGA
and firing rate that were independent of task events. Altogether,
all of these approaches support the notion that HGA is related to
the local neuron activity.

Similar task encoding in HGA and single neurons. To deter-
mine what information HGA encodes, we concatenated three task
epochs and performed a sliding multiple regression analysis in
windows of 200 ms, stepped forward by 40 ms. Predictors inclu-
ded the following: the expected size and type of reward, the
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interaction expected size × type, the joystick response direction,
the actual size, actual type and interaction actual size × type of
reward received, the size of the reward bar prior to reward
delivery, and the trial number within a block, which predicted
when the bar would be cashed in for juice. Significant interaction
terms indicated differential encoding of reward size, depending
on the type of reward.

HGA dynamically encoded relevant information at each stage
of the task (Fig. 3a). After the appearance of a reward-predicting
picture, HGA encoded the expected reward size, followed by the
joystick response once the instructional cue was presented, then
the reward that was actually received after reward onset. The two
variables that were constant within a trial but varied across trials
were also encoded (Supplementary Fig. 2).

In the population of single neurons, the overall encoding
pattern was similar to that of HGA (Fig. 3b). The same multiple
regression analysis was conducted on each of 451 single neurons
(259 subject M, 192 subject N), and revealed strong encoding of
expected reward size following a reward-predicting picture (42%
of neurons), then a smaller number of neurons encoding response
direction (24%), then a surge in received reward size (33%) and
type (41%) encoding following reward delivery.

To quantitatively compare HGA and neurons, we found the
cumulative number of neurons or channels encoding each
variable at any point in the relevant trial epoch. Although the
patterns appeared similar, HGA had more pervasive encoding of
received reward variables (Fig. 3e) (χ21df> 34 by pairwise χ2 tests,
p< 4.4 × 10−8 after Bonferroni correction for nine comparisons).
This stronger signal may be the result of HGA aggregating across
many neurons, reducing the temporal and/or trial-wise variability
found in single neuron firing rates, and resulting in more
instances of significant encoding. If this were true, other aggregate
signals such as multi-unit activity (MUA) may resemble HGA
more closely than single neurons. To test this, we separated
MUA, including all spikes previously categorized as single
neurons, from non-neuronal noise, to arrive at a typical MUA
signal (n= 400 MUs, 215 subject M, 185 subject N). In addition,
to test another mass signal, we aggregated all spiking recorded
simultaneously to create a summed multi-unit signal for each
session (ΣMUA). The same regression was run with these MU
signals as described for neurons and HGA. Indeed, MUA revealed
patterns that resembled HGA and neurons, with encoding levels
that were intermediate to the two. For example, among HGA
channels, MUA channels, and neurons, 52, 37, and 33%
(respectively) encoded received reward size, and 73, 54, and
41% encoded received reward type (Fig. 3c). Interestingly, ΣMUA
had more encoding of all task variables than HGA (Fig. 3d). This
is likely because ΣMUA combined many channels across the
entirety of OFC, aggregating even more than HGA. Overall, this

supports the notion that aggregation of spiking activity increases
the incidence of significant encoding in this analysis.

If HGA aggregates across neurons, we would expect more task
correlates per HG channel, as if multiple neurons were added
together. Since encoding was defined across epochs, a neuron or
HG channel that encoded, for example, expected and received
reward size, would have two correlates, as would a neuron or
channel that encoded both expected reward size and trial number.
Indeed, there were significantly more correlates per HG channel
than per neuron (Wilcoxon rank-sum test n= 460, 451, p= 1.9 ×
10−13). Neurons tended to have 1 to 3 correlates, whereas HG
channels had 4 to 5 (Fig. 3f). This supports the idea that OFC
HGA reflects an aggregation of multiple heterogeneous signals,
such that task features linearly add to give rise to the overall HG
amplitude.

