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The baculovirus expression vector system (BEVS) is a widely used platform for the pro-
duction of recombinant eukaryotic proteins. However, the BEVS has limitations in compari-
son to other higher eukaryotic expression systems. First, the insect cell lines used in the
BEVS cannot produce glycoproteins with complex-type N-glycosylation patterns. Second,
protein production is limited as cells die and lyse in response to baculovirus infection. To
delay cell death and lysis, we transformed several insect cell lines with an expression plas-
mid harboring a vankyrin gene (P-vank-1), which encodes an anti-apoptotic protein. Specifi-
cally, we transformed Sf9 cells, Trichoplusia ni High FiveTM cells, and SfSWT-4 cells, which
can produce glycoproteins with complex-type N-glycosylation patterns. The latter was
included with the aim to increase production of glycoproteins with complex N-glycans,
thereby overcoming the two aforementioned limitations of the BEVS. To further increase
vankyrin expression levels and further delay cell death, we also modified baculovirus vectors
with the P-vank-1 gene. We found that cell lysis was delayed and recombinant glycoprotein
yield increased when SfSWT-4 cells were infected with a vankyrin-encoding baculovirus. A
synergistic effect in elevated levels of recombinant protein production was observed when
vankyrin-expressing cells were combined with a vankyrin-encoding baculovirus. These effects
were observed with various model proteins including medically relevant therapeutic proteins.
In summary, we found that cell lysis could be delayed and recombinant protein yields could
be increased by using cell lines constitutively expressing vankyrin or vankyrin-encoding
baculovirus vectors. VC 2017 American Institute of Chemical Engineers Biotechnol. Prog.,
33:1496–1507, 2017
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Introduction

The baculovirus expression vector system (BEVS, aka

Baculovirus insect cell system, BICS) is a recombinant pro-

tein production platform that combines insect cells with

recombinant baculovirus vectors1,2 and was recently
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reviewed by Refs. 3 and 4. In comparison to other higher
eukaryotic recombinant protein production platforms, the
BEVS quickly produces large amounts of properly folded
proteins. Additional advantages of the BEVS include the
ability to add eukaryotic post-translational modifications,
including O- and N-linked glycosylation, at the correct sites.
Moreover, multiple genes of interest can be encoded by the
same recombinant baculovirus,5–7 and large DNA fragments
can be cloned into the baculoviral vectors.3,8 These advan-
tages have led to widespread use of the BEVS for various
applications, including the production of recombinant pro-
teins for both basic and applied research, as well as the pro-
duction of recombinant proteins for immunotherapy
treatment (e.g., ProvengeTM), prescription medicine, and vac-
cine applications3,4 such as the FDA-licensed products Cer-
varixTM and FluBlokTM.9–11

One major limitation of the BEVS is that baculovirus

infection results in cell death and lysis, which limits baculo-

viral protein expression to the window of time between the

onset of late viral gene expression and the time of cell

death.12 Thus, protein expression is typically restricted to �3

days following infection. Furthermore, the insect cell secre-

tory pathway is compromised during the later stages of bacu-

lovirus infection, limiting the extent to which secreted

recombinant proteins can be folded and secreted into the

extracellular medium. Secretory pathway impairment is

caused, at least to some extent, by the accumulation of large

amounts of virally encoded chitinase and cathepsin (a prote-

ase) in the secretory pathway.13,14 Following lysis, viral

cathepsin is released into the culture supernatant, and can

degrade recombinant proteins after being activated by treat-

ment with chaotropic reagents such as SDS or low pH. To

address the negative impact of baculovirus chitinase and

cathepsin on secretory pathway protein yield and integrity,

baculovirus vectors lacking chitinase and cathepsin were

developed.15,16

Non-lytic or delayed lytic baculovirus vectors have been

used to delay cell death and lysis and improve production

levels and integrity of recombinant proteins.17,18 G�omez-

Sebasti�an et al. engineered a novel expression cassette con-

taining various baculovirus genomic elements such as trans-

activators IE1 and IE0 and enhancer sequences.18 Insect

cells infected with those viruses showed increased cell via-

bility and integrity after infection, and an increase in recom-

binant protein yields. A similar effect was achieved when

the baculovirus apoptotic inhibitor P35 was constitutively

expressed from the insect cells.19 However, the overexpres-

sion of IAP-1 and IAP-2 did not consistently inhibit apopto-

sis in AcMNPV.20,21

An alternative approach to delay lysis of baculovirus-

infected cells is the expression of viral ankyrins (vankyrins)

derived from an insect polydnavirus, Campoletis sonorensis
ichnovirus (CsIV).22 Baculovirus-infected Sf9 cells constitu-

tively expressing one of two vankyrin proteins (P-vank-1 or

I2-vank-3) exhibit a delay in cell lysis due to inhibition of

apoptosis, with some cells surviving several days longer than

normal.22 The nature of the vankyrin proteins and studies of

their activity suggest the antiapoptotic actions result from

modulation of host cellular immune responses to virus infec-

tion.22-24 Specifically, experimental evidence suggests van-

kyrin proteins are functional I-jB homologs that act on the

NF-jB signaling pathway to alter cellular immunity at the

transcriptional level to block apoptosis.25,26

A second major limitation of the BEVS is the inability to
produce N-glycoproteins with human-type N-glycan struc-
tures. This is an important limitation, as glycosylation can
affect protein half-life, stability, function, structure, and/or

immunogenicity,27,28 and over 50% of human proteins are
glycosylated.29 Because glycoproteins are involved in impor-
tant physiological processes such as cell proliferation and
differentiation, blood clotting and immunity, many glycopro-
teins are pharmaceutically relevant and used as therapeutics
or in vaccines.8,27,30 Unfortunately, a large majority of gly-
coprotein therapeutics cannot be produced using conven-
tional BEVS, because the N-linked glycans on glycoproteins

produced in the BEVS are different from those produced in
mammalian cells, and do not provide efficient therapeutic
effects. Specifically, the insect cell lines used in the BEVS
do not produce activated sialic acid and do not express suffi-
cient levels of several glycosyltransferases to produce com-
plex, terminally sialylated glycoproteins. Instead, insect cells
produce N-glycoproteins with paucimannose glycans, where
mammalian cells produce complex sugar groups with termi-
nal sialic acids.31–33 Because the majority of medically rele-

vant proteins are glycoproteins, this is an important
limitation of the BEVS. Consequently, recombinant glyco-
protein biologicals that require human-type glycans for clini-
cal efficacy have to be produced in mammalian expression
platforms, although the BEVS is superior in many
aspects.34–36

