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Abstract
In the history of Homo sapiens, well-populated habitats have featured relatively stable temperatures with generally small daily variations. 
As the global population is increasingly residing in highly disparate climates, a burgeoning literature has documented the adverse health 
effects of single-day and day-to-day variation in temperature, raising questions of inequality in exposure to this environmental health 
risk. Yet, we continue to lack understanding of inequality in exposure to daily temperature variation (DTV) in the highly unequal 
United States. Using nighttime and daytime land surface temperature data between 2000 and 2017, this study analyzes population 
exposure to long-term DTV by race and ethnicity, income, and age for the 50 states and the District of Columbia. The analysis is 
based on population-weighted exposure at the census-tract level. We find that, on average, non-White (especially Black and Hispanic) 
and low-income Americans are exposed disproportionately to larger DTV. Race-based inequalities in exposure to DTV are larger than 
income-based disparities, with inequalities heightened in the summer months. In May, for example, the DTV difference by race and 
ethnicity of 51 states is between 0.20 and 3.01 ◦C (up to 21.0%). We find that younger populations are, on average, exposed to larger 
DTV, though the difference is marginal.
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Significance Statement

Evidence from across the globe demonstrates that large daily temperature variation is associated with higher mortality and morbid
ity. Yet, we lack basic insights into its sociodemographic patterning in the United States. Using satellite data, this study finds that ex
posure to daily temperature variation is extremely unequal by race and ethnicity, as well as by income. Racial and ethnic minorities 
and low-income populations in the United States are disproportionately exposed to larger daily temperature variation. This inequality 
is driven by the built environment, including blue and green space, which is a legacy of structural racism. This descriptive study re
veals that the persistent inequality in the built environment manifests as inequality in yet another environmental risk factor—daily 
temperature variation.
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The human body is a resilient, yet sensitive complex system 
whose homeostasis can be disrupted by unfavorable—and erratic
ally changing—environmental conditions. In most human habi
tats, the temperature variation to which humans are exposed 
each day is relatively small compared to the historical tempera
ture record (−89.2 to 56.7 ◦C) on the Earth’s surface (1, 2). In the 
case of the two most populous cities in the United States, 
New York and Los Angeles, the annual temperature range is be
tween −4 and 30 ◦C. The daily temperature variation (DTV) is 
even smaller, often within 2 to 10 ◦C (Fig. S1).

The DTV has long been of interest to the environmental science 
community, as it offers a comprehensive measure that is an 

important atmospheric indicator (3, 4). The ocean plays a major 
role in maintaining the relative stability of temperature on the 
Earth’s surface—effectively precluding dramatic variability in a 
short-time frame (5). Globally, populous human habitats feature 
relatively small DTV (Fig. 1). If we trace back across the develop
ment of human societies, the favorable Oceanic Climate in 
Europe has given rise to densely populated cities, wherein the 
population enjoys relatively stable temperature in any single day 
(i.e. small DTV). Conversely, the Temperate Continental Climate 
common in Siberia and the Dry Desert Climate of Sahara Desert 
feature large DTV—and these unfavorable conditions arguably 
contribute to the continued sparse population in these settings.
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In addition to its relevance as a valuable atmospheric indicator, 
more recently, scientists studying the climate-human health 
nexus have recognized DTV’s relevance to population health. 
Although the vast literature on the climate-human health nexus 
has focused on the adverse consequences of extreme absolute 
temperature, a small but growing literature outlines an associ
ation between large DTV and poor human health (6). For example, 
a recent study contends that 2.5% of the total mortality between 
1972 and 2013 is attributable to DTV in 308 cities from 10 countries 
across 5 continents (7). Moreover, in 95 communities across the 
United States, larger DTV is associated with increased nonacci
dental mortality, with older adults most vulnerable (8). The asso
ciation between DTV and elevated mortality has also been 
documented in the United Kingdom (9), East Asian cities (10), 
and other parts of the world (11–13). Higher DTV also leads to 
higher risks of morbidity, with evidence of hospital admissions 
and emergency department visits in the United States, Spain, 
Thailand, South Korea, and China (14–18), as well as childhood ill
ness in Australia (19).