Finally, we tested whether neurons and HGA recorded from
the same electrode had similar encoding properties. To assess
this, we found the proportion of electrodes for which both signals
encoded a given variable (e.g., expected reward size), then
compared this to the proportion of electrodes expected to have
the same encoding in both signals by chance. For example, 42.1%
of neurons and 44.8% of HGA channels encoded expected reward
size. If the signals were independent, by chance 18.9% (42.1% ×
44.8%) of electrodes would record neuron–HG pairs that both
encode expected reward size. We compared these proportions
with binomial tests (Bonferroni-corrected for nine comparisons),
and found that coincident encoding was never observed more
than expected by chance (p> 0.05) (Fig. 3g). This result seems
surprising, as it appears to contradict the notion that HGA is
aggregate neuronal activity. However, if a large number of
heterogeneous neurons contribute to HGA, there would be a low
probability that one recorded neuron drives the overall HGA
encoding.

Anatomical distribution of task encoding. So far, our results
indicate that HGA aggregates neurons with heterogeneous
properties. With this in mind, we assessed the anatomical dis-
tribution of encoding to determine whether responses are, indeed,
heterogeneous or if they tended to cluster. Recording sites
spanned ~11mm in the anterior–posterior (AP) dimension and
were located between the medial and lateral orbital sulci, covering
~6 mm width. This includes OFC areas 11 and 13. Although we
cannot identify cytoarchitectonic boundaries from structural
brain scans, more anterior electrode sites should be in area 11,
whereas posterior sites should be in 13. These areas differ in
cytoarchitecture, with more laminar differentiation and higher
cell densities in area 1128, 29. To determine whether differences in
cytoarchitecture might change HGA generally, we first assessed
picture-evoked responses at each AP electrode position. There
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were two clear patterns, an early phasic response peaking
~250 ms after picture onset, followed by a more sustained
response beginning at ~500 ms. These two components were also
apparent in the averaged signal in Supplementary Fig. 1b.

When sorted by AP position, the early phasic response was
only present in anterior electrodes, but the sustained
response was present throughout OFC (Fig. 4a). To quantify
this, principal component (PC) analysis extracted the first and
second PCs across electrodes, which correspond to the two
response profiles (Fig. 4b), and together accounted for 63% of
response variance. PC weights measured how strongly each
response profile was manifest on a given electrode. For example,
electrodes with an early phasic component had higher PC2

weights. Indeed, PC2 weights (early phasic responses) increased
at more anterior positions, whereas PC1 weights (sustained
responses) did not depend on position (Fig. 4c). Pearson
correlation with AP position was significant for PC2 (n= 460,
R= 0.33, p= 3.6 × 10−13), but not PC1 (R= −0.07, p= 0.12).
These results suggest that HGA varies across electrodes and may
be a useful measure for identifying spatiotemporal signatures
across different regions of cortex. The early phasic responses also
coincided with a negative potential at ~240 ms in the broadband
LFP that was larger among anteriorly placed electrodes
(Supplementary Fig. 3).

To assess encoding of task variables at different anatomical
locations, electrode locations were collapsed onto an AP by
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medial–lateral (ML) grid by combining across hemispheres, based
on the AP position and distance lateral to the midline. We first
assessed the percent of neurons at each location encoding task
variables prior to feedback, including the expected size and type
of reward and the direction of the joystick response. Neurons and
HGA encoding pre-reward variables were found throughout OFC
(Fig. 5). To quantify encoding across AP locations, we collapsed
across the ML dimension to find the total proportion of neurons
or HG channels encoding each variable at sites in anterior OFC
(AP 28 to 34, relative to the inter-aural line) and posterior OFC
(AP 23 to 27) with χ2 tests (Bonferroni-corrected for nine
variables tested). Among neurons, there was a weak tendency to
encode expected reward size anteriorly (χ21df= 8.31, corrected p
= 0.04), but this did not reach significance in either subject
individually (both χ21df< 4.5, corrected p> 0.3). However, in
HGA, encoding of expected reward size was much stronger
anteriorly (χ21df= 37.7, corrected p= 7.4 × 10−9), and the effect
was significant in both subjects individually (both χ21df> 14.4,
corrected p< 0.002). No other pre-reward variables differed
between anterior and posterior OFC among neuron or HG
populations (χ21df< 3, corrected p> 0.9). Therefore, at a large
anatomical scale, HGA encoding patterns were more pronounced
than those observed among single neurons. We performed the
same analyses on task variables related to reward receipt, as well
as the reward bar length and trial number within a block, and
found similar though less marked effects, whereby HGA encoding
showed stronger anatomical trends than single neurons (Supple-
mentary Fig. 4).

