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Specificity of the chromatic 
noise influence on the luminance 
contrast discrimination to the color 
vision phenotype
Bruna Rafaela Silva Sousa1, Terezinha Medeiros Gonçalves Loureiro2, 
Paulo Roney Kilpp Goulart3, Maria Izabel Tentes Cortes4, Marcelo Fernandes Costa5, 
Daniela Maria Oliveira Bonci5, Luiz Claudio Portnoi Baran5, Einat Hauzman5, 
Dora Fix Ventura5, Leticia Miquilini3 & Givago Silva Souza1,2*

Many studies have examined how color and luminance information are processed in the visual 
system. It has been observed that chromatic noise masked luminance discrimination in trichromats 
and that luminance thresholds increased as a function of noise saturation. Here, we aimed to 
compare chromatic noise inhibition on the luminance thresholds of trichromats and subjects with 
severe deutan or protan losses. Twenty-two age-matched subjects were evaluated, 12 trichromats 
and 10 with congenital color vision impairment: 5 protanopes/protanomalous, and 5 deuteranopes/
deuteranomalous. We used a mosaic of circles containing chromatic noise consisting of 8 
chromaticities around protan, deutan, and tritan confusion lines. A subset of the circles differed in the 
remaining circles by the luminance arising from a C-shaped central target. All the participants were 
tested in 4 chromatic noise saturation conditions (0.04, 0.02, 0.01, 0.005 u′v′ units) and 1 condition 
without chromatic noise. We observed that trichromats had an increasing luminance threshold as a 
function of chromatic noise saturation under all chromatic noise conditions. The subjects with color 
vision deficiencies displayed no changes in the luminance threshold across the different chromatic 
noise saturations when the noise was composed of chromaticities close to their color confusion 
lines (protan and deutan chromatic noise). However, for tritan chromatic noise, they were found to 
have similar results to the trichromats. The use of chromatic noise masking on luminance threshold 
estimates could help to simultaneously examine the processing of luminance and color information. 
A comparison between luminance contrast discrimination obtained from no chromatic and high-
saturated chromatic noise conditions could be initially undertaken in this double-duty test.

Color and luminance perceptual interactions have been described under different experimental conditions, 
where one visual information masks the perception of another1–3. Depending on the experimental design, these 
studies have found a bimodal influence of luminance contrast on color discrimination2–4. These studies reported 
that low-to-medium luminance contrast (up to 30 × threshold) facilitated chromatic discrimination, while high 
luminance contrast restrained chromatic discrimination. Conversely, color contrast masking has been charac-
terized as an inhibitor of luminance discrimination2,5 or as having no effect on luminance contrast perception3.

Miquilini et al.5 introduced a method to investigate color masking in spatial luminance contrast discrimi-
nation. A chromatic noise was applied to a mosaic stimulus that had a target contrasting luminance in the 
background. They found that the luminance contrast threshold changed as a function of the saturation of the 
chromatic noise. The higher the chromatic noise saturation, the higher the luminance contrast threshold. This 
method was only applied in normal trichromats. Therefore, it is unclear how the luminance contrast thresholds 
of subjects with congenital color vision deficiency would be affected.
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It is well established that human trichromatic color vision uses three cone photopigments with different 
spectral sensitivities to organize a three-dimensional perceptual color space (black-white, red-green, and blue-
yellow axes)6–9. The absence of one or more photopigments changes this perceptual organization. Protanopes 
(lack of L-cone photopigment) and deuteranopes (lack M-cone photopigment) have dichromatic color vision 
with black-white and blue-yellow perceptual dimensions and no red-green axes. Tritanopes (lack S-cone pho-
topigment) also have dichromatic color vision but with black-white and red-green perceptual dimensions and 
no blue-yellow channel10. We hypothesized that chromatic noise containing chromaticities that cannot be dis-
criminated against by each type of colorblindness would either not influence or have a minor effect on luminance 
contrast discrimination.

