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Abstract: Orbital angular momentum (OAM) is gaining great attention in the physics and
electromagnetic community owing to an intriguing debate concerning its suitability for widening
channel capacity in next-generation wireless communications. While such a debate is still a matter
of controversy, we exploit OAM generation for microwave imaging within the classical first order
linearized models, i.e., Born and Rytov approximation. Physical insights into different fields carrying
`-order OAM are conveniently exploited to propose possible alternative imaging approaches and
paradigms in microwave imaging.

Keywords: linearized inverse scattering; microwave imaging; orbital angular momentum;
born approximation; rytov approximation

1. Introduction

Microwave imaging (MWI) deserves great attention in the electrical engineering community due
to its potential applications as disparate as subsurface and planetary exploration (ground penetrating
radar), non-destructive testing (NDT), biomedical imaging, and so on and so forth [1–3]. However,
while huge efforts have been addressed in recent years towards the development of experimental
equipment, which jointly exploits the availability for relatively low cost microwave devices and the
ever increasing computing power of modern CPUs [4,5], the underlying inverse scattering problem
(ISP) solution still requires great efforts from the methodological and modeling point of view. This is
related to two main features of ISPs: non-linearity and ill-posedness. Indeed, if both of them are not
properly faced, MWI cannot be used in any practical instance. To face them, a priori information can
be exploited in many different ways to obtain reliable inversion or optimization strategies equipped
with effective regularization schemes [6–8].

Generally speaking, microwave imaging approaches can be grouped into two main classes:
quantitative and qualitative approaches. The first one aims to retrieve both electromagnetic and
geometric features, whereas the second one allows only shape characterization of an unknown
scattering system in a surveyed region. In general, quantitative methods require the solution of
a non-linear problem that inherently results in non-trivial issues, such as local minima [9,10] and
regularization of non-convex problems. On the other hand, qualitative methods make a trade-off
between the difficulty of solving a non-linear problem and the limited amount of information
to be conveyed back from scattered field data. Obviously, a plethora of hybrid methods coexist
in the literature, wherein several stepwise optimization strategies, regularization approaches,
and approximate models have been proposed to face the inverse scattering problem. Very recently,
also machine learning (ML) and deep learning (DL) have been applied to inverse scattering
problems [11,12].
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Besides the above, with reference to the present paper, it is worth mentioning a recently proposed
paradigm for solving inverse scattering problems. Such a paradigm stems from the design of new
scattering experiments to recast the original ones into new “virtual” experiments by means of a suitable
“design equation”. This latter entails a simple linear recombination of scattered field data, which,
owing to the linearity of scattering experiments, enforces the total electric field to be tailored with
a specific distribution within the imaging domain. Since these scattering experiments are designed
without additional measurements (i.e., only via software processing), they have been named virtual
experiments (VE) [13–17]. All these approaches have shown an enhanced capability in imaging
scatterers not belonging to the weak scattering regime, while facing the problem in a simpler, or more
effective/efficient way, than many other imaging approaches currently available in the state-of-the-art.

In this view, other papers have investigated the use of different kinds of probing fields in
microwave imaging. For example, in [18], orbital angular momentum (OAM) incident fields of
order higher than ` = 0, generated through a planar array, were exploited to perform 3D imaging with
an observed improvement in the resolution beyond the Rayleigh limit. In [19], sub-wavelength focused
near-field (NF) beams and Bessel beams [20–22] were proposed to perform imaging in scenarios when
possible undesired scatterers are present, and in [23], OAM incident fields were used for accurate
recovery of sparse objects through mask-constrained sparse reconstruction.

In order to investigate the capability of OAM antennas in microwave tomographic imaging,
possibly exploiting additional degrees of freedom carried by the topological charges of such fields,
in this paper, we consider the use of OAM incident fields generated by properly feeding a cylindrical
array of filamentary currents. Specifically, the “view diversity” conventionally exploited in the
scattering experiments is traded with the “mode diversity” carried by OAM incident fields of different
order. In doing this, we adopt linearized imaging procedures valid under weak scattering regimes
both for small and large scatterers, namely Born and Rytov approximations. Although the problem is
strongly simplified under this assumption, the study of linearized inverse scattering problems allows
understanding, often by analytical findings, the role of fundamental parameters in the reconstruction
capabilities of an imaging method, under adopted measurement configurations, such as the frequency,
the number and configuration of probes, etc. Moreover, linearized approaches can be practically useful
also when the working hypotheses underlying the weak scattering regime are not fully satisfied, that
is when one wants to pursue only a qualitative characterization through microwave imaging.