Despite growing recognition of the adverse health consequen
ces of high DTV, we lack basic insights into population exposure 
to DTV in the United States, and whether it corresponds with 
other social and demographic inequalities. Exposure to environ
mental risk factors is often unequal across population groups. 
Globally, there are socioeconomic disparities in exposure to harm
ful climate conditions, like particulate matter and nitrogen 
dioxide, and to beneficial ones, like access to green space 
(20–22). In the United States, racial and ethnic minorities, in add
ition to low-income populations, have been exposed historically to 
higher particulate matter and nitrogen dioxide (23, 24). In terms of 
temperature, specifically, global studies have shown similarly un
equal exposure to, and effects of, extreme heat (25, 26). Similarly, 
in the United States, historically marginalized racial and ethnic 
groups, as well as lower-income groups, also bear an out-sized 
burden of extreme heat and urban heat islands (27, 28). Even so, 
few studies have analyzed temperature exposures other than 
heat, despite a burgeoning literature showing poor health out
comes associated with extreme cold and large DTV (7, 8, 29). 
Except for one city-specific study of Los Angeles (30), no study 
has described the population prevalence, nor inequality, in DTV 
exposure in the United States.

Such descriptive research is valuable given the social and 
demographic correlates of DTV remain unclear. Given recent evi
dence that DTV is actually decreasing in some global contexts, 
partly due to urbanization and climate change (31), it is possible 
that less advantaged populations, which tend to concentrate in 
urban areas, are actually exposed to smaller DTV. However, with
in an urban area, the local DTV is affected by the urban landscape. 

The US features unequal exposure to green space, which partly 
explains the unequal exposure to extreme heat (32, 33). Trees 
can reduce temperature via transpiration—a process more in
tense during daytime—and trees can trap long-wave radiation in 
the atmosphere under the canopy at night, which can lead to in
creased night-time temperature (34–36). Moreover, water has a 
high heat capacity that can minimize changes in temperature 
(37). As such, with limited access to neighborhood green space 
and blue space, less advantaged populations could experience lar
ger DTV, on average, even despite declining trends in urban 
areas more generally. This study analyzes DTV exposure across 
population groups in the United States. Using monthly night- 
time and daytime land surface temperature data from satellites, 
we estimate the population-weighted exposure to DTV at the 
census tract level of the 50 states and the District of Columbia 
(hereinafter referred to as 51 states). We analyze inequality by 
three sociodemographic characteristics: race and ethnicity, 
income, and age.

Results
Figure 2 visualizes the distributions of DTV exposure of the 
non-White population (in red) and White population (in blue) for 
each state (see Fig. S5 for individual race and ethnicity). These 
DTV exposures are scaled to the mean of the White population. 
If the exposure to DTV is equal across population groups, the dis
tributions would show the same shape. Yet, as shown, there is a 
clear difference in DTV exposure between the White and 
non-White populations, with some states more evident, such as 
Rhode Island, Connecticut, and Massachusetts in New England. 
We use the KS test to measure the distance between the two dis
tributions. The KS distance ranges between 0 and 1; the larger the 
distance, the larger difference in DTV exposure between the two 
populations.

