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Abstract 

Metabolic syndrome (MTS) is a cluster of concurrent metabolic abnormal conditions. MTS and its component 
metabolic diseases are heterogeneous and closely related, making their relationships complicated, thus 
hindering precision treatment. 
Methods: We collected seven groups of samples (group a: healthy individuals; group b: obesity; group c: MTS; 
group d: hyperglycemia, group e: hypertension, group f: hyperlipidemia; group g: type II diabetes, n=7 for each 
group). We examined the molecular characteristics of each sample by metabolomic, proteomic and peptidomic 
profiling analysis. The differential molecules (including metabolites, proteins and peptides) between each 
disease group and the healthy group were recognized by statistical analyses. Furthermore, a two-step clustering 
workflow which combines multi-omics and clinical information was used to redefine molecularly and clinically 
differential groups. Meanwhile, molecular, clinical, network and pathway based analyses were used to identify 
the group-specific biological features. 
Results: Both shared and disease-specific molecular profiles among the six types of diseases were identified. 
Meanwhile, the patients were stratified into three distinct groups which were different from original disease 
definitions but presented significant differences in glucose and lipid metabolism (Group 1: relatively favorable 
metabolic conditions; Group 2: severe dyslipidemia; Group 3: dysregulated insulin and glucose). Group specific 
biological signatures were also systematically described. The dyslipidemia group showed higher levels in 
multiple lipid metabolites like phosphatidylserine and phosphatidylcholine, and showed significant 
up-regulations in lipid and amino acid metabolism pathways. The glucose dysregulated group showed higher 
levels in many polypeptides from proteins contributing to immune response. The another group, with better 
glucose/lipid metabolism ability, showed higher levels in lipid regulating enzymes like the lecithin cholesterol 
acyltransferase and proteins involved in complement and coagulation cascades.  
Conclusions: This multi-omics based study provides a general view of the complex relationships and an 
alternative classification for various metabolic diseases where the cross-talk or compensatory mechanism 
between the immune and metabolism systems plays a critical role. 

Key words: metabolic syndrome, metabolic diseases, multi-omics data, lipid and glucose metabolism, disease 
subtype identification 
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Introduction 
Metabolic syndrome (MTS) refers to a cluster of 

abnormal metabolic conditions such as 
hyperglycemia, obesity and hyperlipidemia that occur 
together [1, 2]. It will increase the risk of various 
diseases [3], especially type 2 diabetes (T2D) [4] and 
cardiovascular disease [5]. MTS is increasingly 
common, and up to one-third of U.S. adults suffer 
from it [6]. Early diagnosis and treatment of MTS can 
greatly improve people’s health.  

MTS is closely related with dys-regulated 
glucose and lipid metabolisms. The abnormal glucose 
metabolism is linked to insulin resistance. Under the 
insulin resistance conditions, the cells cannot respond 
normally to insulin, and glucose from the 
bloodstream cannot enter the cells as easily. The lipid 
metabolism is central to energy generation. Abnormal 
lipid metabolism can predict future overweight, MTS 
and diabetes [7]. Glucose and lipid metabolisms are 
highly correlated, and lipid changes can be both the 
cause and consequence of impaired glucose 
metabolism [8]. Correspondingly, MTS and the other 
simple metabolic diseases (such as hyperglycemia, 
dyslipidemia, hypertension and T2D) that show 
abnormalities either in glucose or lipid metabolism 
are interrelated. It is probably because that the 
occurrence of MTS and other relevant metabolic 
diseases involves various mutually dependent 
pathways and complex interactions between various 
molecules. Previously, we utilized quantitative 
endogenous peptidomics analysis to investigate the 
molecular characteristics of T2D and prediabetes, 
multiple disease-specific differential peptides were 
identified and some shared peptide features were also 
observed [9]. However, a general perspective on the 
overall relationships among MTS and different types 
of simple metabolic diseases is still lacking. We 
wonder whether there is an alternative molecular 
classification of the closely-related metabolic diseases.  

The integration of multi-omics data has recently 
been demonstrated to promote understanding of the 
development and progression mechanisms of 
diseases, including cancer [10], obesity [11], T2D [12] 
and many other diseases [13]. Multi-omics models 
benefit from the simultaneously measurement of 
multiple relevant bio-molecules in the investigated 
system. Regarding the metabolic diseases, such 
important bio-molecules include metabolites, which 
directly reflect the metabolic state of cells [14]. In 
addition, proteins like p53 [15] can regulate the 
amount of metabolites, and peptides are generated 
from protein degradation or modification, these two 
types of molecules can also contribute to metabolic 
changes. In this context, multi-omics profiling 

including peptidomics, proteomics and metabolomics 
enables a meaningful map of molecular changes in the 
metabolic diseases. 

Here, we propose the use of a multi-omics-based 
framework that integrates metabolomics, proteomics, 
peptidomics, and clinical information to unveil the 
latent molecular characteristics and mutual 
relationships of multiple metabolic diseases, 
including MTS, obesity, hyperglycemia, dyslipidemia, 
hypertension and T2D. Our study revealed a number 
of important findings, including (1) identification of 
shared and disease-specific molecular patterns, (2) an 
alternative metabolic disease subtyping pattern which 
showed significant molecular and clinical differences 
in glucose and lipid metabolism, (3) different 
compensatory and molecular regulation mechanisms 
underlying the redefined metabolic subtypes were 
observed. This work helps to further our 
understanding of the intra-disease heterogeneity and 
inter-disease similarity underlying the existing 
classification, provides an alternative disease 
classification which is mainly linked to disparation in 
lipid and glucose metabolism, thus improving the 
early diagnosis and treatment of MTS relevant 
metabolic diseases. 

Results 
Overview of the multi-omics workflow 

We aim to achieve two goals: (1) investigate the 
relationships among MTS and relevant metabolic 
diseases considering their molecular characteristics; 
(2) redefine the molecular classification of the 
investigated metabolic diseases. Serum samples from 
healthy individuals and patients with metabolic 
diseases were collected: Group a-healthy individuals; 
Group b-simple obesity/overweight; Group c-MTS; 
Group d-simple hyperglycemia, Group e-simple 
hypertension, Group f-simple hyperlipidemia; Group 
g-simple T2D (n=7 for each group, Figure 1). Their 
basic demographic characteristics are summarized in 
Table 1 and group-specific distributions of the most 
decisive clinical factors are shown in Figure S1. The 
clinical diagnostic criteria for the six types of diseases 
[16] are listed in Table 2. To ensure that the collected 
samples were only influenced by the expected 
diseases, the clinical symptoms of each patient were 
strictly checked, e.g., the hyperglycemia patients only 
had abnormal blood glucose factors but not other 
factors (Figure S1). Next, metabolomics, proteomics 
and peptidomics approaches were employed to 
measure the molecular profiles of the collected 
samples. 