To address this limitation, both baculovirus vectors and

insect cells have been engineered with the enzymes required
to produce N-glycoproteins with human-type complex, termi-
nally sialylated glycans.31–33,37,38 One such engineered cell
line is SfSWT-4, which is a Spodoptera frugiperda Sf9 cell
line derivative that has been engineered to stably express
glycosyltransferases necessary for N-glycan elongation, as
well as several enzymes required to produce and activate
sialic acid.39

The present study was designed to expand the utility of
the vankyrin technology and to address both of these major
limitations of the BEVS. Our goal was to increase recombi-
nant glycoprotein productivity and humanize N-glycosylation
in the BEVS by expressing vankyrin in glyco-engineered
insect cells. To achieve this goal, we stably transformed
SfSWT-4 cells with the P-vank-1 gene and demonstrated
increased yields of secreted glycoproteins.

Furthermore, we demonstrated vankyrin expression
improves protein yields in cell lines other than S. frugiperda
cell lines. Several reports indicate Trichoplusia ni cells can
produce significantly higher levels of secreted proteins than
S. frugiperda cells.40–42 Here, we stably transformed High
FiveTM insect cells, which are a T. ni cell line, to express P-
vank-1. We found the resulting VE-High Five cell line had

enhanced cell viability and recombinant protein production
as compared to the parental cell line.

Finally, we also describe new vankyrin-enhanced (VE)
baculovirus vectors. VE-baculoviruses prolonged survival of
infected insect cells compared to conventional baculoviruses,
and accumulation of secreted proteins increased. In addition,
a synergistic effect was seen when a VE-baculovirus was

used to infect VE-insect cells.

In summary, we have addressed major limitations in the
BEVS by demonstrating that vankyrin enhancement can sig-
nificantly improve cell viability in several types of
baculovirus-infected cells, including a glycosylating cell line.
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As a result, secretion of recombinant proteins produced in

the VE-BEVS is prolonged with less protein degradation and
thus, protein accumulation is considerably increased relative

to conventional BEVS. Consequently, VE-BEVS offer a

novel, significant, adaptable, and proven improvement to the

BEVS platform for various applications.

Materials and Methods

Cell lines and growth conditions

Spodoptera frugiperda Sf9 cells and Trichoplusia ni High

FiveTM cells were acquired from Thermo Fisher Scientific
(Waltham, MA, USA). SfSWT-4 cells39 were provided by Dr.

Donald Jarvis from the University of Wyoming (Laramie,

WY, USA) and VE-Sf9 cells, which are referred to as VE-
CL02 cells,24 were developed at ParaTechs Corp. (Lexington,

KY). These cells are also known as SuperSf9-2 (Oxford

Expression Technologies, Oxford, UK). Insect cells were
maintained in suspension culture in 125 ml-Erlenmeyer flasks

at 278C with shaking at 130–150 rpm. For each passage, insect

cell cultures were diluted with insect cell culture medium to a
seeding density of 1 3 106 cells mL21 in a volume of 25–

50 mL when the cell density reached 5 3 106 cells mL21. Sf9

and VE-CL02 cells were grown in Sf-900TMII serum-free
medium (Sf-900TM II SFM; Thermo Fisher Scientific). High

FiveTM (Thermo Fisher Scientific) and VE-High Five cells

were grown in Express Five
VR

serum-free medium (Express

Five
VR

SFM; Thermo Fisher Scientific) supplemented with
18 mM L-glutamine (Thermo Fisher Scientific) and 10 U of

heparin per ml (Sigma–Aldrich, St. Louis, MO). SfSWT-4 and

VE-SfSWT-4 cells were routinely grown in TNM-FH (Gemini
Bio-Products, West Sacramento, CA) supplemented with 10%

heat-inactivated fetal bovine serum (FBS) and 1% pluronic F-

68 (both Thermo Fisher Scientific).

VE-High Five and VE-SfSWT-4 (“VE-SWT”) cells were

obtained by transforming cells with a Junonia coenia denso-
virus transformation vector encoding P-vank-1 from the

Campolitis sonorensis ichnovirus (CsIV; accession no.

AAX56953.1) as described for VE-CL02 cells.24 The effect
of vankyrin expression from several different insect and viral

promoters on recombinant protein production were evalu-

ated, and the VE-High Five and VE-SWT cell lines with P-
vank-1 expression under the control of the constitutive CsIV

AHv0.8 promoter were chosen for further evaluation. Stably

transformed VE cells were selected with 400 mg mL21

Geneticin G418 Sulfate (Thermo Fisher Scientific). Popula-

tions of antibiotic-resistant cells were amplified to generate

stable polyclonal VE-High Five and VE-SWT cell lines. The
expression of P-vank-1 RNA in transformed cell lines was

confirmed by RT-PCR. Stable polyclonal cell lines were

evaluated for recombinant protein production and perfor-
mance relative to unmodified insect cells.