We used three different stimuli with chromatic noise comprised of chromaticities located close to the pro-
tan, deutan, and tritan confusion lines in a perceptually homogeneous color diagram. The luminance contrast 
thresholds of trichromats and subjects with severe protan or deutan losses were compared under each chromatic 
noise condition.

Methods
Ethical considerations.  This cross-sectional investigation was approved by the Ethical Committee of the 
Tropical Medicine Institute of the Federal University of Pará, Brazil (report# 2.207.434), in accordance with the 
Declaration of Helsinki of 1964 and any subsequent updates. We obtained written informed consent for their 
participation.

Subjects.  Twenty-two participants were recruited (13 males, 7 females, 25.15 ± 5.02 years). The participants 
had normal or corrected 20/20 visual acuity. Participants had no history of neurological or systemic disease that 
would affect their luminance or color vision.

Experimental procedures: color vision phenotype evaluation.  We used the Ishihara test and Color 
Assessment and Diagnosis test (CAD) to classify the phenotype of color vision deficiencies. We used the 38-plate 
full version of the Ishihara test, 1997 edition (Graham- Field Inc., Doraville, GA, USA). The plates were shown 
for 3 s from a 75 cm viewing distance under standard illumination. The subjects were instructed to read the 
number on the plate during the presentation. We evaluated the performance of the subjects by computing the 
number of errors in the test. Participants with errors ≥ 8 were genetically analyzed to identify the presence or 
absence of the X-linked L and M-opsin genes in the genomes.

The CAD test presents a chromatic square target moving on a grey background. The subject’s task consists of 
reporting the direction of the target’s movement. Both target and background are masked by a spatial–temporal 
random luminance noise which compensates for differences in the luminous efficiency function of different par-
ticipants and eliminates border cues. The result is to allow the observer’s responses to be based only on chromatic 
differences between the target and the stimulus background11,12. The CAD test was run using a microcomputer 
(Dell, Intel Core i3, Intel HD graphics) that drives a 22 inch color LCD (NEC Model, MultiSync P221w, Japan). 
The visual stimuli comprised an array of squares (15 × 15) covering an area of 3.11 squared degrees of visual 
angle. Each element of the array had 0.21 squared degrees and had its luminance value randomly changed at 
intervals between 50 and 80 ms in a range between 25.5 cd/m2 and 42.5 cd/m2. A subset of the array (target) had 
a different background chromaticity (CIE 1976: u′ = 0.1947; v′ = 0.4639). The target area was 1.04 squared degrees. 
The distance from the display to the observer was 1.4 m, and the observer’s task was to identify the direction 
of the target movement among 4 diagonal alternatives (up-right, up-left, bottom-right, and bottom-left). The 
stimulus presentation lasted for 2 s. The vector distance between the chromaticities of the target and background 
was controlled by a staircase procedure that stopped after 12 reversals. Sixteen chromatic axes (6 protan axes, 
6 deutan axes, and 4 tritan axes) were used to find the chromatic discrimination thresholds. The average of the 
last 6 reversals estimated using the protan, deutan, and tritan stimuli were considered as the protan, deutan, and 
tritan thresholds. High thresholds indicated a reduction in chromatic discrimination in a chromatic axis. The 
CAD test returned a suggestion for the color vision phenotype of each participant based on the manufacturer’s 
normative database. This was used to characterize the participant’s phenotype.