Exposure to DTV differs significantly between White and 
non-White populations (Fig. 2). Among the 51 states, 47 of them 
show a KS distance larger than 0.1; among which, 8 states show 
a KS distance larger than 0.3 and 14 states with a KS distance lar
ger than 0.2. Figure S5 shows the comparison of mean exposure 
among the four racial and ethnic groups, which indicates that 
the difference is due to the larger DTV exposure among Black 
and Hispanic populations; DTV exposure among Asian 
Americans is higher than Whites, however, not as dramatically 
so. Unequal exposure to DTV is also observed between low- 
income and high-income populations, though to a lesser degree 
(Fig. S2). Of the 51 states, 6 states show a KS distance larger 
than 0.3, 13 states show a KS distance larger than 0.2, and 20 
states show a KS distance larger than 0.1 between the DTV 

a b

Fig. 1. Daily temperature variation (DTV, a) and population density in the world (b).
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exposures of low-income and high-income populations (house
hold income less than US$15,000 vs. greater than US$200,000). 
Exposure to DTV is the least unequal by age. Of the 51 states, 
none show a KS distance larger than 0.2 and only 15 states show 
a KS distance larger than 0.1 between the distributions of old-age 
(aged 65+) and young-age (aged 0–4) populations—the two age 
groups with the lowest and highest DTV exposure (Fig. S3).

The differences in monthly DTV exposure between population 
groups by race and ethnicity, income, and age of 51 states are 
shown in Fig. 3. The values are calculated as the subtraction be
tween the maximum and minimum DTV of the population groups 
(i.e. absolute difference). If the DTV exposure is truly equal across 
populations, the difference should be marginal with a darker col
or. However, in most states, the difference is large and visible by 
race and ethnicity; however, they are only somewhat visible by in
come, and barely visible by age. Summer months generally have 
the largest DTV difference, with the absolute DTV differences up 
to 3.0 ◦C (5.4 ◦F) in May for some states. Note that we also show 
a version of this figure with the actual difference in Fig. S7. We 
manually plot the difference between the two groups with the lar
gest DTV gap on average. In all 46 out of 51 states, 44 out of 51 

states and 47 out of 51 states, non-White, low-income, and young- 
age populations are exposed to higher DTV, respectively.

To further convey the scale of demographic inequality in ex
posure to DTV, the mean DTV differences by race and ethnicity, 
income, and age along with standard deviations in May from ten 
representative states are shown in Table 1. We chose May because 
most states have the largest DTV during this month. The 10 states 
include six of the most populous states (California, Texas, Florida, 
New York, Pennsylvania, and Illinois) and four additional states 
(Washington, Massachusetts, Connecticut, and Rhode Island) 
that exhibited large DTV differences by race and ethnicity or in
come from the previous findings. For the 10 representative states, 
the maximum differences by race and ethnicity are between 0.93– 
3.01 ◦C, or 7.2–21.0% of the DTV exposure of the White population. 
The maximum difference by income is between 0.20–2.33 ◦C, or 
1.3–17.1% of the DTV exposure of the White population. The dif
ference by age is marginal, especially at older ages. Rhode Island 
has the largest DTV difference by race and ethnicity and by in
come among all states. Figure S5 shows the mean and standard 
deviation of annual DTV exposure for all 51 states, which show 
a consistent finding drawn from the 10 representative states.

Fig. 2. Distribution of the exposure to daily temperature variation (DTV) of White and non-White populations. The values are averaged from all  
2000–2017 data. Each state shows the kernel density estimation for the White (in blue) and the non-White population (in red). The x-axis is relative DTV 
exposure, which is obtained by dividing the mean exposure of the White population (the scale factor). The y-axis is population percentage. The gray 
line marks the peak of each distribution. The two distributions are compared using the KS distance. distance ≥0.1: state abbreviation marked with 
* (background in light yellow ); distance ≥0.2: state abbreviation marked with ** (background in moderate yellow ); distance ≥0.3: state abbreviation 
marked with *** (background in yellow ). Figure S5 shows a more detailed comparison using the four racial and ethnic groups, which shows that Black 
and Hispanic populations are exposed to generally higher DTV than the Asian population, yet the Asian population exposure is also higher than the White 
population. As such, the non-White and White comparisons showcased here would be even more dramatic if studying only Black and Hispanic 
populations to their White counterparts.