 We compared the multi-omics profiles of each 
disease group to that of the healthy group and 
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identified the differentially expressed molecules 
(DEMs). Then, we analyzed the results to further 
identify the disease-specific and multi-disease-shared 
molecular abnormalities among the six types of 
metabolic diseases. 

 

Table 1. Demographic characteristics of the collected samples 
(n=49) 

Character Mean (Standard deviation) 
Age (year) 55.60(5.77) 
Gender 
Female 19(61%) 
Male 30(39%) 

Weight (kg) 67.29 (11.05) 
Height (cm) 162.49 (6.91) 
BMI (kg/m2) 25.46 (3.61) 
WaistCir (cm)  84.37 (9.93) 
FPG (mmol/L) 6.26 (1.68) 
OGTT 2hPG (mmol/L) 8.59 (4.31) 
HDL (mmol/L) 1.32 (0.32) 
LDL (mmol/L) 2.72 (0.76) 
TG (mmol/L) 1.32 (0.93) 
SBP (mmHg) 128.65 (12.72) 
DBP (mmHg) 80.98 (5.89) 

2hPG: 2-hour postprandial plasma glucose; BMI: body mass index; DBP: diastolic 
blood pressure; FPG: fasting plasma glucose; HDL: high density lipoprotein; LDL: 
low density lipoprotein; OGTT: oral glucose tolerance test; SBP: systolic blood 
pressure; TG: triglyceride; WaistCir: waist circumference. 

 

 
 

 
Figure 1. The systematic framework. MTS: metabolic syndrome; T2D: type 2 diabetes. 
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Table 2. Disease grouping criteria 

Disease type Criteria 
Obesity WaistCir ≥ 85 cm for female and WaistCir ≥ 90 cm for male 
Hyperglycemia FPG ≥ 6.1 mmol/L or OGTT 2hPG ≥ 7.8 mmol/L and/or 

confirmed diabetes that is under treatment 
Hypertension SBP ≥ 130 mmHg or DBP ≥ 85 mmHg and/or diagnosed and on 

antihypertensive therapy 
Hyperlipidemia Fasting TG > 1.7 mmol/L or Fasting HDL < 1.04 mmol/L  
MTS Simultaneously meet three or more of the above criteria 
T2D FPG ≥ 7 mmol/L, OGTT 2hPG ≥ 11.1 mmol/L 

2hPG: 2-hour postprandial plasma glucose; BMI: body mass index; DBP: diastolic 
blood pressure; FPG: fasting plasma glucose; HDL: high density lipoprotein; LDL: 
low density lipoprotein; MTS: metabolic syndrome; OGTT: oral glucose tolerance 
test; SBP: systolic blood pressure; T2D: type 2 diabetes; TG: triglyceride; WaistCir: 
waist circumference. 

 
Considering the high heterogeneity of metabolic 

diseases, it is essential to investigate whether there is 
an alternative way to classify these metabolic diseases. 
All clinical samples were clustered based on both 
multi-omics data and clinical information. Differences 
in the clinical and molecular patterns among the three 
groups were identified. Pathway and network 
analyses were applied to help reveal the distinctive 
biological processes underlying the identified disease 
groups. 

Multi-omics profiling reveals both shared and 
disease-specific molecular characteristics  

According to the multi-omics profiling data, 
each disease group showed numerous differentially 
molecules, reflecting the molecular characteristics of 
the diseases (Figure 2A). Regardless of the molecular 
type, MTS had the largest number of DEMs (n = 54, 
group c), due to the fact that MTS is more complicated 
than its component metabolic diseases, and it is not 
simply the addition of multiple metabolic diseases. 
The hyperglycemia (n = 39, group d) and 
hyperlipidemia (n = 29, group f) groups were next, 
and the hypertension group (n = 23, group e) had the 
lowest number of DEMs. 

By comparing the DEMs identified in the 
different groups, both shared and disease-specific 
DEMs were observed (Figure 2B-2D). At the 
proteomic level, obesity and hyperglycemia (groups b 
and d) showed the largest number of shared DEMs 
(Figure 2B). At the metabolomic level, MTS and 
hyperlipidemia (groups c and f) shared the largest 
number of DEMs (Figure 2C). At the peptidomic level, 
however, hyperglycemia and T2D (groups d and g) 
shared the largest number of DEMs (Figure 2D). 

Some of these shared molecules have been 
previously reported (Table S1). Afamin (AFAM) is a 
human plasma vitamin E-binding glycoprotein. Its 
plasma concentration has been found to be highly 
associated with MTS [17] and insulin resistance [18]. 
In this study, we further confirmed that the AFAM 
level was higher in both MTS and most of the other 
simple metabolic diseases, including obesity, 

hyperglycemia, hypertension and T2D. 
Mannan-binding lectin serine protease 1 (MASP1), 
which plays a role in the lectin pathway of the 
complement system, has been identified as a 
biomarker of prediabetes and is relevant to obesity, 
dyslipidemia and hypertension in cardio- and 
cerebrovascular patients [19]. In this study, the 
significantly increased expression of MASP1 was 
observed in patients with simple obesity, 
hyperglycemia and hyperlipidemia (group b, d and f). 
Some studies have found a negative association 
between the level of serum glycine and several 
metabolic diseases, such as T2D [20], obesity [21], 
MTS [22] and hyperlipidemia [23]. Our results 
showed that glycine levels were decreased in MTS, 
obesity, hyperglycemia and hyperlipidemia patients. 
Ceramide (Cer) is known to participate in the 
pathogenesis of insulin resistance and other 
obesity-associated metabolic diseases [24]; however, 
Cers [Cer(d18:0/24:0)+H, Cer(d18:1/24:0)+H, 
Cer(d18:2/22:0)+H] was increased only in MTS and 
hyperlipidemia patients when compared to that in 
patients with other simple metabolic disorders 
(Figure 2C). 

Disease-specific DEMs were also observed. MTS 
had the largest number of disease-specific DEMs. 
Different types of lipids, including diacylglycerol 
(DG), TG, free fatty acids (FFA), and 
phosphatidylcholine (PC) showed specifically 
increased expression in MTS patients (Figure 2C). 
Correspondingly, lipid regulating proteins such as 
apolipoprotein C-II (APOC2) and thrombin (THRB) 
[25, 26] were also specifically altered in MTS patients 
(Figure 2B). Except of lipid metabolism relevant 
molecules, proteins involved in immune system such 
as complement factor D (CFAD), complement 
component C7 (CO7) and immunoglobulin kappa 
variable 1-13 (KV113) [27] (Figure 2B), and 
polypeptides from proteins relevant to immunity, 
including immunoglobulin kappa constant (IGKC), 
fibrinogen alpha chain (FIBA) and complement factor 
C3 (CO3), were also altered in MTS (Figure 2D). These 
molecules showed significant alterations only for MTS 
but not for other metabolic diseases, implying the 
importance of lipid metabolism and immune response 
in MTS. 