Experimental procedures: color vision genotyping.  Participants whose Ishihara and CAD test results 
suggested color vision deficiency were genetically analyzed using the method proposed by Neitz and Neitz13. 
The presence or absence of the X-linked L and M visual pigment genes in the genome of the participants were 
determined, based on the amplification of exon 5 of both genes. This was followed by incubation with a specific 
restriction endonuclease that cleaves the amplified exon of one gene (L) but not the other (M). The test was 
not sensitive enough to determine the presence of multiple copies of one gene or the presence of hybrid genes. 
However, given that most of the spectral shift between the M and L opsins is generated by residues 277 and 285, 
located at exon 5, and that minor effects are caused by residue 180, at exon 3, it can be assumed that the presence 
of hybrid genes would generate visual pigments with minor shifts in their absorption peaks, and result in severe 
anomalous conditions in the color vision phenotype. Residues 277 and 285 are responsible for 10 and 17 nm 
shifts between M and L opsins, respectively, while residue 180 causes only 5 nm shifts14. Therefore, the genetic 
analysis performed in this study was used to classify the participants as normal trichromats or with severe 
congenital color vision impairments (either dichromats or severe anomalous trichromats), and to confirm the 
phenotypes observed in the color vision test.

For the genetic analyses, DNA samples were extracted from buccal brush and purified using the Gentra 
Puregene Buccal Cell Kit (Gentra Systems, Inc., Minneapolis, MN, USA), according to the manufacturer’s pro-
tocol. A fragment of approximately 300 bp, containing exon 5 of both L and M-opsin genes, was amplified by 
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polymerase chain reactions (PCRs), using the primer pair described by Neitz and Neitz13. PCRs were carried 
out using High Fidelity Platinum Taq Polymerase, 10 × High Fidelity Buffer, MgCl2, 10 mM GeneAmp dNTPs 
(Applied Biosystems, Inc., Foster City, USA), and 20 mM primers in 50 µL reactions. PCR conditions included 
an initial DNA denaturation step at 94 °C for 1 min, 37 cycles of 94 °C for 15 s, annealing temperature at 57 °C 
for 30 s, and extension temperature at 72 °C for 30 s, followed by a final extension temperature of 72 °C for 7 min. 
The amplified fragments were then incubated with the restriction endonuclease Rsa I (Invitrogen, Carlsbad, 
USA), which cleaves exon 5 of the L-opsin gene, but not the M-opsin gene. The resulting PCR products were 
visualized using 1.0% agarose gel electrophoresis. Trichromat individuals were identified by the presence of three 
bands: a ~ 300 bp band from the uncleaved M-opsin fragment, and two smaller bands (with ~ 100 and ~ 200 bp) 
of the cleaved L-opsin gene fragment. Deuteranope and severe deuteranomalous individuals only display the 
two smaller L-opsin gene bands. Contrastingly, protanope and severe protanomalous individuals only display 
the larger 300 bp M-opsin gene band (Fig. 1). DNA samples from a known trichromat were used as controls.

Color vision characterization.  For all participants, their color vision phenotype was characterized using 
their performance on the CAD and Ishihara tests, while their color vision genotype was characterized by the 
presence of the exon 5 of the L and/or M-opsin genes in the genome. Participants with < 8 errors on the Ishihara 
test and the trichromat phenotype, as suggested by the CAD test, were classified as trichromat. Participants 
with ≥ 8 errors in the Ishihara test and a dichromat/severe anomalous trichromat phenotype, as suggested by the 
CAD test, were genetically confirmed as protanopes/protanomalous or deuteranopes/deuteranomalous, with 
the absence of intact L or M-opsin genes, respectively (Fig. 1).

Experimental procedures: Luminance contrast discrimination masked by chromatic 
noise.  We used a software programed in MATLAB (MATLAB 2017b, Mathworks, Natick, MA, USA) on a 
MacBook PRO platform (Apple Inc., Palo Alto, USA) with a panel built into the laptop (17″ liquid crystal dis-
play, 1680 × 1050 pixels of spatial resolution, frame rate of 75 Hz). A Macbook PRO drove an NVIDIA GeForce 
8600M GT graphics processor with 512 MB of GDDR3 SDRAM and 10 bits of color resolution per channel. We 
used a chromameter (CS-100A, Konica Minolta, Osaka, Japan) to calibrate the display and all chromatic calcula-
tions in this study, assuming a 2° observer angle and a D65 illuminant. The stimulus was composed of a mosaic 
of 428 circles and 16 different mosaic arrangements that were randomly chosen. The diameter of the individual 
mosaic elements ranged between 0.12 and 0.49°.