HGA and neurons differ in encoding valence. It is well docu-
mented that roughly half of OFC neurons that encode stimulus
value do so directly, by increasing firing rates for higher value
items, whereas the other half do so inversely, by increasing firing
rates for lower value items17, 30–32. Such opposing schemes are
common to many features encoded in PFC33–35. An example

from the current dataset is in Fig. 6a, which shows two units
recorded simultaneously from the same electrode. If the activity
of neurons with opposite encoding schemes were aggregated, one
might expect weaker or no encoding in HGA, rather than
stronger encoding as we observed here.

To investigate how the valence of encoding in HGA relates to
single neurons, we looked at the beta coefficients from the
multiple regressions above. Figure 6b shows significant betas for
expected reward size for all HG channels, sorted by encoding
latency. Positive betas, which indicated higher amplitudes for
larger reward sizes, were sorted separately from negative betas,
which indicated higher amplitudes for smaller reward sizes. There
were two temporally distinct volleys of expected reward encoding
with positive encoding occurring first, followed ~500 ms later by
negative encoding. Separate channels encoded reward size in
different directions, and few channels (~5%) flipped from positive
to negative later in the trial.

Similar positive and negative responses were evident in the
single neurons, but with different temporal dynamics (Fig. 6c). To
compare encoding latencies between the two signals, we
conducted a 2×2 ANOVA that revealed an interaction between
the signal (HGA vs. neurons) and encoding valence (positive vs.
negative) (F1,522= 29.2, p= 1 × 10−7) (Fig. 6d). There was no
latency difference between HGA and neurons with positive
encoding (post hoc analyses of simple effects within valence
F1,522= 1.6, p= 0.2), but a large difference between HGA and
neurons with negative encoding (post hoc analyses F1,522= 38.7,
p= 1 × 10−9), suggesting a disparity between the two signals. In
this case, it appeared as if there was no neuronal correlate of the
negative HGA encoding volley.

To further understand this relationship, we looked at the
overall variability in neuron firing rates, regardless of whether
they reached significance in our encoding tests. We identified HG
channels with significant encoding of expected reward size, as
well as the neuron(s) recorded from the same electrode, and
assessed the similarity in their beta coefficients. HG channels
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either encoded reward size positively in the first 500 ms or
negatively about 500 ms later (Fig. 7a). Neurons had more
heterogeneous responses, but tended to have the same valence as
HGA recorded from the same channel. If the signals were
unrelated, we would expect the average neuronal response would
not vary depending on HGA. However, Fig. 7b shows that, even
though there were not exclusive mappings, the average beta
coefficients follow similar patterns.

To quantify the relationship between encoding valences, we
correlated beta coefficients between all neuron–HG pairs in two
500ms epochs (0–500ms and 500–1000ms from picture onset).
In both cases, there was a small but positive relationship
(n= 441 pairs, R= 0.27, 0.17 and p= 9.1 × 10−9, 8.4 × 10−5,
respectively), even though the coefficient values shifted from
more positive betas in the first 500ms to more negative betas in
the second (Fig. 7c). Therefore, when we considered all variance in
neuron firing rates, including that which did not reach statistical
significance, relationships to HGA were revealed, consistent with
the notion that HGA reflects an aggregated and amplified signal
from single neurons. Indeed, MUA also showed distinct temporal
patterns for positive and negative encoding (Supplementary
Fig. 5a–c). Thus, aggregation in HGA or MUA revealed more
temporal structure in OFC value encoding than we could obtain

from single neuron activity. Comparing MUA and HGA recorded
from the same electrode yielded a pattern intermediate to single
neurons and HGA, again as would be expected if MUs aggregate
over smaller populations of neurons than HGA (Supplementary
Fig. 6a–c).