For monoclonal selection of VE-High Five cells, limiting
dilutions were prepared from individual polyclonal cell lines

using 50% 48-h-conditioned Express Five
VR

medium contain-

ing 400 mg mL21 Geneticin G418 Sulfate. Each dilution
containing a single cell was added to 96-well flat bottom tis-

sue culture plates. Plates were sealed and allowed to incu-

bate at 278C for 4 weeks, replacing the media once, before
clonal populations of positive antibiotic-resistant cells

reached confluency and were reseeded into new wells in 96

well plates containing 200 mL of conditioned medium per
well, and incubated for 1 week. Cells were seeded into a 48-

well plate for scale-up and amplification, and grown to con-
fluency in the presence of 400 mg mL21 Geneticin G418
Sulfate prior to seeding into 24-well, and finally six-well
plates. When cells in six-well plates reached confluency,
monoclonal cell lines were started in T25 flasks. RT-PCR
was performed to confirm expression of P-vank-1 in the
monoclonal cell lines. YFP expression levels were then
quantified in monoclonal isolates after infection with recom-
binant YFP-BEVS (see below; Figure 1).

Monoclonal isolates of VE-SWT cells were obtained as pre-
viously described39 by limiting dilution using conditioned
TNM-FH medium, yielding 34 monoclonal VE-SWT cell lines
stably expressing P-vank-1. Each monoclonal isolate was
screened for the production of terminally sialylated glycocon-
jugates by cell surface staining with Texas Red conjugated
Sambucus nigra agglutinin (SNA43). Cell surface fluorescence
could be observed on all 34 VE-SWT monoclonal isolates, as
well on SfSWT-4 positive control cells, whereas Sf9 control
cells did not fluoresce, indicating VE-SWT cells produced ter-
minally sialylated glycoconjugates as expected. The 34 mono-
clonal isolates were further screened for growth characteristics
and enhanced glycoprotein production. A clone designated
VE-SWT33 was selected for further experiments because it
uniformly grew without clumping or floating in monolayer and
consistently produced high levels of two mammalian model
glycoproteins, erythropoietin (EPO) and secreted alkaline
phosphatase (SEAP), when infected with recombinant baculo-
viruses encoding these proteins.

Baculovirus transfer vectors

pAcVE.02 and pAcVE.03 transfer vectors (Figure 3) are
modified from pAcVE.01 (ParaTechs, Lexington, KY) with
the addition of the honeybee melittin (HBM) signal peptide
to increase protein secretion.44 pAcVE.01 was synthesized
by GenScript (Piscataway, NJ, USA) and encodes, an 861 bp
ampicillin resistance gene (derived from pUC57), a 131 bp
SV40 polyadenylation signal, and genomic DNA fragments
from AcMNPV (accession NC_001623) to target the polyhe-
drin locus for in vivo homologous recombination and that
correspond to the polyhedrin promoter (nt 4425-4521), the
p10 promoter (nt 118728-118839), ORF603 (nt 3759-4364)
and its promoter and ORF1629 (nt 5287-6918) and its tran-
scription termination signal. Downstream of the polyhedrin
promoter is a 92 bp multiple cloning site (MCS) containing
AvrII, BglII, BstZ17I, EagI, NcoI, NheI, SacII, SbfI, and
XhoI restriction sites, followed by a 6x His-tag to facilitate
protein purification and a stop codon. On the complementary
strand, downstream of the p10 promoter is the CsIV P-vank-
1 gene flanked by AflII restriction sites. A 137 bp fragment
comprising a 69 bp region encoding HBM signal peptide, a
PmeI restriction site, an 8x His-tag, and a MCS containing
NotI, SbfI, and NheI restriction sites was synthesized by
GenScript and cloned into pUC57 (HBM-pUC57). This plas-
mid was digested with AvrII and NheI to excise the 137 bp
insert, which was then ligated into the AvrII and NheI sites
of pAcVE.01, thereby replacing its MCS with the 137 bp
fragment, and chemically transformed into DH5a cells
(Thermo Fisher Scientific). The resulting plasmid was desig-
nated as pAcVE.02 (Figure 3A). pAcVE.03 was constructed
by inserting the HBM signal sequence upstream of the MCS
of pAcVE.01 using Infusion cloning (Takara, Mountain
View, CA). The HBM was PCR amplified from plasmid
HBM-pUC57 with primer set 335/343 (Table 1); each primer

1498 Biotechnol. Prog., 2017, Vol. 33, No. 6Biotechnol. Prog., 2017, Vol. 33, No. 61498



Table 1. Oligonucleotide Primers Used for PCR in this Study

Designation Footnote Sequence Type of PCR or Oligonucleotide

335 * 50- ATAAATATACCTAGGATGAAATTTCTAGTAAACGTTGCC-30 Infusion
343 * 50- GGCCATGGACCTAGGCGGATCAGCATAGA-30 Infusion
351 † 50- GTATACAAAGATCTCAAGTACCGCGGTCG-30 Site-directed mutagenesis
352 † 50- CGACCGCGGTACTTGAGATCTTTGTATAC-30 Site-directed mutagenesis
357 ‡ 50- GCTGATCCGCCtgGTCCATGGCC-30 Site-directed mutagenesis
358 ‡ 50- GGCCATGGacCAGGCGGATCAGC-30 Site-directed mutagenesis
359 ‡ 50- CGCTCTATCTAGCtgCACATCACCATC-30 Site-directed mutagenesis
360 ‡ 50- GATGGTGATGTGcaGCTAGATAGAGCG-30 Site-directed mutagenesis
363 § 50- CCATGGGCCCCCCCTAGATTAATT-30 Amplifying
364 § 50- CTCGAGCCGATCGCCTGTACGGCA-30 Amplifying

*Underlined nucleotides of infusion primers correspond to pAcVE.01 sequence; non-underlined nucleotides correspond to HBM or signal peptide
sequence.

†Substituted nucleotides in the site-directed mutagenesis primers are in bold and italicized.
‡Bases surrounding the deleted adenine are lowercase.
§Primers used for routine PCR amplification of erythropoietin gene were synthesized with either a NcoI or XhoI restriction site (underlined) for ease

of cloning.