The paper is structured as follows. In Section 2, the mathematical formulation of the scattering
problem is given with respect to the scalar transverse magnetic (TM) 2D case. In Section 3, the linearized
imaging procedure through OAM probing fields and Born and Rytov approximations are introduced.
In Section 4, the proposed imaging strategy is validated against numerical examples. The conclusions
end the paper.

2. Mathematical Formulation of the Inverse Scattering Problem

We consider the two-dimensional inverse scattering problem dealing with the TM polarization
(scalar formulation) wherein nonmagnetic scatterers (µs = µ0) are embedded into a homogeneous
background medium. The location and the electromagnetic properties inside the domain are unknowns,
and the vector r(x, y) denotes the position inside the investigation domain Ω. Time-harmonic
dependence ejωt, with angular frequency ω = 2π f , is assumed dropped, and bold text notation
for the electric fields is used hereafter.

To reconstruct the geometrical and dielectric properties of the scatterers, the investigated domain
is probed with a set of incident fields Ei(rv, r) = Ev

i (r), where rv denotes the position of the primary
sources (filamentary currents) placed outside the investigated area and v the indexing of the source.
The interaction between the incident waves and the scatterers gives rise to a secondary field that
is measured by receivers located at rm ∈ Γ, still outside the investigation domain. A sketch of the
adopted measurement configuration is reported in Figure 1.
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Figure 1. A sketch of the adopted multiview-multistatic measurement configuration to probe the
region of interest by means of Tx-Rx primary sources (filamentary currents) placed on a circumference
Γ of radius rm.

As is well known, the total field Ev
t (r) and the incident field Ev

i (r) must satisfy the following
Helmholtz Equations:

[∇2 + k2(r)]Ev
t (r) = 0 (1)

[∇2 + k2
b]E

v
i (r) = 0 (2)

where k(r) is the wavenumber in Ω and kb = ω
√

ε0εbµ0 is the wavenumber of the homogeneous
embedding background medium having complex permittivity εb = ε

′
b − j σb

ωε0
. On the other hand,

the scattered field, defined as Ev
s (r) = Ev

t (r)− Ev
i (r), satisfies the following Helmholtz Equation:

[∇2 + k2
b(r)]E

v
s (r) = −k2

bχ(r)Ev
t (r) (3)

where the contrast function χ, which relates, at a given frequency ω, the properties of the unknown
anomalies to those of the background medium, is defined as:

χ(r) =
εs(r)

εb
− 1 (4)

with εs = ε′s − j σs
ωε0

the complex dielectric permittivity of the scatterer. By means of the vector potential
theory, the equations governing the scattering phenomenon can be conveniently expressed through
a couple of integral Equations:

Ev
s (rm) = k2

b

∫∫
Ω

g(rm, r′)χ(r′)Ev
t (r
′)dr′ rm ∈ Γ, v = 1, ..., V (5)

Ev
t (r)− Ev

i (r) = k2
b

∫∫
Ω

g(r, r′)χ(r′)Ev
t (r
′)dr′ r ∈ Ω, v = 1, ..., V (6)

where g(r, r′) = − j
4 H(2)

0 (kb|r − r′|) is the scalar Green function of the homogeneous background,
in which r′ and r denote the generic source point in Ω and the observation point in Γ or Ω, respectively.
Finally, H(2)

0 (·) is the Hankel function of zero order and second kind. The Green function is the
kernel of the radiation operators Ae[·] : L2(Ω) → L2(Γ) and Ai[·] : L2(Ω) → L2(Ω), which relate
the induced contrast source Jv(r) = χ(r)Ev

t (r) to the field scattered in Γ and in Ω, respectively.
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Equations (5) and (6) are first and second kind Fredholm equations and are also known as data and
state equations. According to the above, the inverse scattering problem is cast as the retrieval of the
unknown contrast χ (r ∈ Ω) from measured scattered field Ev

s (rm ∈ Γ) and known incident fields
Ev

i (r ∈ Ω).