Received reward size encoding. To determine how generalizable
these results are, we analyzed neuron and HGA responses during
reward receipt. Neurons encoded received reward size both posi-
tively and negatively in approximately equal proportions (cumu-
latively 24% positive, 21% negative). In contrast, a large
proportion of HG channels encoded reward positively (59%) and
very few showed negative encoding (8%) (Fig. 8). More homo-
geneously positive encoding in HGA could be a result of aggre-
gating across single neurons, where positive encoding was slightly
more prevalent. Indeed, MUA on single electrodes showed an
intermediate pattern, with a bias toward positive encoding,
whereas ΣMUA had nearly entirely positive encoding (Supple-
mentary Fig. 5d, e), suggesting that the positive bias increased with
increasingly aggregate signals. Because HGA lacked appreciable
negative encoding, we did not analyze these responses further.

With regard to encoding the type of reward received, we found
pronounced differences between neurons and HGA (Fig. 9a, b).
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Here the sign of beta coefficients denoted whether responses were
stronger for primary or secondary rewards. Approximately equal
proportions of neurons responded preferentially to each reward
type (42% juice, 50% reward bar), but a majority of HG channels
initially preferred juice rewards (85%), and later favored
secondary rewards (52%). This shift occurred ~2 s after reward
onset, during the inter-trial interval. The average time course of
HGA showed that responses to juice reward began earlier and
decreased earlier than responses to secondary rewards, resulting
in beta coefficients that changed over time. Mean encoding
latencies were 755 and 2016 ms when HGA was higher for juice
and reward bar, respectively (Fig. 9c). A 2×2 ANOVA of latencies
revealed an interaction between signal (HGA vs. neurons) and
reward type (F1,1046= 265.5, p= 2.3 × 10−53). Simple effects
analyses found that all contrasts were significant (all F1,1044>
11, p< 9 × 10−4), with neurons responding earlier to secondary
rewards and HGA responding earlier to juice reward, the latter of
which produced the most significant contrast (Fig. 9d). The
different responses to juice and reward bar may be an effect of the
different sensory modalities carrying reward information, or
additional processing required for interpreting secondary
rewards. In this case, MUA did not approximate HGA patterns
(Supplementary Fig. 5f–h).

As in the earlier epoch, we assessed whether variability in
neuron firing rate, regardless of regression significance, correlated
with HGA on the same electrode. Beta coefficients for HG
channels with significant encoding of reward type within the 3 s
after reward, as well as the neuron(s) recorded on the same
electrode (n= 407 pairs), are shown in Fig. 10. On most HG
channels there was a rapid response to the receipt of juice reward
that was sustained for variable durations, followed ~2 s later by
higher activity on trials when the subject received a secondary
reward (Fig. 10a). A similar pattern was not clearly discernable
among single neurons (Fig. 10b), nor MUA (Supplementary
Fig. 6d). Despite the heterogeneity of spiking data, there were
consistencies with HGA. Pearson correlations between average
beta coefficients for reward type in pairs of HGA and neurons
recorded from the same electrode were weak but positive in both
the first 500 ms after reward onset, when most HG responses
were stronger on juice reward trials (n= 407 pairs, R= 0.24,
p= 3.1 × 10−7) and in 500ms starting 2.5 s after reward onset,
when most HG responses were stronger on secondary reward
trials (R= 0.32, p= 2.1 × 10−11) (Fig. 10c). MU activity submitted
to the same analysis showed similar correlations with HGA as
single neurons (Supplementary Fig. 6e). Overall, the responses to

different types of rewards provided the biggest distinction
between spiking activity and HGA, with more response
heterogeneity in spiking data, though there were some consis-
tencies between signals.