More disease-specific DEMs were identified than 
shared DEMs, implying the presence of significant 
differences among these diseases (Figure 2B-2D). 
Some of the DEMs associated with specific diseases 
and the relationships between them have been 
revealed by previous studies (Table S2). For 
hyperglycemia, specific DEMs including cadherin-5 
(CADH5) [28], corticosteroid-binding globulin (CBG) 
[29], and a polypeptide from serotransferrin (TRFE) 
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[30] have been reported to be associated with either 
elevated blood glucose, T2D or insulin resistance. 
However, in our study, we found that their expression 
levels showed significant changes in the prediabetes 
group (group D) but not in the T2D or MTS group. In 

contrast, carbonic anhydrase 1 (CAH1) and 
polypeptides from myelin expression factor 2 
(MYEF2) [31] and kininogen-1 (KNG1) [32] showed 
specific abnormalities only in T2D but not in 
prediabetes.  

 

 
Figure 2. Shared and specific molecular features of the metabolic diseases. A The number of differentially expressed metabolites, polypeptides and proteins obtained by 
comparing each disease group (B to G) to the normal group. B-D The profiles of the shared and specific alterations for all disease groups in terms of proteins (B), metabolites 
(C) and polypeptides (D). The bar colors represent the disease groups. The vertical axis represents the log2-changed fold change between two groups (the mean value of the 
disease group divided by that of the normal group), while the horizontal axis represents different molecules. The source protein names for the polypeptides are annotated in the 
brackets after the polypeptide names. n =7 for each group. 
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The investigated patients were stratified into 
three main groups by integrating multi-omics 
data and clinical information 

The above analysis indicates the molecular 
commonness and specialty of different metabolic 
diseases. We wonder whether there is an alternative 
disease classification way that the redefined groups 
show more obvious molecular and clinical 
separations. Initially, we attempted to cluster the 
samples simply based on the multi-omics data (Figure 
S2A). However, most of the diseases were 
re-organized into disparate clusters, few of the 
identified clusters were enriched by one dominant 
disease type (Figure S2B, only the cluster C1 was 
enriched by the hyperglycemia disease at the 
significant level p<0.01). Therefore, we wonder 
whether integrating the multi-omics data with clinical 
information can help improve the results. We 
re-clustered the collected samples with an 
unsupervised two-step clustering method which 
combined multi-omics data and clinical information 
(see Methods). For the first step clustering, instead of 
clustering based on all items within the multi-omics 
data, we filtered the molecules based on their 
correlations with the key clinical factors and only the 
key clinical factor relevant molecules (see Methods) 
were retained for the clustering analysis. As results 
showed, the samples were clustered into seven new 
groups (Figure 3A). The clustering results showed 
remarkable differences upon comparison to the 
original disease groups (Figure 3A). Notably, more 
clusters were predominated by certain disease types, 
e.g., cluster 2 (C2) was enriched in MTS patients 
(p=1e-5), cluster 3 (C3) was enriched in hypertension 
patients (P=1e-2), and cluster 4 (C4) was enriched in 
T2D patients (P=1e-3.7) (Figure 3B). However, most 
clusters comprised a mixture of disease types. This 
challenges the present metabolic disease classification, 
treatment or diagnosis based only on the routine 
disease classification may be insufficient. For 
example, two obesity patients respectively having 
similar molecular profiles with the MTS and T2D 
patients should be treated differently.  

To further characterize the relative composition 
and homogeneity of these clusters, we computed the 
proportion of the dominant disease type and the 
mean silhouette width [10] for each cluster (Figure 
3B). The single disease type dominant clusters, such as 
C2 and C4, had relatively increased silhouette widths, 
suggesting higher within-cluster homogeneity for 
these clusters (Figure 3C). Although each sample in 
cluster 5 (C5) comprised a different disease type, C5 
still had a high silhouette width, implying the 
presence of inter-disease similarity in certain patients 

and the robustness of the clustering of C5. 
During the second step clustering (see Methods), 

we further clustered the first five main clusters (the 
number of samples in C6 and C7 was so small that 
they were not considered for the following analysis) 
based on their mean clinical factor values (Figure 3D), 
we observed that C1 & C3 or C2 & C5 had more 
mutual similarities, while C4 was relatively different. 
A force-directed graph layout-based mapping 
(performed by the “layout_with_drl” function in the 
R package igraph [33]) also indicated that the C1 and 
C3 and the C2 and C5 samples were more closely 
related to each other (Figure 3E). Consequently, we 
merged C1 and C3 as well as C2 and C5 into two 
larger groups, termed G1 and G2, respectively, and 
defined C4 as the third group, G3. 

To better understand the relationships between 
the original disease groups and redefined groups, we 
visualized the relationships with a Sankey-plot 
(Figure 3F). A large proportion of the hypertension (6 
out of 7), hyperglycemia (5 out of 7) and normal (4 out 
of 7) samples were categorized into the G1 group. G2 
was mainly composed of MTS (all 7) and 
hyperlipidemia samples (4 out of 7). G3 was enriched 
in T2D patients. Differences in the predominant 
disease types in the groups indicate the presence of 
heterogeneity across the identified groups; in 
addition, the co-occurrence of multiple disease types 
in the same group implies similarity between disease 
types. In short, the across-disease clustering result 
reflects the intra-disease heterogeneity as well as the 
inter-disease similarity of these metabolic diseases.  

The redefined groups exhibited remarkable 
differences in glucose and lipid metabolism 

We further examined whether clinical 
differences were still detectable based on the three 
redefined groups. These three groups showed 
significant differences in terms of clinical factors 
related to glucose and lipid metabolism (Figure 
4A-4B). 

G3 showed more seriously dysregulation in 
terms of glucose metabolism, as its mean FPG level 
was the highest, and its mean 0.5-hour postprandial 
serum insulin (0.5hPSI) and homoeostasis model 
assessment (HOMA) 2 estimate of β-cell function 
(HOMA2-%B) were much lower than those in the 
other groups (Figure 4B-4C). G1 had significantly 
decreased levels of FPG, 0.5-hour postprandial blood 
glucose (0.5h PBG), and HOMA 1 estimate of insulin 
resistance (HOMA1−IR), and an increased level of 
0.5hPSI compared to G2 and G3 (Fig. 4b-4c).  

With respect to lipid metabolism, G2 had 
remarkably increased levels of several lipid 
metabolism-relevant factors, including LDL, TG, 
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apolipoprotein B (ApoB) and total cholesterol (TCH) 
(Figure 4B-4C), implying that G2 was mainly 

dysregulated in terms of lipid metabolism. 