3. Linear Imaging with OAM Incident Fields

As stated above, the solution of the problems Equations (5) and (6) entails facing a non-linear
problem, since the total electric field has to be also retrieved for each transmitting antenna. To overcome
this drawback, the first order linearized problem has been proposed in the past both for penetrable
and impenetrable media. In particular, the Born and Rytov approximations allow tackling imaging of
small and large weak scattering systems, provided that the deviation of the dielectric properties of
anomalies, with respect to those of the background medium, keeps very small [24].

The linearized approach under Born approximation entails the solution of the following
integral Equation:

Ev
s (rm) = k2

b

∫∫
Ω

g(rm, r′)χ(r′)Ev
inc(r

′)dr′ rm ∈ Γ, v = 1, ..., V (7)

where the total field is substituted by the incident one, neglecting the effect of the scattering system on
the total field. Similar considerations can be applied for the Rytov approximation, where the Equation
to be solved turns out to be:

Φv
s (rm) =

k2
b

Ev
inc(rm)

∫∫
Ω

g(rm, r′)Ev
inc(r

′)χ(r′)dr′ rm ∈ Γ, v = 1, ..., V (8)

with Φv
s (rm) the complex scattered phase [24], and Ev

inc(rm) the value of the incident fields at the
measurement points. In both Equations (7) and (8), the incident field is commonly given by a sequential
illumination of single filamentary currents placed in the near- or far-field of the imaging domain.
The scattered field is collected by all the other antennas working as receivers when only one is acting
as a transmitter. This is the standard scattering experiment procedure in a tomographic microwave
imaging system. Hereafter, we refer to such a scheme of data gathering as “sequential illumination”.

On the other hand, we want to exploit OAM incident fields properly generated by a progressive
phase change in circular array elements, that is:

E`
inc(r) = −

j
4

V−1

∑
v=0

H(2)
0 (kb|rv − r|)ej`ϕv , ϕv =

2vπ

V
, ` = 0, ..., `max (9)

According to Equation (9), the investigation domain is illuminated through a set of different `-order
OAM fields rather than each single filamentary current placed at different angular positions. In a first
approximation, without prior information on the scattering system, the maximum OAM order is
related to the electrical dimension of the investigation domain, being |`| ' βa, with β = Re[kb] and a
the radius of the minimum convex hull enclosing the investigation domain. Incident fields arising
from Equation (9) for three different orders are shown in Figure 2.

The data Equation we are going to consider hereafter is formally the same of Equations (7) and (8),
with the corresponding scattered field collected under simultaneous illumination given by the incident
fields Equation (9). In such a way, the role of the vth illuminations is exchanged with the role of the `th

OAM order used to probe the investigation domain Ω. Therefore, as commonly done, the linearized
tomography problem can still be solved in a regularized fashion. In this respect, we exploit the
standard truncated singular value decomposition (TSVD) method [13], wherein the number NT of the
relevant singular values to be used in the reconstruction formula is simply chosen by the cutoff of the
singular values below the threshold of 20 dB lower than the maximum one.
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Figure 2. Amplitude (not normalized) and phase distribution of the OAM incident fields used to probe
the imaging domain with a circular array of V = 36 filamentary currents. (a),(d) ` = 0; (b),(e) ` = 1;
(c),(f) ` = 11.

4. Numerical Benchmarks

In order to investigate the opportunity to perform microwave imaging by means of OAM incident
fields, we perform some proof-of-concept examples, under the weak scattering regime underlying
both the Born and Rytov approximations.