Discussion
The main question we aimed to address was whether PFC neu-
rons and HGA encode similar information during cognitive
processing. We focused on the OFC and used a task with a rich
structure of motivational cues that would produce diverse
encoding in these neurons. Taken together, our results revealed a
high degree of similarity in the information encoded by HGA and
single neurons, and the dominant variables encoded by both sig-
nals reflected information pertinent to the task at each point in
time. Previous work has shown that HGA is a reliable signal for
mapping regional activation in the brain2, and a good deal of
evidence suggests that HG responses reflect the aggregated spik-
ing of local neurons8–13. However, these investigations have
primarily been carried out in sensorimotor cortical regions where
neurons exhibit some degree of functional clustering, which
appears to be a critical factor in LFP encoding8. It was unknown
whether heterogeneity in PFC would result in HGA that is less
selective for task information than corresponding neuron popu-
lations. Our results show that this is not the case. Encoding in
HGA was slightly stronger than among neuron populations,
suggesting a more widespread or less noisy signal, consistent with
earlier reports of information fidelity on par with or better than
that observed in single neurons6, 36. Overall, these results show
that it is reasonable to use HGA to infer dynamics of information
encoding across brain regions2 including PFC, underscoring
HGA as an important signal for understanding and interfacing
with brain functions7.

Although there was a good deal of similarity between neurons
and HGA encoding at the population level, this did not extend to
hyperlocal pairings of neurons and HGA recorded from the same
electrode. The variable(s) encoded by a given neuron did not
predict those encoded by the corresponding HGA. In some
respects, this seems counter-intuitive since we also claim that
local neurons contribute to HGA. To make sense of this finding,
we must consider the functional heterogeneity of neurons in
OFC. Regions of PFC are broadly distinguished by trends in
physiological responses18, 37, 38, but these differences cover large
areas and have not supported the notion that there are sub-
regional maps analogous to those in sensory or motor cortex.
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Instead, information encoded in PFC tends to be intermingled,
with multiplexing39 or mixed selectivity40, 41 described at the
single neuron level. These features may contribute to PFC’s
computational abilities. Some have argued that, because of this
signal mixing, task-related responses in PFC provide an inferior
metric for anatomical parcellation, compared to trial-wise cor-
relations in neuron activity42. OFC neurons encode a variety of
task features with a mix of encoding valence18, 32, 37, 43–45 and
task-evoked responses have revealed little if any anatomical
organization within OFC areas 11 and 1318, 32, 44, 45.

Although these properties of OFC neurons are well established,
the results presented here are the first thorough investigation of
HGA in non-human primate OFC. Elsewhere in the brain, it is
estimated that the LFP recorded from a microelectrode reflects
neuronal activity within ~250 μm of the tip46, though this may
increase with coordinated neural activity47. Given average cell
densities in PFC29, this means that at least 2000 to 3000 neurons
contribute to HGA on one electrode. Although neuron con-
tributions are thought to scale with distance to the recording
electrode1, in a pool of this size the contribution of any given
neuron to the overall HG response would remain small. In
agreement with this, we found consistent contributions of single
neuron spiking to HGA recorded on the same channel. But these
contributions were small, so that a single neuron did not drive
overall encoding properties of HGA.

In contrast to our results, HGA correlates with population
responses when neurons with similar tuning properties are ana-
tomically clustered8, 9, 48, and there is evidence that this corre-
lation is based on the spatial scale of functional groupings8. It is
likely that signals existing over larger spatial extents have more
impact on high frequencies, and contribute to a broader range of
frequencies. This may explain why encoding of expected reward
size, for example, is found among many OFC neurons and
appears as a robust signal in HGA, whereas expected reward type
is only encoded by a small and distributed number of neurons
and not found in HGA. This encoding may be obscured by the
more prevalent and widespread signals.

A prominent feature of our data was that HGA revealed clearer
spatial and temporal structure than single neurons. Anatomically,
the biggest distinctions were between anterior and posterior OFC.
Few studies have reported AP differences in neuronal respon-
ses49, and in agreement we find very weak differences in our
population of neurons. However, there were pronounced differ-
ences in HGA encoding, with some task correlates, particularly
expected reward size, more prevalent in anterior OFC. The
anterior region also exhibited early phasic responses that were not
found in posterior OFC sites. This regional variation may cor-
respond to anterior area 11 and posterior area 13, which are
distinguished by differences in cytoarchitecture29, 50 and
connectivity51, 52, and can be functionally dissociated in neu-
ropsychology studies53, 54. Murray et al.53 recently reported a
double-dissociation in macaque OFC, with areas 13 and 11
uniquely required to update and use stimulus-value information,
respectively. These results are consistent with our finding that
learned value information is preferentially represented in anterior
OFC. Importantly, our posterior OFC sites, while lacking the
early phasic responses found in anterior OFC, still exhibited
robust HG sustained responses on par with anterior sites, and the
different cytoarchitecture in posterior OFC did not result in an
overall degraded HGA signal.