 

 
Figure 3. Clustering of patients based on both clinical factors and multi-omics data. A Clustering results. The central heatmap displays the normalized expression of clinical 
factor-relevant molecules (see Methods) according to metabolomics, proteomics and peptidomics, in which each column corresponds to a patient and each row corresponds to 
a molecule. Above the heatmap, the three rows indicate the original patient groups (A to G), the first-step clustering results (seven clusters: C1 to C7) and the three combined 
groups (G1 to G3). See the Methods for the detailed clustering methods. B Significance of the overlaps between the different clusters (represented by the columns) and the 
patient groups (represented by the rows) according to Fisher’s exact test. C Visualization of the cluster composition and homogeneity. Each pie represents the disease-type 
composition within an individual cluster, and the size is proportional to the number of samples. The x and y coordinates represent the cluster silhouette width and the proportion 
of the most dominant disease type within a cluster, respectively. D The second step clustering results. The heatmap displays the mean cluster levels in a collection of clinical 
factors. E The force-directed map layout was computed from a combined similarity matrix calculated as the dot product of the consensus clustering matrix and a differential 
clinical factor-based Spearman correlation matrix for the samples, and similar samples are positioned close to each other. F The Sankey diagram describes the relationships 
between the original disease types, the initial seven clusters and the three combined groups. C1, n= 9; C2, n=12; C3, n=13; C4, n=7; C5, n=4; C6, n=3; C7, n=1. 0.5hPG: 0.5-hour 
postprandial plasma glucose; 2hPG: 2-hour postprandial blood glucose; ApoB: apolipoprotein b; ApoE: apolipoprotein e; BMI: body mass index; DBP: diastolic blood pressure; 
FFA: free fatty acids; FPG: fasting plasma glucose; GPT: glutamic pyruvic transaminase; HDL: high density lipoprotein; HOMA2: homoeostasis model assessment 2; LDL: low 
density lipoprotein; MTS: metabolic syndrome; OGTT: oral glucose tolerance test; %S: insulin sensitivity index; T2D: type 2 diabetes; TBA: total bile acid; T-Bil: total bilirubin; TP: 
total protein; WaistCir: waist circumference. 
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Figure 4. Clinical features of the three metabolic disease groups. A The heatmap shows the normalized clinical factor levels for the samples in the three main groups. Only 
clinical factors showing significant differences between one specific group and the others are shown. B The box plots represent the clinical factor levels in the three groups. The 
centers of the boxes represent the median values. The bottom and top boundaries of the boxes represent the 25th and 75th percentiles. The whiskers indicate 1.5 times of the 
interquartile range. The dots represent points falling outside this range. C The circle colors represent the log2-transformed fold change of certain clinical factors between one 
group and the others. The circle size is proportional to the –log10(P) value; the P values were calculated by the Wilcox test (two-sided, unpaired) to compare the differences 
between one specific group and the others. G1 was compared to the combination of G2 and G3, G2 was compared to the combination of G1 and G3, and G3 was compared to 
the combination of G1 and G2; the same as below). 0.5hPG: 0.5-hour postprandial plasma glucose; 0.5hPSI: 0.5-hour postprandial serum insulin; ApoB: apolipoprotein b; %B: 
pancreatic islet b cell function index; BMI: body mass index; FPG: fasting plasma glucose; GOT: glutamic oxalacetic transaminase; GPT: glutamic pyruvic transaminase; HOMA2: 
homoeostasis model assessment 2; IR: insulin resistance index; LDL: low density lipoprotein; TCH: total cholesterol; TG: triglyceride; WaistCir: waist circumference. 

 
Additionally, G2 showed significantly higher 

glutamic pyruvic transaminase (GPT) and glutamic 
oxalacetic transaminase (GOT) levels than the other 
groups, indicating that the liver function of patients in 
G2 were more likely to be impaired than the other 

groups (Figure 4B-4C). Meanwhile, G2 also showed 
significantly increased levels of obesity-relevant 
clinical factors, especially the WaistCir value (Figure 
4B-4C). 



Theranostics 2020, Vol. 10, Issue 5 
 

 
http://www.thno.org 

2037 

Overall, the three redefined metabolic disease 
subtypes, although different from original disease 
classification, showed remarkable and specific 
differences in terms of clinical characteristics. G2 was 
characterized by abnormal lipid metabolism and 
overweight, and the liver function in G2 patients was 
worse than that in the other subtypes. G3 mainly 
showed the serious dysregulation of glucose 
metabolism. G1 showed relatively favorable clinical 
characteristics compared to the other subtypes in 
terms of both glucose and lipid metabolism. 

Multi-omics based molecular signatures of the 
three groups 

The corresponding molecular characteristics in 
the redefined groups were also described (Figure 5A). 
We applied random forest analysis to estimate the 
importance of various molecules in identifying the 
three groups and examined the expression differences 
between groups based on the multi-omics data. 
Among the top 50 most important molecules, 47 ones, 
including 24 metabolites, 10 polypeptides, and 13 
proteins, also showed significant differences between 
the groups (Figure 5A-5B). 

G1 showed significantly decreased levels of 
several lipid metabolites, which is consistent with the 
clinical features resulting from low lipid metabolism 
levels. Correspondingly, G1 also showed increased 
levels of proteins such as lecithin cholesterol 
acyltransferase (LCAT), which contributes to HDL 
biogenesis [34], and complement factor B (CFAB) 
which plays a role in the complement system [35], and 
two polypeptides from serglycin (SRGN) and serum 
albumin (ALBU) (Figure 5B). These lipid-regulating 
and immune relevant proteins or peptides may help 
reduce the blood lipid level. 

G2, in line with the revealed dysregulation in 
lipid metabolism, showed significantly increased 
levels of multiple lipid metabolites, such as the 
different forms of TG, PC, FFA, Cer and 
1−linoleoyl−rac−glycerol. In contrast, several 
proteins, such as Heparin cofactor 2 (HEP2), CFAB 
and LCAT, were significantly decreased in G2 (Figure 
5B). 

With respect to G3, molecular differences were 
mainly found in the polypeptides, especially those 
involved in the immune response, such as 
apolipoprotein A-I (APOA1) [36], FIBA [35] and 
CXCL7 [37]. In addition, G3 had decreased levels of 
certain metabolites (Figure 5B), such as 
phenylalanine, creatinine, valine and TG. Previous 
studies have shown that phenylalanine is associated 
with T2D pathophysiology [38] and that a low serum 
creatine level is a risk factor for T2D [39]. Therefore, 
we deduce that G3 patients are either with T2D or at 

high risk of T2D. 
The remarkable molecular differences found 

between different groups reveal the potential 
molecular basis for the three clinically distinct groups. 
We further examined the performance of these 
molecules in predicting the redefined groups, and the 
corresponding receiver operating characteristic (ROC) 
curves were drawn (Figure 5C). As the results 
showed, the integrated three types of molecular 
features (area under ROC curve [AUC] = 0.96) were 
much better than each single type of molecules 
(AUC=0.64, 0.73 and 0.78 for classifiers only based on 
proteins, metabolites and polypeptides) in predicting 
the right groups, and even the top-10 important 
multi-omics elements (including 
1−linoleoyl−rac−glycerol, PC, HEP2 and peptide from 
SRGN, etc., Figure 5A) can generate a classifier with a 
relatively good performance (AUC=0.92, Figure 5C). 