Figure 1. Vankyrin-enhanced cells have increased YFP fluorescence and viability compared to their parental cell line.

Legend: (A) Fluorescent images (3200 magnifications), (B) measured YFP fluorescence, and (C) cell viability for VE-CL02 and its parental cell
line Sf9 (top panels; Sf-900TMII medium), VE-High Five and its parental cell line High-FiveTM (middle panels; Express Five

VR

SFM medium), and
VE-SWT and its parental cell line SfSWT4 (bottom panel; TNM-FH medium with FBS) infected with a baculovirus encoding YFP (YFP-AcMNPV)
at a multiplicity of infection (MOI) of 5 is shown for days 2–5 post-infection. All infections were in static cultures with a cell density of 5 3 105

cells at the time of infection. Total YFP fluorescence for each infection (B) was determined by flow cytometry using the Guava easyCyte Flow
Cytometer as described in the Materials and Methods section. Percent viability (C) was determined by trypan blue staining as described in the Mate-
rials and Methods section. In (B) and (C), parental cell lines are indicated by gray bars, and Vankyrin-enhanced (VE) cell lines are represented by
black bars. The increase in cell viability in virus-infected VE-CL02 cells (C, top panel) from day 3 to day 4 can be explained by the difference in
total cell number. The data presented are means and standard deviations for triplicate determinations for each cell line in a single experiment. The
data presented here are representatives of multiple experiments performed from which equivalent results were obtained. Statistical significance
(P� 0.05) as determined by the Student two-tailed t test for comparison of baculovirus-infected parental cells vs. baculovirus-infected VE-cells is
represented by an asterisk (*).
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was designed to overlap both pAcVE.01 and the HBM
sequences. The HBM PCR fragment was then ligated into
the AvrII site of pAcVE.01, and the reaction product was
chemically transformed into DH5a cells. Insertion of the
HBM must be in frame with the restriction enzymes in the
pAcVE.01 MCS and the C-terminal 6x His-tag, but insertion
of the signal peptide resulted in three stop codons in this
DNA region. The stop codons were removed using site-
directed mutagenesis (Agilent Technologies, Santa Clara, CA
USA) to mutate G2732C (primer set 351/352), followed by
deletions of A2684 (primer set 357/358) and A2768 (primer
set 359/360). The resulting plasmid was designated
pAcVE.03 (Figure 3A). To enable evaluation of the
vankyrin-harboring baculoviruses, control transfer vectors
that are the non-vankyrin encoding versions of pAcVE.02
and pAcVE.03 were constructed by deleting the P-vank-1
gene using the restriction enzyme AflII and were named
pAc.02 and pAc.03, respectively. The sequences of all con-
structs were confirmed by dideoxy sequencing.

Recombinant baculovirus generation

A baculovirus transfer vector (pVL-YFP) encoding YFP
was obtained by excising the YFP open reading frame from
pEYFP-C1 (Takara; discontinued) using BamHI and SmaI
and cloning the fragment into the corresponding sites in the
MCS downstream of the polyhedrin promoter of a pVL1392-
based transfer vector (ParaTechs, KY; in house vector).
Genes encoding mature human secreted alkaline phosphatase
(SEAP; accession no. NP_001623.3) and erythropoietin
(EPO; accession no. NP_000790.2) were codon optimized
using the OPTIMIZER program (http://genomes.urv.es/OPTI-
MIZER/) with the AcMNPV codon bias (http://www.kazusa.
or.jp/), synthesized, and cloned into pUC57-based vectors
(GenScript), designated SEAP-pUC57 and EPO-pUC57
(Table 2). Neither gene included a start codon and native
signal peptide, as these genes were designed to use the HBM
start codon and signal peptide in pAcVE.02 and pAcVE.03
vectors. Further details regarding the construction of SEAP
and EPO baculovirus transfer vectors are described in
Table 2.

Recombinant baculoviruses encoding YFP, SEAP, or EPO
were generated through homologous recombination by

transfecting Sf9 cells with the transfer vector and the flash-
BAC GOLD AcMNPV DNA backbone (which does not

encode chitinase and cathepsin) using the manufacturer’s
instructions (Oxford Expression Technologies). The recombi-

nant virus was amplified once or twice in 50-mL Sf9 cul-

tures; filter sterilized using a 0.22-mm syringe filter, and
titered using the plaque assay method.45

Virus infections

The 5 3 105 insect cells were seeded into 12-well tissue

culture plates in 1 mL of their corresponding growth

medium. Once cells achieved confluency, cells were either
left uninfected or infected with a specified multiplicity of

infection (MOI) of recombinant baculovirus. Infections were

incubated at 278C for up to 10 days. On each day, baculovi-
rus infected cells were monitored for cytopathic effects

(nuclear and cellular hypertrophy, grainy appearance, and

lysis), photomicrographs were taken with a Zeiss AX10

inverted microscope (Carl Zeiss Microscopy, Thornwood,
NY) and acquired using an AxioCamMR3 digital camera

(Carl Zeiss Microscopy). Samples were collected as specified

for each experiment.