The first example is concerned with a circular scatterer with radius 0.3λb and relative permittivity
εs = 1.2− 0.06, located at r = (0, 0) in an investigation domain of 4λb× 4λb. The background medium
is the vacuum, and V = 2βa + 1 = 37 antennas are used to illuminate the scenario [25] at a distance
rv = 40λb. Accordingly, the same number M of measurement points, at the same distance (rm = rv),
are used to probe the scattered field, as commonly done in any experimental microwave imaging
apparatus. Using Equation (9), we generate OAM incident fields up to the order | ± `max| = 18.
Accordingly, the forward problem is solved by means of a method-of-moments (MoM) based solver
by properly discretizing the investigation domain into Nc = 65× 65 cells, according to the Richmond
rule [26]. Finally, the scattered field data are corrupted with an additive white Gaussian noise (AWGN)
of SNR=20dB. The reconstruction results are evaluated by the standard metric based on the least

squares mean error, which is defined as err = ||χact−χrec ||2
||χact ||2

, wherein χact and χrec stem for the actual
and the reconstructed contrast profile, respectively.

The reconstruction results using orders ` = 0,±[1− 18] are shown in Figure 3b–f. As can be seen,
the method is able to retrieve the contrast correctly both in its real and imaginary part. After that, we
consider only the first four lowest order (` = 0,±[1− 3]) in solving the Born equation, and as shown in
Figure 3c,g, the result is still good in terms of the reconstruction capability, since the reconstruction error
is slightly larger than the previous one and mainly related to background reconstruction artifacts. On
the other hand, it is worth noting that the dimension of the scattering matrix operator is Nc × (7×M)

for ` = [−3,+3] and Nc × (37×M) for ` = [−18,+18], with Nc = (65)2 in both cases. If we take into
account that also for the multiview-multistatic configuration, the matrix has dimension Nc× (V ×M)
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(V = M = 37) too, the computational advantage in the SVD numerical evaluation is not negligible
in the case of few OAM modes. For the sake of completeness, the reconstruction performed with the
standard multiview-multistatic field data acquisition is shown Figure 3d–h, and as expected, it is fully
comparable with those achieved by means of the OAM incident fields.
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Figure 3. Reconstruction of a small weak circular scatterer through the Born approximation. (a) Real
and (e) imaginary part of the actual contrast profile; (b) real and (f) imaginary part of the retrieved
contrast profile for ` = 0,±[1− 18], err = 0.2028 with a cutoff value in the TSVD equal to NT = 252;
(c) real and (g) imaginary part of the retrieved contrast profile for ` = 0,±[1− 3], err = 0.2384 with
a cutoff value in the TSVD equal to NT=142; (d) real and (h) imaginary part of the retrieved contrast
profile using V = M = 37 equispaced filamentary currents err = 0.2020 with a cutoff value in the
TSVD equal to NT = 252. The axes of the imaging domain are expressed in background wavelengths.

In the second example, we consider a scattering system made of two off-centered targets
embedded in the same investigation domain described for the previous example. The targets are
shaped as a circle and a square scatterers, with permittivity εs = 1.2− 0.06 and leading dimension
0.6λb; see Figure 4a,e. We looks for the solution of the Born equation in three different cases. In the
first case, we exploit all the OAM incident fields (` = 0,±[1− 18]) needed to probe the entire domain,
whereas in the second case, only the lowest order OAM incident fields (` = 0,±[1− 4]), and finally,
only the highest order ones (` = ±[6− 11]). As can be seen in Figure 4, the reconstruction accounts for
the whole scattering system in the first case (see Figure 4b,f), only the innermost scatterer in the second
case (see Figure 4c,g), and only the square target in the third case (see Figure 4d,h). From these results,
it is evident as the topological properties of the different OAM orders used to probe the domain are
able to image targets whose support is mainly illuminated by the OAM rings (cores) of given order.
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Figure 4. Reconstruction of a two small weak scatterers through the Born approximation. (a) Real and
(e) imaginary part of the actual contrast profile; (b) real and (f) imaginary part of the recovered contrast
profile for ` = 0,±[1− 18], err = 0.2241 with a cutoff value in the TSVD equal to NT = 252; (c) real
and (g) imaginary part of the recovered contrast profile for ` = 0,±[1− 4], err = 0.4017 with a cutoff
value in the TSVD equal to NT =166; (d) real and (h) imaginary part of the recovered contrast profile
for ` = ±[6− 11] (without the lowest order modes), err = 0.60 with a cutoff value in the TSVD equal
to NT = 187. The axes of the imaging domain are expressed in background wavelengths.