Heterogeneous network dynamics in the three 
groups 

We also assessed the variations of molecular 
interactions that can reflect the molecular 
compensatory mechanisms in different groups. 
Different from previous studies which mainly focus 
on the gene network, here, three types of 
heterogeneous molecular networks, the 
metabolite-protein (Figure 6A), polypeptide-protein 
(Figure 6B), and metabolite-polypeptide (Figure 6C) 
association networks, were constructed. LCAT can 
catalyze the conversion of PC to 
1-acyl-sn-glycero-3-phosphocholine. Consequently, 
LCAT and PC may be negatively correlated. Here, we 
observed that LCAT showed a significant negative 
association with PC in G3 (Figure 6A); however, this 
association disappeared in G1 and G2. Instead, LCAT 
showed a positive and a negative association with 
phosphatidylserine (PS) and 5-methoxysalicylic acid 
in G1 and G2, respectively (Figure 6A), suggesting the 
influence of disease subtype-specific regulation 
mechanisms. Different groups exhibited distinct 
edges, although the nodes were highly overlapped 
(Figure 6D), suggesting that the differences in the 
networks among the groups were mainly dependent 
on the dynamic associations between molecules rather 
than the molecules themselves. G2 was observed to 
have the largest number of positive edges in all three 
types of networks, while G1 had the minimum 
number of edges (both positive and negative). G3 had 
the maximum number of negative edges in the 
protein-polypeptide association network.  

A pathway enrichment analysis showed that the 
cross-talk between the immune and metabolism 
systems contributed to the metabolic disease subtypes 
(Figure 6E). The proteins (both the proteins 
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themselves and the source proteins of the peptides in 
the networks) in these networks were mainly 

involved in the complement and coagulation cascade 
pathways (Figure 6E).  

 

 
Figure 5. Molecular features of the three metabolic disease groups. A The heatmap shows the multi-omics molecular profiles for the samples in the three main groups. The 
important scores of the molecules in predicting the group labels were computed based on the random forest method, and the differences among groups were examined by the 
Wilcox test (two-sided, unpaired). Only molecules ranked within the top 50 based on the important scores and showing significant differences (P<0.05) between one specific 
group and the others are shown, the top-10 ones were marked by red *. The corresponding molecular type (metabolite, protein or polypeptide) is annotated on the left side of 
the heatmap. B The circle colors represent the log2-transformed fold change of a certain molecule between one group and the others. The circle size is proportional to the –
log10(P) value, for which the P values were calculated by the Wilcox test (two-sided, unpaired) to compare the differences between one specific group and the others. C ROC 
curves about the performance of molecular profiles to predict the re-defined groups. We respectively utilized the identified group-differential metabolites, proteins, polypeptides, 
all three types of molecules in B and the top-10 important ones among them to train the classifiers, and four corresponding ROC curves were drawn. The AUCs are given in the 
brackets in the curve legend. AUC: area under curve; ROC: receiver operating characteristic. 
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Meanwhile, both shared and group-specific 
metabolic pathways were observed among the groups 
(Figure 6E). For instance, the metabolic nodes in the 
networks were significantly enriched in the 
“biosynthesis of amino acids” pathway in all three 
groups, and both G1 and G2 were enriched in 

“glycerophospholipid metabolism”. G2 showed 
specific enrichment of “sphingolipid metabolism” and 
“glyoxylate and dicarboxylate metabolism”, which is 
associated with the tricarboxylic acid cycle, and both 
G2 and G3 were enriched in the “biosynthesis of 
unsaturated fatty acids” pathway (Figure 6E). 

 

 
Figure 6. Heterogeneous molecular network dynamics in the three metabolic disease groups. A-C Significant associations between metabolites and proteins (A), proteins and 
peptides (B), and metabolites and peptides (C) in the G1, G2 and G3 samples (absolute value of the correlation coefficient > 0.6, P < 0.01). The associations were estimated by 
biweight midcorrelations, and the corresponding Student p-values were calculated. The node colors represent the molecular types. The solid and dashed lines represent positive 
and negative correlations, respectively, between the connected nodes. The edge colors indicate in which groups the associations were found. The top-right bar plots summarize 
the positive (+) and negative (-) edge numbers (Edge.No) in different groups. For clarity, the peptides are represented by abbreviated names; see Table S3 for the detailed peptide 
information. D The overlap among the network nodes for different groups. E Pathway enrichment analysis of the network nodes for different groups. The bar lengths are 
proportional to –log10(P), and the bar colors indicate whether the pathways were enriched in proteins (both proteins and source proteins of the peptides) or metabolites.  
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Overall, these three groups also had disparate 
molecular network characteristics, implying that 
different compensatory and molecular regulation 
mechanisms underlie the identified metabolic 
subtypes, especially in the immune response and lipid 
metabolism pathways. 

Pathway characteristics of the three groups 
We also characterize the pathway features of 

different groups. For each type of omics-data, we 
calculated the Gene Set Enrichment Analysis 
(GSEA)-based pathway activity scores (see Methods) 
for each sample for all calculable Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways and 
compared the scores among the three groups (Figure 
7A). Remarkable differences in the pathway scores 
were found (Figure 7B-7D). G1 was characterized by 
much lower metabolic levels in lipid metabolism 
pathways, such as the “glycerophospholipid 
metabolism”, “biosynthesis of unsaturated fatty 
acids”, “sphingolipid metabolism”, “linoleic acid 
metabolism” and “arachidonic acid metabolism” 
pathways, and this may be related to increased 
enzyme levels in lipid metabolism pathways, as 
indicated by high scores in proteomics-based 
pathways such as “glycerophospholipid metabolism” 
(Figure 7B-7D). However, in addition to increases in 
the activity of lipid metabolism pathways, G1 was 
mainly characterized by the up-regulation of different 
types of pathways, including “synthesis and 
degradation of ketone bodies”, “butanoate 
metabolism”, “glyoxylate and dicarboxylate 
metabolism”, “cysteine and methionine metabolism”, 
“complement and coagulation cascades”, and 
“porphyrin and chlorophyll metabolism”, regardless 
of the omics data type (Figure 7B-7D), suggesting the 
hyperactivity of metabolism and immune responses 
in the G1 samples. G2 showed a pathway profile that 
was almost reversed comparing to G1, in which most 
of the lipid metabolism pathways and amino acid 
metabolism pathways for phenylalanine, tyrosine and 
tryptophan, and valine, leucine and isoleucine were 
assigned increased scores in G2, and the 
proteomics-based pathway scores for most metabolic 
and immune system-relevant pathways were 
significantly decreased compared to those in the other 
groups. Meanwhile, the digestive pathways for 
vitamins and fat were up-regulated in G2 based on 
the proteomics data (Figure 7B-7D), suggesting that 
the metabolites generated from the hyperactive 
digestive system might be excessively accumulated in 
the G2 samples. Compared to G1 and G2, G3 did not 
show significant differences in the lipid metabolism 
pathways; however, its metabolomics-based pathway 
scores for most amino acid, nucleotide, cofactor and 