YFP quantification

Sf9, VE-CL02, High Five, VE-High Five, SfSWT-4, and

VE-SWT cells were infected with YFP-AcMNPV at an MOI

of 5 in triplicate. On days 2–5 post-infection, photomicro-
graphs and YFP fluorescence (300 ms exposure time) for

each infection well were captured using a Zeiss AX10

inverted fluorescence microscope with a 203 objective and

the AxioVision Rel. 4.6 program (Carl Zeiss Microscopy).
After gently collecting the cells, viability was determined by

staining cells with trypan blue (Thermo Fisher Scientific)

and counting viable and non-viable cells using an improved
Neubauer hemocytometer under magnification of a Zeiss

AX10 inverted microscope (Carl Zeiss Microscopy). To

quantify YFP fluorescence, insect cells were first counted in
triplicate utilizing a Guava

VR

easyCyte HT Sampling Flow

Cytometer and the guava InCyte Assay software module

(EMD Millipore, Hayward, CA). YFP fluorescence was then
measured using a 405-nm laser at a green spectral imaging

Table 2. Bacterial Plasmids and Bacmids Used in this Study

Plasmid Description

pGEM
VR

-T Easy ColE1-based cloning vector; 3,015 bp, Apr (Promega #A1360)
pUC57 ColE1-based cloning vector; 2,710 bp, Apr (GenScript #SD1176)
pEYFP-C1 pBR322 origin vector containing Aequorea victoria GFP; 4,731 bp, Knr (Clontech, discontinued)
pFastbacTM Dual pUC-based vector containing MCSs after the polH and p10 promoters; 5,238 bp, Apr Gnr

(Thermo Fisher Scientific #10712–024)
pAcVE.01 Derivative of pUC57; described in materials and methods section
pAcVE.02 Derivative of pAcVE.01; described in materials and methods and Figure 4
pAcVE.03 Derivative of pAcVE.01; described in materials and methods and Figure 4
pAc.01 Derivative of pAcVE.01 where the 516 bp P-vank-1 gene has been deleted
pAc.02 Derivative of pAcVE.02 where the 516 bp P-vank-1 gene has been deleted
pAc.03 Derivative of pAcVE.03 where the 516 bp P-vank-1 gene has been deleted
epo-pUC57 607 bp codon optimized epo gene from human cells cloned into EcoRI site of pUC57
pKH25 510 bp NcoI/XhoI DNA from epo-pUC57 containing epo (PCR primers 363/364) cloned into pGEM

VR

-T Easy
epo-pAc.03 504 bp NcoI/XhoI fragment from pKH25 containing epo with no stop codon cloned into pAc.03
epo-pAcVE.03 504 bp NcoI/XhoI fragment from pKH25 containing epo with no stop codon cloned into pAcVE.03
seap-pUC57 509 bp codon optimized seap gene from human cells cloned into EcoRI site of pUC57
seap-pAc.02 Derivative of seap-pAcVE.02 where the 516 bp P-vank-1 gene has been deleted
seap-pAcVE.02 1,504 bp NotI/SbfI from seap-pUC57 containing seap with stop codon cloned into pAcVE.02
pVL-YFP BamHI/SmaI fragment from pEYFP-C1 containing yfp cloned into pVL1392

Abbreviations: (Apr) ampicillin resistance, (Knr) kanamycin resistance, (Gnr) gentamicin resistance, (polH) polyhedrin, (seap) secreted embryonic
alkaline phosphatase, (epo) erythropoietin.
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band (525/30 nm) of the Guava
VR

easyCyteTM HT Sampling

Flow Cytometer. The total fluorescence of each infection

was determined with the Guava
VR

InCyte Assay software

module.

Cell viability assay of vankyrin-enhanced baculovirus
infected cells

Sf9 and SfSWT-4 insect cells were grown in 125 mL-

Erlenmeyer flasks at 106 cells mL21 in their respective

medium in a final volume of 25 mL (Sf9) or 40 mL

(SfSWT-4), followed by an overnight incubation at 278C at

150 rpm. Next, cell density and viability were determined

before infecting the cells with recombinant baculovirus at

their optimal MOI (MOI of 5 for Ac.02, Ac.03, AcVE.02,

and AcVE.03 baculoviruses and MOI of 1 for epo-Ac.03 and

epo-AcVE.03 baculoviruses). Cultures were then incubated

for another 10 days. On each day, 90 mL of culture from

each flask was removed in duplicate, and the number of via-

ble cells was determined by trypan blue staining as described

above.

Western blotting analysis

To evaluate expression levels and processing of the five

LDLa repeats of Manduca sexta pro-hemolymph protease-14

(proHP14), 1.6 3 106 Sf9 or VE-CL02 cells mL21 were

seeded in duplicate six-well plates in 2 mL Sf-900TM II

medium, and infected with a baculovirus encoding the five

LDLa repeats of proHP14 at an MOI of 5. Cells were incu-

bated at 278C, and cell-free medium samples were collected

after 3, 5, and 7 days for SDS-PAGE (12%) followed by

Western blot analysis using 1:1,000 primary diluted anti-His

monoclonal antibody (GenScript) and 1:1,000 diluted goat

anti-mouse IgG-AP conjugate as the secondary antibody

(Bio-Rad, Hercules, CA).

Erythropoietin (EPO; 34 kDa) protein levels were deter-

mined by Western blotting from the infected cultures used in

the cell viability assay described earlier. On days 2–10 post-

infection, a small sample of each culture was collected, and

cells were removed by centrifugation at 900 g for 10 min at

48C. Supernatants were stored at 48C until all of the samples

were collected. To determine recombinant protein levels per

mL of culture, 5 mL of supernatant were used for SDS-

PAGE (10%) followed by Western blot analysis using a

1:3,000 dilution of mouse monoclonal anti-His IgG2 anti-

body (GE Healthcare, Wauwatosa, WI) and a 1:300 dilution

of anti-mouse IgG horseradish peroxidase secondary anti-

body (GE Healthcare). Membranes were exposed to CN/

DAB substrate (Thermo Fisher Scientific) for 6 min, fol-

lowed by rinsing the membrane with water to stop exposure.

Membranes were scanned using a BioRad Universal Hood II

Gel Doc UV transilluminator.