Three protocols of chromatic noise were used: (i) protan chromatic noise, (ii) deutan chromatic noise, and 
(iii) tritan chromatic noise. Each noise was composed of 10 chromaticities that were projected radially from a 
reference chromaticity (CIE 1976: u′ = 0.1947; v′ = 0.4639). There were 5 chromaticities spaced 2 degrees apart 
from each side of each chromatic axis. Protan, deutan, and tritan chromatic axes used in the CAD test were 
used as a reference to choose chromaticities used in each noise condition. A protocol with no chromatic noise 
condition was also used as a control. In the no chromatic noise condition, there was a single chromaticity in the 
mosaic that was the reference chromaticity.

Figure 1.   Agarose gel analysis with the amplified exon 5 fragments of the cleaved L-opsin gene (two lower 
bands) and the uncleaved M-opsin gene (higher band). Lane 1 shows a 100 bp ladder and numerical values 
indicate the number of base pairs; lane 2, a trichromat individual with both opsin genes; lane 3, a protanope 
individual, with no L-opsin gene; lane 4, a deuteranope individual, with no M-opsin gene. The sample lanes 
were from different gels and white spacing delineated the non-contiguous lanes.
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A subset of circles with luminance different from the background formed a Landolt’s C-shaped target. At the 
beginning of the test, the target luminance was 4 cd/m2 and the background luminance was 40 cd/m2. Figure 2 
shows some examples of the stimulus for each chromatic noise.

For each chromatic noise protocol, 5 saturation conditions of the noise (vector size of 0.04, 0.02, 0.01, 0.005, 
and an isochromatic condition) were used to mask the luminance discrimination of the target. The observer 
had to indicate which orientation was Landolt’s C-gap (top, left, right, or bottom). The luminance discrimina-
tion task was performed using a two down/one up adaptive staircase procedure. This corresponded to 70.7% of 
correct responses. After 2 correct responses, the luminance of the target was increased. After 1 wrong response, 
the luminance of the target was decreased. The step size of the target luminance increase or decrease was cal-
culated using Eq. (1). The target luminance (targetlum) of the trial (t) was summed (after 2 correct responses) 
or decreased (after one wrong response) by the difference between the background luminance (bglum) and the 
target luminance of the previous trial, times a factor (f). The factor values were 0.5 and 1.5 for the increase and 
decrease in the luminance step, respectively.

A reversal was considered an incorrect response after 2 hits, or 2 hits following an incorrect choice. The 
staircase stopped after 12 reversals, and the averaged Weber contrast between the target and background of the 
last 6 reversals was recorded as the luminance contrast threshold.

Data analysis.  Luminance contrast thresholds (ψ) were normalized by the threshold obtained under the 
non-chromatic noise condition (ψo) . Luminance contrast thresholds, as a function of the chromatic noise vec-
tor, were fitted by Michaelis–Menten functions using the least-squares method (Eq. (2)). From each fit, the total 
change ( a ) in threshold and the semi-saturation constant (τ ) was considered as an indicator of the gain of the 
mechanism.

in which ψ was the relative luminance contrast threshold in the chromatic noise vector size x , ψo was the contrast 
threshold in the stimulus condition with no chromatic noise, a represents the total change in the threshold, and 
τ is the semisaturation constant of the function.

We used a non-parametric Friedman test of differences among repeated measures followed by Dunn’s post-
hoc test to compare the effect of chromatic noise vector size on luminance contrast thresholds, and on a values 
estimated from the best-fitted functions. The Mann–Whitney U test was performed to compare the a values 
obtained from trichromats and dichromats (protanopes and deuteranopes). For all statistical procedures, we 
considered the significance level to be 0.05 or corrected for multiple comparisons (α = 0.016).