vitamin metabolic pathways were decreased (Figure 
7B), and its proteomics-based pathway scores for 
“nitrogen metabolism” were significantly increased 
(Figure 7C), implying that the presence of 
dysregulated glucose metabolism in G3 might be 
related to the amino acid, nucleotide or nitrogen 
metabolism pathways. In addition, we observed that 
the peptidomics-based results were generally 
consistent with those obtained from the proteomics 
data (Figure 7C-7D). 

Discussion 
A comprehensive description of the molecular 

and clinical characteristics of different metabolic 
diseases can promote understanding of the 
relationships among various metabolic diseases. In 
this study, we integrated three omics data analyses 
and clinical information from patients to investigate 
the molecular characteristics of several commonly 
occurring and closely related metabolic diseases, 
including obesity, hyperglycemia, hyperlipidemia, 
hypertension, MTS and T2D. 

Both the shared and specific molecular profiles 
for the six types of metabolic diseases including MTS 
and relevant diseases were identified. The shared 
molecular features imply the progressive possibility 
between different metabolic diseases, and also 
suggest the present disease classification does not 
have clear molecular separation. The routine 
diagnosis and treatment of these metabolic diseases 
might overlook the connection and heterogeneity of 
these closely-related diseases. 

To further investigate whether there is an 
alternative way to stratify these metabolic disease 
patients, we redefined three disease groups through a 
two-step clustering analysis which integrates both 
multi-omics data and clinical information. Although 
the clustering results were distinct from the original 
disease definitions, the newly clustered groups 
exhibited distinctive patterns from both clinical and 
molecular perspectives. The first group (G1) was 
composed of the most heterogeneous metabolic 
disease samples; however, no MTS patients and only 
one T2D patient were included in G1, and all of the 
patients in G1 showed significantly more favorable 
levels in terms of clinical factors relevant to both 
glucose and lipid metabolism, indicating a lower 
likelihood for G1 patients to progress to metabolic 
syndrome or T2D. G2 was mainly enriched in MTS 
and hyperlipidemia patients, and they showed 
significantly higher levels of lipid metabolites and 
corresponding clinical factors. G3, a group enriched in 
T2D patients, was mainly characterized by the 
dysregulation of glucose metabolism. Although G2 
and G3 were predominated by MTS and T2D, 
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respectively, there were many simple metabolic 
disease patients spreading among the three groups, 
and one hyperglycemia or hyperlipidemia patient 
could be classified as G1-, G2- or G3-like according to 
our subtyping strategy. This indicates the possibility 
that simple metabolic diseases could progress into 

more complex diseases, i.e., MTS or T2D, thus 
providing clinical or molecular clues useful for early 
disease prevention. For instance, G2-like 
hyperlipidemia patients might be more likely to 
progress to MTS than G1-like hyperlipidemia 
patients.  

 

 
Figure 7. Pathway characteristics of the three metabolic disease groups. A Pathway profile of samples in the three main groups. For every pathway, the GSEA method was 
applied to examine whether the members of the pathway were enriched at the top or bottom of the ranked molecular list for an individual sample with respect to each type of 
omics data (see Methods). The pathway category is annotated at the right side of the heatmap. B-D Top-ranked differential pathways in the three groups identified based on the 
metabolomics (B), proteomics (C) and peptidomics (D) profiles, respectively. Random forest-based important scores for the pathways were also calculated to estimate the 
importance of a pathway in predicting the group labels. Then, the top-half ranked pathways (the number of top-half metabolomics-based pathways was larger than 30, so we only 
displayed the top 30 for clarity) were further examined. The GSEA-based pathway scores in the samples in each pathway were normalized by subtracting the minimum level. The 
circle colors represent the log2-transformed fold change of the normalized GSEA scores for a certain pathway between one group and the others. The circle size is proportional 
to the –log10(P), for which the P values were calculated by the Wilcox test (two-sided, unpaired). GSEA: gene set enrichment analysis. 
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Meanwhile, the underlying molecular 
signatures, molecular regulation networks and 
pathways in these three groups were completely 
distinct, suggesting the different compensatory and 
molecular regulation mechanisms underlying the 
refined metabolic subtypes, especially with respect to 
lipid metabolism, amino acid metabolism and the 
immune system. Notably, these group specific 
features were from different molecular sources, single 
type of omics data cannot grasp the distinctive 
patterns. 

We cannot claim that the new groups identified 
here are better than the previous disease classification. 
But these re-organized groups could still provide an 
alternative way to classify metabolic diseases and to 
understand the relationships, especially the potential 
progression among different metabolic diseases. In 
the future, we will undertake more comprehensive 
investigations and utilize experimental assays to 
further explore the specific mechanisms. The 
group-specific clinical and molecular profiles can 
provide guidance for the investigation of potential 
molecular mechanisms and even preventive or 
diagnostic biomarkers and therapeutic targets, thus 
improving the treatment and prevention of these 
highly correlated metabolic diseases. 

Our data provided insights into classifying 
metabolic diseases. The limitations of our study 
include the small sample size and the lack of 
genomics analysis, as our initial genomics data did 
not yield meaningful results. Future larger studies 
will be conducted to continually improve the results. 

Methods 
Clinical sample collection and ethics 
committee approval 

Serum from 49 individuals and the 
corresponding clinical information were collected by 
the Shanghai Jiao Tong University Affiliated Sixth 
People's Hospital with the approval of the ethics 
committee. The serum samples were immediately 
placed on dry ice and mailed to the Dalian Institute of 
Chemical and Physics, after which they were placed 
in a -80˚C refrigerator for storage. Group A was 
comprised of healthy persons, while groups B, C, D, E, 
F and G were comprised of patients with obesity, 
MTS, hyperglycemia, hypertension, hyperlipidemia 
and T2D, respectively each group comprised seven 
randomly sampled people. During collection, except 
for the MTS patients (group C), we ensured that the 
serum samples in each group were obtained from 
patients with only one of the specified diseases. 