SEAP enzymatic assay

SfSWT-4 and VE-SWT cells were infected at an MOI of

1 with either seap-Ac.02 or seap-AcVE.02 baculoviruses in

triplicate wells. On days 3–5 post-infection, supernatants

were collected, cells were removed by centrifugation (900 g,

10 min, 48C), and the SEAP-containing supernatant was

stored at 48C until all of the samples were collected. A pre-

viously described enzymatic assay was used to measure

SEAP protein activity.46,47 Triplicate samples were heated at

658C for 5 min, then 1 mL of each sample was added to 200
mL SEAP buffer (1 M diethanolamine, 0.5 mM MgCl2,
10 mM homoarginine) in a 96-well microtiter plate. Samples
were incubated at 378C for 10 min, pNPP working buffer
[20 mL; 5 mg p-nitrophenyl phosphate (Sigma) in pNPP
stock buffer (1 M diethanolamine, 0.5 mM MgCl2, 3.1 mM
NaN3, pH 9.8)] was added to each well, and the microtiter
plate was incubated at RT for 5 min in the dark. SEAP enzy-
matic activity was read at an absorbance of 405 nm using
the Epoch BioTek microplate spectrophotometer (Fisher
Scientific).

Statistics

Data are reported as mean 6 standard deviations. Statisti-
cal significance (P� 0.05) between treatments was deter-
mined by the Student two-tailed t test.

Results and Discussion

We previously reported that expression of the Campoletis
sonorensis ichnovirus (CsIV) vankyrin gene P-vank-1 in the
Sf9–derived VE-CL02 cell line inhibits apoptosis and pro-
longs cell survival after baculovirus infection, UV irradia-
tion, or treatment with an apoptosis-inducing chemical.24 In
the present study, we tested the hypothesis that expressing
vankyrin increases heterologous protein yields following
baculovirus infection of vankyrin-expressing insect cell lines
(VE-insect cells), or through infection with a baculovirus
vector encoding vankyrin (VE-baculovirus), or both. We
tested the previously established monoclonal VE-CL02 cell
line,24 and also tested Trichoplusia ni High FiveTM cells sta-
bly transformed with P-vank-1 expression constructs, as
High FiveTM cells have been reported to provide higher
recombinant protein yields than S. frugiperda cells.40–42

Finally, we also tested SfSWT-4 cells stably transformed
with a P-vank-1 expression construct, as SfSWT-4 can pro-
duce recombinant proteins with human-type N-glycans.39

Thus, we aimed to increase yield of glycoproteins with
authentic human-type N-glycans by combining vankyrin-
expression with humanized glycoprotein processing. Mono-
clonal vankyrin-expressing cell lines are designated as VE-
CL02, VE-High Five and VE-SWT.

Different cell culture media were tested to establish opti-
mal growth conditions for SfSWT-4 and VE-SWT cell. We
found that the highest cell density (6 3 106 cells mL21) can
be reached when the VE-SWT cells were subcultured in
Sf900III medium. However, due to a faster doubling time of
VE-SWT cells grown in TNM-FH with FBS (24 h) com-
pared to cells grown in Sf900III medium (72 h) in the first 3
days of culturing, we decided to routinely use TNM-FH
medium with FBS. In contrary to Invitrogen’s Mimic cells,
which require FBS as a source of sialic acid, SfSWT-4 and
VE-SWT cell lines are able to produce terminally sialylated
proteins in the absence of FBS.39

To test if recombinant protein yields were increased in
these three vankyrin-enhanced cell lines compared to their
respective parental cell lines, we infected cells with a YFP-
encoding baculovirus, and analyzed YFP fluorescence and
cell viability (Figure 1). Fluorescence images show that YFP
expression is considerably higher in VE-CL02 and VE-High
Five cells for the duration of the experiment when compared
to Sf9 and High FiveTM cells, respectively (Figure 1A).
These results were confirmed when we quantified YFP
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fluorescence using flow cytometry (Figure 1B). YFP fluores-

cence in VE-CL02 cells increases threefold on 3 days post-

infection (dpi) and YFP fluorescence in VE-High Five cells

increases fivefold on 2 dpi compared to their parental cell

lines. Interestingly, average YFP fluorescence is higher in

VE-High Five cells compared to VE-CL02 or VE-SWT cells

(Figure 1B), which was in line with earlier reports of higher

protein expression in T. ni cell lines as compared to S. frugi-
perda cell lines. A significant increase in YFP fluorescence

is also detected in VE-SWT cells at 4 and 5 dpi (Figure 1B),

which correlates with increased longevity (Figure 1C). VE-

CL02 cell viability is significantly higher than Sf9 on days 3

and 4 dpi, whereas the viability of YFP baculovirus-infected

VE-High Five is significantly higher than High FiveTM on

earlier days post-infection (days 2 and 3; Figure 1C). Thus,

early inhibition of apoptosis by vankyrin appears to be more

important for improving protein yields than its effect on via-

bility at later time points in VE-CL02 and VE-High FiveTM

cells. Our observation of increased cell viability in cells

expressing P-vank-1 as compared to their parental cell lines

correlate with increased protein production in these cells

(compare Figure 1B with 1C). Hence, our results indicate

that constitutive expression of P-vank-1 in stably trans-

formed insect cell lines leads to enhanced protein yields

through an increase in cell viability following baculovirus

infection. This study is especially relevant when considering

the use of the BEVS for the production of recombinant pro-

teins for use in vaccines,34,48 as well as for use in applied

and basic research.