(1)targetlum(t) = 10log10(targetlum(t−1))±[log10(bglum)−log10(targetlum)]×f

(2)ψ = ψo + a×
(

1− e(
−x
τ )

)

Figure 2.   Stimuli used in experiments. The luminance contrast of the stimulus was represented by a C-shaped 
target. A chromatic noise was present in the stimulus to masking luminance contrast. Three conditions of noise 
were tested: (A) protan, (B) deutan, (C) tritan, and one condition with (D) no chromatic noise.
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Results
For all subjects with color vision impairments, color vision genotyping was verified by phenotype evaluation 
using the color discrimination test. No participant was excluded based on their genetics. Figure 3 shows the color 
discrimination ellipses of a subject phenotypically characterized as a trichromat, and subjects phenotypically and 
genetically characterized as protanopes or severe protanomalous and as deuteranopes or severe deuteranomalous, 
respectively. Table 1 shows the vector thresholds obtained in the CAD test for all participants and their color 
vision characterization. The final analysis was conducted with 12 trichromats and 10 participants with severe 
protan (5) and deutan (5) deficits.

Comparison of the color discrimination thresholds for each color vision phenotype.  For 
trichromats, we observed that the chromatic axis had a significant effect on the color discrimination vectors 
(H[2] = 16.95, p = 0.0002). The tritan thresholds were significantly higher than the deutan and protan thresholds 
(p < 0.05). There was no significant difference between the protan and deutan color discrimination thresholds.

For subjects with protan losses, we observed no significant effect of the chromatic axis on the color discrimi-
nation thresholds (H[2] = 3.44, p = 0.17). For those with deutan impairments, we observed a significant effect 
of the chromatic axis on the color discrimination thresholds (H[2] = 12.5, p = 0.0019). Deutan thresholds were 
significantly higher than the tritan thresholds (p < 0.05).

Luminance contrast threshold as a function of the chromatic noise.  Figures 4, 5, and 6 show the 
mean luminance contrast thresholds as a function of the chromatic noise vector size (saturation) obtained from 
trichromats, and for subjects with protan and deutan losses, respectively. For trichromats, the results were similar 
to those observed in Miquilini et al.5 for all chromatic noise protocols. The luminance thresholds increased as a 
function of chromatic noise saturation. We observed a significant effect of the chromatic noise vector size (satura-
tion) on the luminance contrast discrimination (protan chromatic noise protocol: X2[4] = 37.75, p = 0.0001; deu-
tan chromatic noise protocol: X2[4] = 29.6, p = 0.0001; tritan chromatic noise protocol: X2[4] = 25.09, p = 0.0001).

For the participants with color vision deficiencies, the variation in the luminance contrast threshold exhibited 
a nonsystematic change as a function of the chromatic noise vector size for the protan and deutan chromatic noise 

Figure 3.   CAD test results. Color discrimination ellipses (black ellipse) from a trichromat subject (A), 
protanope subject (B), and deuteranope subject (C) and their respective mean threshold vector sizes for 
the protan (red bars), deutan (green bars), and tritan (blue bars) chromatic axes are represented in (D–F), 
respectively. The red, green and blue dashed lines represent the protan, deutan, and tritan color confusion lines.
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Table 1.   CAD results and color vision characterization of the participants.