HOMA calculator 
HOMA1 was calculated according to the original 

HOMA model [40]. HOMA2 was calculated by 
HOMA2 Calculator [40] software, for which the 
fasting plasma glucose and insulin concentrations 
were utilized for the calculations. 

Metabolome profiling 
Metabolomics and lipidomics profiling was 

performed with a Waters UPLC system coupled with 
a Q Exactive HF mass spectrometer (Thermo Fisher 
Scientific, Rockford, IL, U.S.A.) [41, 42]. The 
separation was performed with a 2.1×100 mm 
ACQUITYTM 1.7 µm C8 column in ESI positive ion 
mode, and the mobile phase consisted of water with 
0.1% formic acid (A) and acetonitrile (B). For the ESI 
negative ion mode, the separation was performed 
with a 2.1×100 mm ACQUITYTM 1.8 µm T3 column, 
and the mobile phase consisted of 6.5 mM ammonium 
bicarbonate water solution (C) and 6.5 mM 
ammonium bicarbonate in 95% methanol and water 
(D). The separation of the lipid metabolites was 
performed with a Waters UPLC C8 ACQUITY 
column (2.1 mm × 100 mm × 1.7 µm) (Milford, MA, 
USA). GC-MS analysis was also performed for the 
metabolic profiling. A QP 2010 GC-MS system 
(Shimadzu, Japan) with a DB-5 MS fused silica 
capillary column (30 m × 0.25 mm × 0.25 μm, Agilent 
Technologies, USA) was used. A pseudotargeted 
GC-MS metabolomics method was used as previously 
reported [43]. Quality control (QC) samples were 
prepared by mixing equal aliquots of serum from each 
real sample, and a QC samples was run after 8 real 
serum samples. The reproducibility of the metabolite 
ions was evaluated with relative standard deviation 
(RSD%) of the QC samples. In this study, 78.3% of 
ions had RSD% less than 20%, and 91.1% of ions had 
RSD% less than 30%. See Supplementary methods for 
more details. 

Proteome profiling 
Each sample was analyzed in technical triplicate 

with a nano-RPLC-MS/MS on a Q-Exactive MS 
(Thermo Fisher, CA) coupled with an Easy-nano LC 
system (Thermo Fisher, CA). The raw data were 
uploaded into Maxquant (v.1.6.1.0) and searched 
against the UniProtKB human complete proteome 
sequence database (release 2017_06, 24,148 entries), 
and the average profiling result of three technical 
repeats for each sample was adopted as the final 
result. The search included cysteine 
carbamidomethylation as the fixed modification and 
methionine oxidation and acetylation of protein 
N-terminal as variable modifications. The searching 
tolerance for precursor ions was 10 ppm, and that for 
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fragment ions was 20 ppm. Matching between runs 
with retention time window of 0.7 min and the label 
free quantitation algorithm were performed. See 
Supplementary methods for more details. 

Peptidome profiling 
The peptide analysis was performed with 

nano-RPLC-ESI-MS/MS on an LTQ-Orbitrap Elite 
mass spectrometer coupled with a Dionex UltiMate 
3000 RSLC-nano System (Thermo, San Jose, CA). QC 
samples were prepared by mixing equal aliquots 
peptides obtained from each real sample, and the 
remaining individual samples and QC samples were 
labeled and analyzed according to a stable isotope 
dimethyl labeling method [44] where QC and real 
samples were respectively labeled with dimethyl light 
label and heavy label, equal volume QC sample was 
added into each of the real sample, and was analyzed 
by liquid chromatography tandem mass 
spectrometry. Then, a ratio value of light labeling 
intensity/heavy labeling intensity was used to 
quantify each peptide. The acquired raw MS/MS 
spectra from each sample were searched against the 
International Protein Index (IPI) human database with 
the UniProt website using Mascot Version 2.4.1 
(Matrix Science). MaxQuant software (version 1.6) 
was used to perform the quantitative analysis. See 
Supplementary methods for more details. 

Omics data preprocessing 
For each type of omics analysis, the initial data 

were represented by a data matrix in which the rows 
and columns represented the molecules and samples, 
respectively, and the missing values were set to zero. 
Then, the data were processed in two steps: 

1. Molecules (rows) for which more than half of 
the samples were zero were removed; 

2. For the differential analysis, the remaining 
rows were normalized as follows: 

xi,j’=(xi,j-mini)/(maxi-mini) 

where xi,j represents the j-th element in row i and 
mini and maxi represent the minimum and maximum 
values in row i. 

 For the patient clustering analysis, the 
remaining rows were standardized by another 
equation: 

Z(xi,j)=(xi,j-mi)/sdi

 where xi,j represents the j-th element in row I and 
mi and sdi represent the mean value and standard 
deviation of row i. 

All three sets of omics data were preprocessed 
with the above processes. 

Differential analysis of the multi-omics data 
For the analyses of the preprocessed omics data, 

when comparing a single disease group and the 
healthy group, we utilized the Kruskal-Wallis rank 
sum test to examine the differences, and the fold 
changes (FCs) were calculated by dividing the mean 
value of the disease group by the mean value of the 
healthy group. Molecules with p values less than 0.05 
and absolute values of log2 (FC) larger than 1 were 
recognized as DEMs.  

First step clustering 
a) Determination of the clinical factor-relevant 

elements in the omics data 
According to suggestions from physicians 

experienced in metabolic disease treatment, 8 key 
clinical factors for 4 basic metabolic diseases were 
considered; BMI and WaistCir for OB, FPG and OGTT 
2hPG for HG, SBP and DBP for HT, and TG and HDL 
for HP. These clinical indexes were collected. For each 
type of omics analysis, the Spearman correlation 
coefficients between each molecule and every clinical 
index were calculated. Then, the molecules in the 
omics analyses were ranked based on their absolute 
correlations with each of the disease-relevant clinical 
factors (each disease was evaluated with two clinical 
factors), and the mean absolute correlations were 
calculated. Finally, the molecules ranked among the 
top 30% for both clinical factors were selected, and if 
the number of molecules was larger than 50, we only 
retained the top 50 based on the mean absolute 
correlation. This process was repeated for each type of 
omics analysis, and the results were merged. 

b) Clustering based on the clinical factor-relevant 
elements 

The preprocessed data matrixes of the omics 
datasets were merged, and rows included 
metabolites, proteins and peptides. Then, the merged 
matrix was further reduced by only retaining the 
clinical factor-relevant items. With this matrix (termed 
Mr), we utilized a consensus clustering strategy to 
perform the unsupervised clustering of the clinical 
samples, for which the maximum number of clusters 
was set to 10, the final cluster number was set to 7, the 
inner clustering algorithm used was hierarchical 
clustering and the sample distance was defined as the 
“1-Pearson correlation”. The clustering method was 
carried out with the R package ConsensusClusterPlus 
[45]. 