Liu and Smith-Greenaway | 3

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae176#supplementary-data


Because Rhode Island has the largest DTV difference by race 
and ethnicity and income, we visualize its DTV, non-White popu
lation percentage, median household income, and green space at 
the census tract level (Fig. 4). The area with the largest DTV is 

Providence, the state’s most populous city, with a concentration 
of the state’s non-White population. Providence shows a relatively 
low median household income compared to the surrounding 
areas. It is also the area with the smallest green space exposure.

Fig. 3. From left to right: monthly DTV differences of the 51 states by race and ethnicity, income, and age. The difference is between the maximum DTV 
and minimum DTV of the population groups. If the DTV exposure is truly equal across population groups, the difference should be marginal (darker 
color). X-axis: month from January to December.

4 | PNAS Nexus, 2024, Vol. 3, No. 5



Discussion
Extending the long-running interest in how extreme temperature 
adversely affects human health, a small but growing literature 
outlines that the range of temperature to which humans are ex
posed is another source of climate vulnerability. That is, exposure 
to higher DTV has been linked to higher rates of population mor
bidity and mortality across various age groups in diverse global 
contexts—above and beyond the absolute temperatures driving 
the DTV (7). Despite this recognition, we still lack fundamental in
sights into exposure to DTV in the United States, and its possible 
inequality between sociodemographic groups. Our analysis shows 
that there is unequal exposure to DTV across racial and ethnic 
groups, as well as income groups. The difference is larger by 
race and ethnicity than by income, with minimal differences ob
served across age groups. Non-White (especially Black and 
Hispanic) populations, as well as low-income populations, are dis
proportionately exposed to higher DTV. Although we identify re
gional differences, the DTV differences by race and ethnicity 
appear to be driven by intra-urban differences due to the urban 
landscape, as illustrated in the case of Rhode Island.

The magnitude of DTV difference by race/ethnicity and income 
is 0.20–3.01 ◦C, or up to 21.0% of the DTV exposure of White or high- 
income populations. This magnitude of difference by race and eth
nicity and by income is larger than the difference in exposure to the 
urban heat island (28). According to Lee et al. (38) with evidence 
from air temperature, DTV could contribute to 6% of the total mor
tality in the United States by 2,100. Based on our study, facing up to 
3 ◦C larger DTV exposure in land surface temperature than their 
White or high-income peers, DTV is a critical dimension of how ra
cial and ethnic minorities and low-income populations will con
tinue to face higher health risks in the era of climate change.

Although our goal is to offer a nationally-representative de
scriptive overview, our deeper analysis of Providence, Rhode 
Island suggests that the local variation in exposure to DTV is driv
en by unequal urban landscapes. During daytime, trees can re
duce daytime temperature via transpiration; at night, the tree 
canopy, paradoxically, prevents heat loss. As a result, trees work 
to suppress DTV. Similarly, water (i.e. blue space) has higher spe
cific heat capacities, meaning it is more resilient to the changing 
temperature. Yet, poor urban communities tend to lack access 
to both adequate green and blue space.

This inequality in the built urban environment can be under
stood as a legacy of structural racism that undergirds persistent 
neighborhood segregation and housing inequality. First, houses 
in prime locations are already occupied by the White population. 
Due to historical redlining, racial and ethnic minorities tend to 
live in areas with inferior access to green space and blue space 
(39–42). Prime suburbs with green space were occupied by White 
population since the 1950s (i.e. White flight), but racial and ethnic 
minorities were excluded by law (e.g. G.I. Bill). The persistent racial 
and ethnic segregation—even with reductions in income dispar
ities—leads to persistent inequalities in access to climatically 
healthy neighborhoods. Second, and related, home ownership 
may also play a role. Additional analyses confirm that renters 
are, in general, exposed to larger DTV (Fig. S8). Non-White popula
tions are more likely to be renters and thus live in multifamily 
units rather than in single-family homes (43). Multifamily residen
ces tend to concentrate in compact, urban environments lacking 
trees relative to more ample green space offered by single family 
neighborhoods.