Participant

Threshold vector 
(u’v’ × 10–4)

Color vision characterizationProtan Deutan Tritan

T1 52.8 43.4 116.2 Trichromat

T2 46 44.4 102.2 Trichromat

T3 49.7 50.7 146.3 Trichromat

T4 58.9 67.6 164.8 Trichromat

T5 56.1 56 155.9 Trichromat

T6 23.9 20.4 30.1 Trichromat

T7 44.3 45.9 88.2 Trichromat

T8 59.1 53 185.9 Trichromat

T9 62.9 56.1 129.3 Trichromat

T10 56.1 56 155.9 Trichromat

T11 55.3 53.2 159.5 Trichromat

T12 47.5 52.2 155.4 Trichromat

P1 519 314 150 Protanope

P2 1228 539 186 Protanope

P3 1235 370 183 Protanope

P4 1451 1156 955 Protanope

P5 2058 1922 1948 Protanope

D1 643 1366 240 Deuteranope

D2 422 821 136 Deuteranope

D3 459 997 175 Deuteranope

D4 487 1279 198 Deuteranope

D5 676 1236 234 Deuteranope

Figure 4.   Trichromat group results. (A) Mean color discrimination thresholds estimated using CAD test 
for protan (red bar), deutan (green bar), and tritan (blue bar) confusion axes. (B) Mean luminance contrast 
threshold (black circles) as a function of the protan chromatic noise saturation. (C) Mean luminance contrast 
threshold (black circles) as a function of the deutan chromatic noise saturation. (D) Mean luminance contrast 
threshold (black circles) as a function of the tritan chromatic noise saturation. The black curve represents the 
best-fitted Michaelis–Menten function to the data. Error bars represent the standard deviation of the mean. Ѱ 
is the threshold estimated in a stimulus condition with chromatic noise, Ѱo is the threshold estimated in the 
stimulus condition with no chromatic noise.
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Figure 5.   Protan group results. (A) Mean color discrimination thresholds estimated using CAD test for protan 
(red bar), deutan (green bar), and tritan (blue bar) confusion axes. (B) Mean luminance contrast threshold 
(red circles) as a function of the protan chromatic noise saturation. (C) Mean luminance contrast threshold 
(red circles) as a function of the deutan chromatic noise saturation. (D) Mean luminance contrast threshold 
(red circles) as a function of the tritan chromatic noise saturation. The black curve represents the best-fitted 
Michaelis–Menten function to the data. Error bars represent the standard deviation of the mean. Ѱ is the 
threshold estimated in a stimulus condition with chromatic noise, Ѱo is the threshold estimated in the stimulus 
condition with no chromatic noise.

Figure 6.   Deutan group results. (A) Mean color discrimination thresholds estimated using CAD test for protan 
(red bar), deutan (green bar), and tritan (blue bar) confusion axes. (B) Mean luminance contrast threshold 
(green circles) as a function of the protan chromatic noise saturation. (C) Mean luminance contrast threshold 
(green circles) as a function of the deutan chromatic noise saturation. (D) Mean luminance contrast threshold 
(green circles) as a function of the tritan chromatic noise saturation. The black curve represents the best-fitted 
Michaelis–Menten function to the data. Error bars represent the standard deviation of the mean. Ѱ is the 
threshold estimated in a stimulus condition with chromatic noise, Ѱo is the threshold estimated in the stimulus 
condition with no chromatic noise.
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protocols. The luminance contrast thresholds increased as a function of chromatic noise saturation in 8 of the 10 
subjects in the tritan chromatic noise protocol. Figure 7 shows an example of a participant (observer P4) with no 
significant inhibitory influence of tritan chromatic noise on luminance discrimination. Furthermore, a subject 
(observer D5) with a significant inhibitory influence of tritan chromatic noise on luminance discrimination was 
also observed. The chromatic noise vector did not have a significant effect on the luminance contrast thresholds 
(protan chromatic noise protocol: X2[4] = 7.84, p = 0.1; deutan chromatic noise protocol: X2[4] = 3.68, p = 0.45; 
tritan chromatic noise protocol: X2[4] = 5.6, p = 0.23). We expected a significant influence of tritan chromatic 
noise on the luminance discrimination of protanopes/severe protanomalous. However, there was no influence 
because 2 protanopes/protanomalous with poor discrimination on the tritan axis increased the variability of the 
data for the measurements on each chromatic noise vector. For deuteranopes/severe deuteranomalous, there 
was no significant effect of the chromatic noise vector on the luminance contrast thresholds when the stimulus 
was comprised of protan and deutan chromatic noise protocols (protan chromatic noise protocol: X2[4] = 0.36, 
p = 0.98; deutan chromatic noise protocol: X2[4] = 1.6, p = 0.8). However, a significant effect was found for the 
tritan chromatic noise protocol (X2[4] = 13.92, p = 0.008). Figure 8 summarizes the results of the inhibitory influ-
ence of the chromatic noise protocols on luminance discrimination for all the color vision phenotypes studied.