In addition, HGA revealed temporal structure that was not
apparent among single neurons. This was illustrated with respect
to encoding valence, that is, whether responses were stronger for
more or less valuable pictures and rewards. There were roughly
equal proportions of neurons that were more active for large
rewards and for small rewards, consistent with previously

described data18, 32, 37, 43–45. These two populations were mostly
overlapping in time course, with slightly earlier responses among
neurons with positive valence. In contrast, HGA had more
structure. When subjects viewed a reward-predicting picture,
there were two volleys of HG encoding. The first included
channels that responded more to large rewards followed ~500 ms
later by channels responding more to small rewards. The two
volleys overlapped with the early phasic and late sustained pat-
terns found in evoked responses. The significance of these two
volleys of activity remains to be determined, but may reflect the
activity of different long-range circuits interacting with OFC55.

At the time of reward receipt, HGA and neuronal signals
exhibited further differences. There were almost no HG channels
that responded more for small rewards, despite the fact that nearly
half of single neurons did. This was in contrast to the bivalent
responses elicited by reward-predicting pictures. Further, slightly
more single neurons preferentially responded to secondary rewards,
whereas nearly all HG channels initially responded more to primary
rewards, followed by a delayed response to secondary rewards.

How, then, can we reconcile the different patterns that emerged
from these two signals with the notion that HGA reflects neural
spiking8, 9, 48? One explanation might lie in the relationship we
observed between HGA and neuronal encoding when the regres-
sion models were not thresholded for significance. In this case,
statistically significant trends observed in HGA were weakly
apparent in neurons recorded from the same electrode. That is,
neurons that responded to a reward-predicting picture with
non-significant increases (or decreases) in firing rate tended to be
recorded from electrodes where HGA encoding was also positive
(or negative). Since one recorded neuron represents only a small
proportion of the population contributing to HGA, consistent
valence relationships between one neuron and HGA suggest that
these trends are a pervasive feature of the local neuron population.
Even small changes in firing rate could create robust HGA encoding
when present across a population of neurons. One possible
mechanism for these small but pervasive shifts is subthreshold
voltage fluctuations that affect collections of neurons, making each
more or less likely to emit a spike at a given time56. Although this
would create only small changes in a given neuron, the aggregate
effect in a population would be larger. Indeed, the LFP is known to
correlate with membrane potentials of neurons in the vicinity of the
electrode56, and synchronous activity is believed to make strong
contributions to HGA1, 11, potentially explaining how small changes
in the spiking probability of individual neurons could result in large
modulations of HGA.

Overall, our results show that high-frequency LFP signals
recorded from OFC were related to the spiking activity of local
neuronal populations, consistent with results elsewhere in cor-
tex8–13. Potentials in the HG range provided a high quality signal
that robustly encoded similar information as single neurons. In
those cases where HGA appeared to diverge from neuronal
activity, the disparities could be explained by smaller shifts in
neural firing rates that were not considered significant in formal
encoding analyses. In addition, HGA provided more insight into
spatial and temporal variability at the mesoscale, making it a
promising signal for understanding functional organization
across cortex, and bridging single unit recording in animals and
neurophysiology in humans.

Methods
Subjects and behavior. Subjects and behavior have been described in a previous
publication that investigated network-level mechanisms of choice25. Here we
focused on separate trials that included only a single reward-predicting picture. All
procedures were in accord with the National Institute of Health guidelines and
recommendations of the University of California at Berkeley Animal Care and Use
Committee. Subjects were two male rhesus macaques (Macaca mulatta), aged 7
and 9 years, weighing 14 and 9 kg at the time of recording. Subjects sat in a primate
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chair, viewed a computer screen and manipulated a bidirectional joystick. Task
presentation and reward contingencies were controlled using MonkeyLogic soft-
ware57, and eye movements were tracked with an infra-red camera (ISCAN,
Woburn, MA).