Next, we investigated whether vankyrin expression can

enhance yields of intracellularly processed proteins. Man-
duca sexta pro-hemolymph protease 14 (proHP14) is an initi-

ating protease found in the serine proteinase pathway that is

involved in insect innate immunity.49–51 ProHP14 encodes a

signal peptide, five LDLa repeats—the first one of which

tends to be lost during intracellular processing50,51—one

Sushi domain, and one Wonton domain followed by a serine

protease catalytic domain. We set out to compare expression

levels of the five LDL repeats (LDLa1–5) of M. sexta
proHP14 in Sf9 and VE-CL02 cell lines. Immunoblotting

showed that at 3, 5, and 7 dpi, VE-CL02 cells have higher

levels of the regulatory domain LDLa1–5 as compared to

Sf9 cells (Figure 2). Furthermore, a majority of the recombi-

nant protein had a molecular mass of 34 kDa when

expressed from VE-CL02 cells, whereas the processed prod-

uct, with most likely the first LDLa domain removed by a

Sf9 intracellular processing enzyme (e.g., furin, conver-

tase),52 is detected at around 27 kDa when proHP14 is

expressed in Sf9 cells (Figure 2). Even after 7 days post-

infection, VE-CL02 cells contain mainly the full-length pro-
tein, whereas only very low levels of protein of either size
could be detected in Sf9 cells (Figure 2). Our observations
support the notion that proteins expressed in VE-Sf9 cells
undergo less proteolysis, and that the integrity of the secre-
tory pathway in those cells is preserved for an extended
period of time after baculovirus infection.

Following baculovirus infection, host gene transcription is
largely shut down and replaced with viral gene expres-
sion.53–55 Thus, vankyrin protein levels could potentially be
increased further through the use of recombinant baculovirus
vectors encoding P-vank-1. To produce and test such vectors,
we first generated two new dual-expression transfer vectors,
pAcVE.02, and pAcVE.03 (Figure 3A). Each transfer vector
has the P-vank-1 gene under transcriptional control of the
late, very strong baculovirus p10 promoter.3,56 These vectors
also contain a multiple cloning site (MCS) downstream of
the late, very strong polyhedrin promoter in the opposite ori-
entation for insertion of a gene of interest.3,56 Because the
placement of purification tags are dependent on the type and
function of the protein to be expressed, we designed
pAcVE.02, which has an N-terminal 83 His-tag upstream
and in frame with the MCS, and pAcVE.03, which has a C-
terminal 63 His-tag in frame with the MCS. pAcVE.02 and
pAcVE.03 both encode the honey bee melittin signal peptide
(HBM) upstream of the MCS to enhance secretion.44,57,58

These vankyrin-encoding transfer vectors and their coun-
terparts lacking the P-vank-1 gene (as negative controls)
were then used to generate recombinant baculoviruses. Each
baculovirus was used to infect Sf9 insect cells, and cell via-
bility was determined up to 10 days post-infection. Cell via-
bility is significantly increased in cells infected with the
vankyrin-encoding baculoviruses as early as day 2 post-
infection, and at 3 dpi cell viability is more than twice as
high in cells infected with baculovirus harboring the van-
kyrin gene compared to cells infected with control viruses
lacking the vankyrin gene (Figure 3B). A considerable num-
ber of cells are still viable 6 days after infection with a
vankyrin-enhanced baculovirus. These results indicate that
the P-vank-1 gene also prolongs cell viability when
expressed from the baculovirus vector.

To determine if baculovirus-mediated vankyrin expression
could also result in increased recombinant proteins yields,
we inserted a gene encoding human erythropoietin (EPO)
into pAcVE.03. Recombinant EPO is a glycoprotein hor-
mone used to treat anemia, and its therapeutic efficacy
requires human-type N-glycosylation.59–62 SfSWT-4 cells
were infected with either a recombinant vankyrin-enhanced
baculovirus encoding EPO (EPO-AcVE.03) or a recombinant

Figure 2. Vankyrin-enhanced Sf9 cells, VE-CL02, enhance protein yields of the five LDLa domains form of M. sexta pro-hemolymph
protease-14.

Legend: Western blot analysis of cell free extracts determining protein levels of the five LDLa domain of M. sexta pro-hemolymph protease 14
(proHP14) full-length protein (5 LDLa; top band) and intracellularly processed protein (4 LDLa; bottom band). Sf9 or VE-CL02 (designated V02)
cells grown in static culture in Sf-900TMII medium with a seeding cell density of 1.6 3 106 cells mL21 were infected with a baculovirus encoding
the five LDLa domains in proHP14 at MOI 5. Samples were collected on days 3, 5, and 7 post-infection, and protein extract from the same number
of viable cells was analyzed. The experiment was carried out with duplicate samples.
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baculovirus encoding EPO, but not vankyrin (EPO-Ac.03).

SfSWT-4 cells remain viable until 8 dpi when infected with

EPO-AcVE.03, whereas cells infected with EPO-Ac.03 are

mostly nonviable by 5 dpi (Figure 4A). A concomitant

increase in EPO yields was observed by immunoblotting

(Figure 4B), indicating that baculovirus-mediated vankyrin

expression resulted in enhanced protein yields when the gene

of interest was encoded by the same baculovirus.

Then, we explored if the prolonged cell viability and
increased recombinant protein yields observed with baculovi-
rus mediated-vankyrin expression could be synergistically

combined with cell lines engineered to stably express

Figure 3. Vankyrin-encoding baculoviruses increase insect cell viability compared to non-vankyrin baculoviruses.