Even as this study offers a first, foundational overview of DTV 
in the United States, it comes with limitations. The land surface T
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temperature data were acquired at times not exactly correspond
ing to daily minimum and maximum temperatures (see Methods 
section). The DTV calculated is, as such, an estimate. Further, we 
used land surface temperature to estimate the population expos
ure here, which, while strongly correlated with air temperature, is 
not identical and tends to be more extreme. Existing evidence on 
the temperature-health nexus is mostly based on studies relying 
on air temperature, even as a growing number of studies are 
examining temperature-health nexus using land surface tem
perature (44, 45). But DTV (a relative measure) as the difference 
between daily maximum and minimum temperatures should be 
less subject to this limitation. Further, the harmonized land sur
face temperature products do not have data on water, and due 
to the 1-km spatial resolution, some small, coastal census tracts 
lack valid temperature values from the data. Even so, this study 
represents the most sophisticated approach to estimating DTV 
with current data constraints. By offering foundational insights 
into inequality in DTV exposure in the United States, this study 
will act as a springboard for growing efforts to consider DTV as 
a fundamental source of climate-induced health disparities.

Estimation of daily temperature variation
Long-term DTV is proxied from the monthly Moderate Resolution 
Imaging Spectroradiometer (MODIS) land surface temperature 
(LST) dataset (46). This dataset harmonized the MODIS LST data 
in 2000–2017 into monthly daytime and night-time products. 
The spatial resolution of the products is 1 km. Due to the polar- 
orbiting, sun-synchronous nature of the two MODIS satellites 
(Terra, Aqua), the data acquisition time is always around 10:30  
am and pm local time for Terra and 1:30 am and pm for Aqua 
(47). For each census tract, temperature exposure is determined 
by averaging all of the observations (pixels) within its geographical 
boundary. We did this using ArcGIS separately for daytime and 
night-time data each month. After calculating the respective 
mean daytime and night-time temperature, DTV was calculated 
at the census tract level. Exposure to DTV was then calculated 
in a population-weighted fashion explained later.

Demographic and socioeconomic data
Demographic data are from the 2017 American Community 
Survey (ACS) 5-year estimates. A total of 57,796 census tracts in 
51 states were analyzed after excluding those without valid 

temperature or population estimates. All individuals within the 
same census tract were assigned the same temperature exposure. 
Race and ethnicity were aggregated into five categories: Hispanic, 
Black, White, Asian, and Others. Hispanics are those who identi
fied as “Hispanic”, regardless of race. White, Black, and Asian 
are single-race non-Hispanic. “Other” includes American Indian 
and Alaska Native, Native Hawaiian and other Pacific Islanders, 
and those who identified as “other race” or two or more races. 
The non-White population in this article means all other popula
tions except for non-Hispanic White. Five-year age groups were 
aggregated into five categories: 0–4, 5–19, 20–34, 35–64, and 65 +, 
corresponding to young children, youth, young adults, middle-age 
adults, and older adults. Annual household income data (in US$) 
was collapsed into five categories: 0–14,999, 15,000–34,999, 
35,000–99,999, 1,00,000–1,99,999, and over 2,00,000.

Population-weighted exposure
For the ith census tract, suppose its DTV is ti, and its population of 
a specific group k is pk

i , for a collection of N census tracts within a 
state, the population-weighted exposure Ek for the specific popu
lation k can be calculated as

Ek =
􏽐

ti × pk
i􏽐

pk
i

. (1) 

In the case of household income, due to data availability, the esti
mate is based on the number of households (not individual): DTV 
exposure by income is technically a household-weighted 
exposure.

Comparing distributions of DTV exposure
We used the two-sample KS test to determine if two distributions 
of DTV exposure by population group differs significantly in Fig. 2. 
The KS test determines if two distributions are drawn from the 
same probability distribution and is commonly used in studies of 
environmental inequality [details shown in Fig. S6 in the 
supplementary materials] (48).
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