Reward-predicting pictures were 8 familiar images of natural scenes, ~2° × 3° of
visual angle. Pictures were selected randomly from this set on each trial. Four
pictures predicted the delivery of juice reward (0.05, 0.10, 0.18, 0.30 ml), and four
predicted that the length of the reward bar would increase by a set increment
(Fig. 1). Prior to task training, subjects were conditioned to associate the length of
the reward bar with a proportional amount of juice obtained at the end of a trial
block. When given a choice, subjects M and N chose pictures that predicted larger
over smaller gains on 91 and 97% of choices, respectively25. After four completed
trials, the reward bar was automatically exchanged for the corresponding amount
of juice and reset to a small initial size. This exchange occurred regardless of the
trial type or outcome of the trials in the block.

Outcomes associated with the pictures were probabilistic. On 4/7 trials (~57%),
the actual reward amount and type were consistent with the reward-predicting
picture. On 1/7 trials (~14%), the actual reward type was consistent with the
predicted reward type, but the actual reward amount was one of the three other
values. On 1/7 trials (~14%), the actual reward amount was consistent with the
predicted reward amount but the actual reward type was the opposite of the
predicted type. Finally on 1/7 trials (~14%), both reward amount and type were
inconsistent with the reward-predicting picture.

The single-picture trials analyzed here, in which only one reward-predicting
picture was shown, were randomly interleaved with choice trials in which two
pictures were randomly selected and the subject was allowed to choose one and
receive the corresponding reward. Choice trials have been described in detail
elsewhere25. Briefly, both subjects preferred pictures of higher ordinal value, and
reward amounts were titrated so that preferences were approximately equal across
different types of reward. Sessions in which < 300 trials were completed were
excluded to ensure sufficient sampling of neural responses (3 subject M, 1 subject
N). A total of 44 recorded sessions were included (24 subject M, 20 subject N).

Neurophysiological recording. Subjects were implanted with head positioners and
two titanium chambers positioned to access OFC bilaterally. Up to 16 electrodes
were acutely lowered to OFC through craniotomies following previously described
methods25. Electrodes targeted areas 11 and 13 based on previously obtained MR
images and acoustically mapping gray and white matter boundaries during low-
ering of electrodes. Neurons were not screened for selective responses, and all well-
isolated neurons in the target region were recorded and included in the analyses. If
a neuron was not isolated, the electrode was left in the cortical layer to record LFP
and MU activity.

Neural signals were acquired with a Plexon MAP system (Plexon, Dallas, TX),
with all signals referenced to ground, which contacted skull screws. The continuous
signal was split into two streams online by the preamplifier. The LFP stream was
high-passed at 0.7 Hz then low-passed at 300 Hz and digitized at a rate of 1 kHz.
The spike stream was high-passed at 100 Hz and low-passed at 8 kHz, and
waveforms crossing threshold were digitized at 40 kHz and stored, with gains and
thresholds manually adjusted on a channel-by-channel basis. High-pass filters and
low-pass filters were 2-pole and 4-pole Butterworth, respectively.

Neural signal processing. Single units and MUs were separated offline (Offline
Sorter, Plexon). Initially, single units were isolated as spikes that formed distin-
guishable clusters with consistent waveform shapes and ≥ 99.8% inter-spike
intervals longer than 1400 μs. Then, remaining low-amplitude waveforms were
separated from noise clusters and artifacts, and combined with isolated single units
on the same electrode to create MU clusters. If low-amplitude waveforms were not
well separated from non-neuronal noise, these clusters were excluded. For analysis,
spike times were transformed to a time series with 1 kHz resolution, where 1
indicated the presence of a spike, and 0 the absence. For encoding analyses, this
time series was smoothed with a 50 ms boxcar and z-scored across the entire
session.

Raw LFP signals were first evaluated visually and channels with excessive
artifact, or in which the voltage was clipped by the amplifier, were removed. The
remaining channels were notch filtered at 60, 120 and 180 Hz before being
submitted to further analyses.