Legend: (A) New vankyrin-encoding transfer vectors pAcVE.02 and pAcVE.03 are shown. Each vector contains an ampicillin resistance gene
(ampR), the p10 promoter upstream of the vankyrin gene, a sv40 polyadenylation signal (sv40 PA signal), multi-cloning site (MCS; pAcVE.02:
NotI, SbfI, NheI; pAcVE.03: NcoI, SbfI, XhoI, BstZ17I, BglII, SacII, EagI), honey bee melittin signal peptide (HBM signal), his-tag, and ORF1629
(including polyA signal) and ORF603 (including promoter)—the two open reading frames that flank the polyhedrin gene in the AcMNPV genome.
(B) Viability of SfSWT4 cells infected with baculoviruses generated from transfer vectors pAc.02 and pAc.03, or the vankyrin-encoding counterpart
pAcVE.02 and pAcVE.03. Suspension cultures grown in Sf-900TMII were infected on day 0 with a MOI 5 of each baculovirus. The cell densities of
each culture at the time of infections were �2 3 106 cells mL21. Cell viability was determined at the on-set of the experiment (0 dpi before viral
infections) and 1–10 days post-infection (dpi) by staining cells with trypan blue and counting living cells with the hemocytometer. The data pre-
sented are means and standard deviations for duplicate determinations for each infection in a single experiment. The data presented here are repre-
sentative of multiple experiments performed from which equivalent results were obtained. Statistical significance (P� 0.05) as determined by the
Student two-tailed t test for comparison of non-vankyrin baculovirus infections vs. vankyrin-encoding baculovirus infections using the same transfer
vector backbone is represented by an asterisk (*).
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vankyrin. Thus, we evaluated the production of secreted
alkaline phosphatase (SEAP) using a VE-baculovirus in
SfSWT-4 and VE-SWT cells. Clinical trials have shown
promise for the use of SEAP in the treatment of acute renal
failure, sepsis, and ulcerative colitis,63 and SEAP has been
shown to improve outcomes in patients undergoing cardiac
bypass surgery.64 Furthermore, SEAP can be accurately
quantified using an enzymatic assay.46,47

Higher alkaline phosphatase activity is detected in super-
natants of infected VE-SWT cells compared to those of
SfSWT-4 cells, irrespective of the type of baculovirus used
(Figure 5). These observations further support the hypothesis
that constitutive vankyrin expression increases recombinant
protein yields. This result is consistent with results obtained
by Lin et al. where Sf9 cells constitutively expressing
AcMNPV P35 were infected with a recombinant SEAP
baculovirus, and significantly higher protein levels were
detected in that cell line compared to the parental cell line.19

Higher alkaline phosphatase activity is also observed when
either SfSWT-4 or VE-SWT cells were infected with a
vankyrin-enhanced baculovirus encoding SEAP (SEAP-
AcVE.02) as compared to infection with a baculovirus
encoding SEAP but not vankyrin (SEAP-Ac.02; Figure 5).
Similar data is seen when comparing SEAP-AcVE.03 to
SEAP-Ac.03 virus infections (data not shown).

The highest levels of alkaline phosphatase activity are
detected when vankyrin-enhanced insect cells (VE-SWT) are
infected with a vankyrin-enhanced baculovirus encoding
SEAP (SEAP-AcVE.02). At 5 dpi, we observed a fivefold

increase in SEAP activity in the VE-SWT cells infected with
SEAP-AcVE.02 compared to SfSWT-4 cells infected with
SEAP-Ac.02, a combination lacking any vankyrin expres-
sion. Taken together, these results suggest that the positive
effects observed with cell-mediated and baculovirus-
mediated vankyrin expression can be synergistically com-
bined. Possibly, this combination provides vankyrin proteins
early in infection from host cell expression, and during the
late phase of infection from strong viral promoters, while
vankyrin expression from stably integrated gene declines.65

In contrary to conventional BEVS where poor protein
expression is often caused by loss of integrity of the secre-
tory pathway during the late stages of baculovirus infec-
tion,66 we have previously shown that the secretory pathway
is still functional in a vankyrin-enhanced Sf9 cell line after
infection with a baculovirus expressing a secreted protein.67

Here we report that the accumulation of two mammalian
glycoproteins (Figures 4 and 5) in the medium continue to
increase when expressed from a vankyrin-enhanced baculovi-
rus whereas protein accumulation ceased (Figure 5) or
declined (Figure 4) over time when cells were infected with
conventional baculovirus. Taken together, these results sup-
port the hypothesis that due to its anti-apoptotic function,
vankyrin has a positive effect on the integrity of the secre-
tory pathway.

Several recombinant vaccines are produced in the
BEVS,47 but this platform is not used to produce glycopro-
tein therapeutics, as most of these require complex, human-
type glycosylation patterns, which the insect cell lines used

Figure 4. Enhanced mammalian glycoprotein yields when expressed from a vankyrin-enhanced baculovirus.

Legend: (A) Cell viability was determined from suspension cultures grown in TNM-FH medium with FBS of uninfected SfSWT4 cells, of SfSWT4
cells infected with a MOI 1 of the erythropoietin (epo) encoding baculovirus (epo-Ac.03) or of the vankyrin-enhanced epo-baculovirus (epo-
AcVE.03) 0–10 days post-infection (dpi). The cell densities of each culture at the time of infection (0 days) were � 1 3 106 cells mL21. The data
presented here are representative of multiple (>3) experiments performed from which equivalent results were obtained. Statistical significance as
determined by the Student two-tailed t test for comparison of epo-Ac.03 infected SfSWT4 cells vs. epo-AcVE.03 infected SfSWT4 cells and is repre-
sented by either one asterisk (*; P� 0.05) or two asterisks (**; P� 0.01). (B) Western blot analysis determining protein levels of glycosylated eryth-
ropoietin (epo; 31 kDa compared to unglycosylated epo at 18.4 kDa69) in 5 lL culture supernatant for SfSWT4 cells infected with the epo-encoding
baculoviruse (epo-Ac.03) or vankyrin enhanced baculovirus encoding epo (epo-AcVE.03) at an MOI of 1. Samples were collected on days 2, 4, 6, 8,
and 10 post-infection.
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in the BEVS are unable to provide.32 In the present study,

we showed that a cell line engineered to overcome this limi-

tation of the BEVS can be combined with vankyrin-

enhancement technology to further increase production levels

of humanized glycoproteins (Figures 4 and 5).

In summary, we document that vankyrin genes function to

significantly improve cell viability and thus protein yields in

baculovirus infected cells. Consequently, the VE-BEVS

offers a novel, significant, adaptable, and proven enhance-

ment that substantially synergizes existing and improving

BEVS technologies.
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