Second step clustering 
After the initial clustering analysis, the patients 

were separated into different clusters. Each cluster 
was further described according to the mean values of 
the collected clinical factors, such as LDL, FPG, and 
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ApoB. Then, these clinical factors were ranked by 
their SDs, and only the top 50% ranked factors were 
retained. Based on the mean levels of these retained 
clinical factors for every cluster, we utilized 
hierarchical clustering (the default clustering method 
in the R package complexHeatmap [46]) to cluster 
these initial clusters. 

Recognition of the potential clinical and 
molecular determinants of the identified 
groups. 

We evaluated the clinical and molecular 
differences between each individual group and the 
combined groups based on the Wilcox test, and the 
corresponding FC values were computed by dividing 
the mean value of each group by the mean value of 
the other groups. 

Random forest-based importance score 
Based on the clustering results, we estimated the 

importance of different molecules and pathways to 
separate the patients into the identified groups based 
on a random forest algorithm. This algorithm assesses 
the feature importance based on the impurity 
reduction caused by removing the feature from the 
forest. This was carried out with the R package 
randomForest [47]. 

Evaluation about the performance of 
molecular features in predicting the redefined 
three groups 

Support vector machine (SVM) algorithm was 
applied to train the group classifier based on the 
expression profiles of molecules which showed 
significant differences between different groups. To 
evaluate the classifier’s performance, we utilized a 
leave-one-out validation strategy where one 
individual sample was left out as a testing sample, 
and the others were taken as training samples, then a 
SVM classifier was trained and tested based on the 
training and testing samples respectively, and this 
processes was repeated until each sample was utilized 
as a testing sample at once. After the leave-one-out 
validation, we merged the predicted results of each 
individual sample, calculated the corresponding 
specificities and sensitivities, and drawn the ROC 
curve. The SVM algorithm and ROC curve were 
respectively carried out based the R package caret [48] 
and pROC [49]. 

Recognition of the heterogeneous molecular 
network 

Based on the three omics datasets and the clinical 
factor-relevant molecules, we calculated the biweight 
midcorrelations between any two heterogeneous 
molecules (a metabolite and a protein, a protein and a 

peptide, or a peptide and a metabolite) and the 
corresponding Student p-values with the WGCNA 
package [50] for the G1, G2 and G3 samples, 
respectively. Two molecules with an absolute value 
for the correlation coefficient larger than 0.6 and a 
p-value less than 0.01 in any of the three groups were 
included in the heterogeneous molecular network. 
The resulting network was plotted with Cytoscape 
[51]. 

Pathway enrichment analysis of the molecular 
network 

Pathway information was obtained from the 
KEGG [52]. For each pathway, we determined the 
metabolites and proteins/genes in the pathway and 
utilized Fisher’s exact test to examine the overlap 
between the pathway metabolites and the metabolites 
of interest, as well as the overlap between the 
pathway proteins/genes (proteins were represented 
by the corresponding encoding genes) and the 
proteins of interest. 

GSEA-based pathway activity score 
For every individual sample, we generated a 

ranked molecular list based on the expression profile 
within one omics dataset. For the metabolomics and 
proteomics analyses, we could generate the 
metabolite and protein lists, respectively. However, 
peptides are not annotated in the KEGG pathways, 
and we utilized the source proteins of the peptides 
instead of generating ranked molecular lists in terms 
of peptidomics. Then, the GSEA method was applied 
to examine whether the members of a particular 
pathway were enriched at the top or bottom of the 
ranked molecular list for the sample, and a 
GSEA-based pathway activity score was calculated 
for each pathway as: GS = -log10(p) if the pathway is 
up-regulated, and GS = log10(p) if the pathway is 
down-regulated, where p is the statistical P-value got 
from GSEA. The GSEA method was performed with 
the R package piano [53]. 

Statistics 
All statistical tests and other computations were 

performed in R. All codes are available upon request. 
The detailed statistical methods are described in the 
corresponding sections. 

Abbreviations 
0.5hPG: 0.5-hour postprandial plasma glucose; 

0.5hPSI: 0.5-hour postprandial serum insulin; 2hPG: 
2-hour postprandial blood glucose; AFAM: afamin; 
AGC: automatic gain control; ALBU: serum albumin; 
APOA1: apolipoprotein a-i; ApoB: apolipoprotein b; 
APOC2: apolipoprotein C-ii; ATP: adult treatment 
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program; AUC: area under curve; %B: pancreatic islet 
b cell function index; BMI: body mass index; C1: 
cluster 1; C2: cluster 2; C3: cluster 3; C4: cluster 4; C5: 
cluster 5; C6: cluster 6; C7: cluster 7; CADH5: 
cadherin-5; CAH1: carbonic anhydrase 1; CBG: 
corticosteroid-binding globulin; Cer: ceramide; 
CFAD: complement factor d; CFAB: complement 
factor b; CO3: complement factor c3; CO7: 
complement component c7; CXCL7: c-x-c motif 
chemokine 7; DBP: diastolic blood pressure; DEM: 
differentially expressed molecule; DG: diacylglycerol; 
FC: fold change; FDR: false discovery rate; FFA: free 
fatty acids; FIBA: fibrinogen alpha chain; FPG: fasting 
plasma glucose; GPT: glutamic pyruvic transaminase; 
GOT: glutamic oxalacetic transaminase; GSEA: gene 
set enrichment analysis; HDL: high density 
lipoprotein; HEP2: Heparin cofactor 2; HOMA: 
homoeostasis model assessment; IGKC: 
immunoglobulin kappa constant; IR: insulin 
resistance; ITIH4: inter-alpha-trypsin inhibitor heavy 
chain h4; KEGG: kyoto encyclopedia of genes and 
genomes; KNG1: kininogen-1; KV113: 
immunoglobulin kappa variable 1-13; LCAT: lecithin 
cholesterol acyltransferase; LDL: low density 
lipoprotein; MS: mass spectrometer; MTS: metabolic 
syndrome; MYEF2: myelin expression factor 2; OGTT: 
oral glucose tolerance test; PC: phosphatidylcholine; 
PD: proteome discoverer; PS: phosphatidylserine; 
ROC: receiver operating characteristic; %S: insulin 
sensitivity index; SBP: systolic blood pressure; SRGN: 
serglycin; SVM: support vector machine; T2D: type 2 
diabetes; TBA: total bile acid; T-Bil: total bilirubin; 
TCH: total cholesterol; TG: triglyceride; THRB: 
thrombin; TP: total protein; TRFE: serotransferrin; 
WaistCir: waist circumference. 
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