For trichromats, a values estimated from the fits ranged between 14.23–39.71%, 4.83–22.53%, and 
4.76–55.33% for the protan, deutan, and tritan chromatic noise protocols, respectively. We found a significant 
effect of the chromatic noise protocol on the a values (X2[2] = 7.091, p = 0.02). a values obtained from the deutan 
chromatic noise protocol were significantly smaller than those obtained from the protan chromatic noise proto-
col (p = 0.03). No other multiple comparisons between a values obtained from trichromats displayed significant 
differences.

For the participants with color vision deficiencies, a values ranged between 1.99–19.76%, − 8.1 to 22.41%, 
and 1.83–25% for the protan, deutan, and tritan chromatic protocols, respectively. No significant effect of the 
chromatic noise protocol on the a values was observed (X2[2] = 3.2, p = 0.22).

A comparison between the results obtained from trichromats and subjects with severe color vision deficits 
showed a significant effect of the protan and deutan protocols on the a values (protan chromatic noise protocol: 
U = 8, p = 0.002; deutan chromatic noise protocol: U = 18, p = 0.0076). Trichromats had larger a values consider-
ing both chromatic noise protocols. The tritan protocol had no significant effect on the a values obtained from 
both trichromats and dichromats/anomalous trichromats. Figure 9A shows a comparison of the values obtained 
from trichromats and subjects with severe color vision deficit. A linear relationship was observed between the 
luminance thresholds obtained under chromatic noise masking of 0.04 u′v′ units and the a values. However, 
under the chromatic noise condition of 0.005 u′v′, the luminance thresholds were not good predictors of the a 
values (Fig. 9B,C).

Figure 7.   Examples of subjects with color vision losses (observers P4 and D5) with and without the inhibitory 
influence of the tritan chromatic noise on the luminance discrimination. P4 has poor chromatic discrimination 
on the tritan (A) axis and no significant change on the luminance discrimination (circles) as the saturation of 
the tritan chromatic noise was increased (B), while D5 has better chromatic discrimination on the tritan axis 
(C) compared to the observer P4 and significant increase of the luminance discrimination thresholds as the 
saturarion of the tritan chromatic noise increased (D). Color bars represented the chromatic discrimination on 
the protan (red bars), deutan (green bars), and tritan (blue bars) axes.
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Discussion
This study continues the investigation initiated by Miquilini et al.5, which reported an inhibitory effect of chro-
matic noise on luminance discrimination. In that study, the experimental procedures were performed using 
normal trichromats, and the chromatic noise was composed of chromaticities with no color confusion line 
specificity. Their primary aim was to investigate how the presence of chromatic noise would interfere with 
luminance discrimination. This study has a similar aim, but we focused on three chromatic combinations. We 
tested whether a selective chromatic noise built with colors close to the color confusion lines of subjects with 
severe color vision impairments would influence the luminance discrimination of normal trichromats and those 

Figure 8.   Summary of the results from the evaluation of the influence of chromatic noise experiments on the 
luminance contrast discrimination. All chromatic noises significatively influenced the threshold discrimination 
of trichromats, only the tritan chromatic noise significatively influenced the luminance thresholds of the 
dichromats.