Finally, the third example is concerned with a large lossless elliptically shaped target with
semi-axes 5λb and 4λb, respectively, embedded in an imaging domain of 12λb × 12λb discretized
into Nc = 129 × 129 cells. The background is the vacuum, and the permittivity of the target is
changed 2% with respect to the permittivity of the vacuum, while Im{εs} = −0.006. For such kinds
of objects, the Rytov approximation holds true. According to the “rule of thumb” suggested by the
electromagnetic field degrees of freedom [25], the domain needs to be probed by means of V = 107
equispaced filamentary currents placed in the far-field of the imaging domain (rm = 120λb), and the
corresponding scattered fields are collected through M = 107 measurement points. We consider the
solution of the forward problem with a set of OAM incident fields up to | ± `max| = 30 and solve
the underlying inverse problem by means of the Rytov Equation (8). In this case also, the scattered
field is corrupted with AWGN of SNR = 20 dB. The reconstruction results are shown in Figure 5b–e
and allow appraising the dielectric features of the target. It is worth noting that, if the SVD of the
multiview-multistatic scattering matrix, of dimensions (Nc)× (M×V), is computed via MATLAB
on a standard CPU Intel Core i7 8GB RAM, it results in an “out-of-memory” warning. Instead,
by using the proposed OAM based inversion, a meaningful result is found without the need for higher
performance computers. Furthermore, for this example, we consider also reconstruction by processing
the scattered field gathered in the near-field (though non-reactive zone) of the imaging domain by
setting the distance of the Tx-Rx probes at rm = 9λ, namely the minimum circle enclosing the surveyed
area. As we can appraise from Figure 5c–f, the reconstruction results are fully comparable as the
reconstruction errors attain the same values in both considered cases.
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Figure 5. Reconstruction of a large circular scatterer through the Rytov approximation exploiting
OAM fields generated in the far-field (rm = 100) m and near-field (rm = 9) m of the imaging
domain. The OAM orders used are ` = 0,±[1− 35]. (a) Real and (d) imaginary part of the actual
contrast profile; (b) real and (e) imaginary part of the retrieved contrast profile in the far-field
measurement configuration, reconstruction err = 0.1108 with a cutoff value in the TSVD reconstruction
NT = 1856; (c) real and (f) imaginary part of the retrieved contrast profile in the near-field measurement
configuration, reconstruction err = 0.1267 with a cutoff value in the TSVD reconstruction NT = 1557.
The axes of the imaging domain are expressed in background wavelengths.

5. Conclusions

The use of OAM incident fields in linearized diffraction tomography has been investigated and
analyzed in this paper. The main conclusions are concerned with the possibility to adopt alternative
measurement setup that give additional flexibility in performing tomographic imaging.

As an example, this is the case when the investigated domain contains undesired scatterers that
should be neglected in the reconstruction process, such as, for example, in those approaches wherein
part of the electromagnetic features of the scene is known, such as non-destructive testing (NDT)
for the detection of faults in an “undesired” background. Indeed, this can be done via hardware,
without resorting to computationally heavy differential (or distorted) imaging procedures, wherein the
knowledge of the Green function is also required. Another possible context of interest is in subsurface
imaging where the goal may be to address the inversion strategy at a given depth and/or location, on
the base of a priori available information.

On the other hand, in all those applications concerned with the detection of small scatterers,
OAM probing fields can allow to significantly reduce gathering time and computational burden,
as only few modes have to be exploited to achieve satisfactory reconstructions. Indeed, the size of the
multiorder-multistatic scattering operator is often smaller than the multiview-mutistatic counterpart,
depending on the dimension of the scattering system, and hence on the |`max| order used to probe the
scenario. This may be of particular interest for the development of fast 3D tomographic approaches
with reduced computational burden.
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As main drawback, OAMs imply a complication of the feeding network (phase shifters and
possibly amplifiers) that can be traded, on the other hand, with a lower acquisition time through digital
beamforming networks that avoid sequentially transmitting antennas and switching circuitry. Last,
but not least, it is worth noticing that, when no a priori information is available about the scattering
system, it is even possible to scan the OAM cores along some directions over the investigation domain,
according to the well known phased array theory.
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