Data analysis. For the power spectrum analysis, we used a 4 s time window
around the appearance of a picture (−1 to 3 s) on all correctly completed single-
picture trials, and averaged the spectrum across trials for each electrode. Chronux
software58 was used to obtain a multitaper estimate of the power spectrum above
50 Hz. Frequencies beyond 300 Hz were removed by hardware filter and therefore
not recoverable. Because the Butterworth filter produces minimal distortion below
the low-pass limit, we assessed frequencies up to 275 Hz. We used five tapers and a
time bandwidth product 3.

For the remaining analyses of the LFP as a time series, LFPs were band-passed
using a finite impulse response filter and analytic amplitudes were obtained from
the Hilbert transform of the pass bands. Artifacts were removed by thresholding
the amplitude time series within ±7 standard deviations of the overall mean. For

evoked response and encoding analyses, amplitudes were smoothed with a 50 ms
boxcar, z-scored, and detrended across the entire session. The resulting time series
was aligned to task events. For the spike-triggered analysis, the data were not
smoothed, and we used a random sample of 10,000 emitted spikes for high-firing
rate neurons to reduce computational processing time.

For encoding analyses, time series of spikes or HG amplitudes were aligned to
three task events to extract an epoch of interest: (1) the appearance of a reward-
predicting picture (−500 to 2000 ms), (2) the appearance of the response-
instruction picture (−500 to 500 ms), and (3) the delivery of reward (juice or
reward bar, −300 to 3000 ms). The three epochs were concatenated to yield an
overall evolution of the task with neural activity aligned to events. In the multiple
regression analysis, all reward size variables were ordinal (1 to 4) and re-centered
around zero, and reward type was dummy coded as −1 for secondary reward and
+1 for primary reward. We defined significant encoding as three consecutive 200
ms bins with a regressor weight that was significantly non-zero at p≤ 0.01.
Encoding latencies were defined as the mid-point of the first of these significant
windows, resulting in ≤ 2% of neurons or channels with encoding latencies <0 ms.
Encoding during each epoch was summarized as the cumulative percent of
neurons/channels encoding each variable in a specified time window following a
task event. These were as follows: 1000 ms after appearance of a reward-predicting
picture for expected variables (expected reward size, type and size × type
interaction), 500 ms after appearance of a response-instruction picture for response
direction, 1000 ms after reward onset for received reward variables (received
reward size, type and size × type interaction), and the full time series of three
concatenated epochs for reward bar size and trial number. Encoding patterns were
similar in both subjects (Fig. 2e), and therefore data were pooled.

To cluster neurons into putative pyramidal cells and interneurons, we used the
average waveform of each unit and found the time from the trough to the following
peak, as well as the width of the negative segment of the waveform at half its
amplitude26. Cells were clustered using k-means, optimized by randomly initiating
the algorithm 1000 times and selecting the solution that minimized the sum of
squared distances to the assigned cluster center. SNRs were calculated as

SNR ¼ max W
� ��min W

� �

2 ´ SDε
;

where W is the mean waveform and SDε is the standard deviation of the matrix of
noise values27.

For trial-by-trial correlations, correlations were performed in sliding windows
of 200 ms, stepped forward by 40 ms, over the same periods as the multiple
regression. The data were first detrended by removing the best-fit linear trend
across trials from the average measure in each time window to remove potential
effects of electrode drift that could inflate the correlation.

To create anatomical maps of OFC recording sites, the distance anterior to the
inter-aural line and lateral to midline was found for the region of cortex contacted
by an electrode lowered from each site in the recording chambers, based on pre-
surgical MR images. The two hemispheres of each animal were then combined to
create one grid-based map of OFC. As these maps showed that the most variability
in neural responses occurred between anterior and posterior OFC, statistical
comparisons were performed by finding the total number of HG channels or
neurons recorded at AP positions ≥ 28 mm (the mid-point of the recorded region)
and < 28 mm, finding the proportion in each group with a given encoding
property, and performing a χ2 test to determine whether the proportion differed in
anterior and posterior OFC. When the same encoding properties were tested in
multiple ways, the p-values were Bonferroni-corrected.

Data availability. The data that support the findings in this study will be made
available from the corresponding author upon reasonable request. Code for these
analyses is also available from the corresponding author upon request.
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