Figure 9.   Comparison of the a values obtained from the individual fittings of the trichromats and dichromats/
severe anomalous trichromats, using the different chromatic noise protocols (A). (B,C) represent the a values 
as a function of the luminance thresholds obtained in chromatic noise conditions of 0.04 and 0.005 u’v’ units, 
respectively. Box plots are represented by the interquartile range (box), median (horizontal line inside the box), 
maximum and minimum values (upper and lower whiskers, respectively), and mean (cross).
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of dichromats or severe anomalous trichromats. Although trichromats were far more affected in all three axes 
by chromatic noise, protanopes/severe protanomalous and deuteranopes/severe deuteranomalous were indis-
tinguishable. Many color vision tests can already predict the deutan vs. protan deficit, but this threshold test 
results in an equal deficit for both axes.

We used two red-green noises (protan and deutan noises) and one blue-yellow noise (tritan noise) to evaluate 
the influence of these chromaticities on the luminance discrimination of trichromats and the participants with 
congenital color vision deficiencies. Many psychophysical studies have investigated the interactions between 
color and luminance using stimuli containing luminance and color components1,2,5,15,16. A facilitative influence 
of luminance masking on chromatic discrimination and inhibitory influence of chromatic masking on luminance 
discrimination has been reported. In this study, trichromat participants showed impaired luminance discrimina-
tion in all chromatic noise protocols (protan, deutan, and tritan noises). Higher discrimination thresholds were 
found as the saturation of the colors composing the noise increased. As such, it appears that the noise effectively 
masked the luminance contrast discrimination because trichromats discriminate all components of chromatic 
noise. No significant changes in luminance discrimination were observed in subjects identified with severe color 
vision deficiencies using masking with protan and deutan chromatic noises. We observed that noise did not 
effectively mask the perceptual task because dichromats or severe anomalous trichromats were not differentially 
sensitive to the components of chromatic noise. Protan and deutan chromatic noises exerted residual influence on 
the luminance discrimination of deuteranopes/severe deuteranomalous and protanopes/severe protanomalous, 
because both color vision deficiencies are for red-green chromatic discrimination. However, the luminance dis-
crimination of these subjects was masked by tritan noise because they have a blue-yellow perceptual dimension.

We found non-independent effects of the protan and deutan protocols on the luminance contrast thresholds 
of protanopes/protanomalous and deuteranopes/deuteranomalous, which could indicate that both chromatic 
noise protocols act on one L–M opponent mechanism. We interpreted this as a limitation in separating both 
color vision phenotypes, but it is a strong indication of the interaction between the information processed by 
the color- and luminance-opponent pathways. The use of the luminance thresholds under noise conditions of 
highly saturated chromaticity was a good predictor of the inhibitory influence of chromatic noise on luminance 
discrimination.

A limitation of this study was the absence of tritanope observers to verify the specificities of the phenotype 
owing to the inhibitory influence of luminance discrimination. There are few tritan congenital subjects, and it 
can be challenging to identify17. As an approximation, it seems relevant that some of the participants with severe 
color vision deficiency who had very poor discrimination on the tritan axis in the CAD evaluation had no inhibi-
tory influence of tritan chromatic noise on luminance discrimination, as would be expected for tritanopes. More 
subjects with poor discrimination on the tritan axis are required to confirm this hypothesis. A recent study found 
worse color discrimination on the tritan axis for deutan participants, due to a higher impact on the yellow region 
of the color space18. New experiments should also be carried out to clarify the effect of contrast polarity (lumi-
nance decrements or increments) on the luminance discrimination in the presence of chromatic noise masking.

The protocols discussed in this study enable new visual tests to be created that simultaneously evaluate color 
and luminance vision because the observer’s task is to discriminate luminance contrast, and the effect of chro-
matic noise is dependent on the color vision phenotype. A comparison between luminance contrast discrimi-
nation obtained under no chromatic and high-saturated chromatic noise conditions could be used to initially 
compose this double-duty test. As several congenital and acquired diseases can affect color and luminance vision, 
our results encourage the use of the present protocols in clinical practice.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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