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ABSTRACT

P-Match is a new tool for identifying transcription
factor (TF) binding sites in DNA sequences. It com-
binespatternmatchingandweightmatrixapproaches
thus providing higher accuracy of recognition than
each of the methods alone. P-Match is closely
interconnected with the TRANSFAC� database. In
particular, P-Match uses the matrix library as well
as sets of aligned known TF-binding sites collected
in TRANSFAC� and therefore provides the possibility
to search for a large variety of different TF binding
sites. Using results of extensive tests of recognition
accuracy, we selected three sets of optimized cut-off
values that minimize either false negatives or false
positives, or the sum of both errors. Comparison
with the weight matrix approaches such as MatchTM

tool shows that P-Match generally provides superior
recognition accuracy in the area of low false negative
errors (high sensitivity). As familiar to the user of
MatchTM, P-Match also allows to save user-specific
profiles that include selected subsets of matrices
with corresponding TF-binding sites or user-defined
cut-off values. Furthermore, a number of tissue-
specific profiles are provided that were compiled by
theTRANSFAC1 team.Apublicversionof theP-Match
tool is available at http://www.gene-regulation.com/
cgi-bin/pub/programs/pmatch/bin/p-match.cgi.

INTRODUCTION

Understanding mechanisms of regulation of gene expression
on the level of transcription is one of the key problems in post-
genomic era. Each cell type or tissue, at a specific develop-
mental stage, in a specific cell cycle phase and under influence
of extracellular signals is characterized by a particular pattern
of activated transcription factors (TFs). Binding of these

nuclear proteins to their cognate binding sites in the regulatory
regions (e.g. promoters, enhancers) of genes and subsequent
recruitment of co-factors and components of nucleosome
remodelling machinery enables formation of multi-protein/
DNA complexes that provide gene activation or repression.
Therefore, computational methods of predicting TF binding
sites in DNA are very important for understanding the molecu-
lar mechanisms of gene regulation. Over the past few years,
numerous tools have become available for the prediction of TF
binding sites [for recent reviews, see (1,2)]. Especially popular
are those tools which use information on known TF binding
sites that are collected in databases such as TRANSFAC1 (3).
Approaches vary between high generalization provided by
weight matrices to high specialization provided by pattern
matching approaches. More sophisticated approaches include
consideration of nucleotide correlation in different positions of
the sites, HMMs, taking into account flanking regions and
some others (4–13). But usually, complex approaches require
large training sets, which is rather problematic for the most
known TFs for which only small sets of binding sites are
known (up to 10 sites).

We have developed a novel tool called P-Match for search-
ing putative TF binding sites in DNA sequences. It effectively
combines pattern matching and weight matrix approaches.
P-Match uses the TRANSFAC1 library of weight matrices
as well as sets of aligned known TF-binding sites collected in
the TRANSFAC1 database. The P-Match algorithm searches
for DNA subsequences matching one of the known TF binding
sites from each set. It calculates the matching score using the
corresponding weight matrix, which is the main novelty of the
algorithm in contrast to the classical pattern matching
approaches that compute a score by counting just the number
of mismatches.

We performed extensive testing of P-Match on sets of
genomic TF binding sites, on chromosome sequences and
on artificially simulated random sequences in order to compare
the recognition accuracy of this method versus classical
weight matrix methods and classical pattern matching tech-
niques. Comparison with the weight matrix approaches such as
MatchTM tool shows that P-Match generally provides superior
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recognition accuracy in the region of low false negative errors
(high sensitivity). A public version of the P-Match tool is
available at http://www.gene-regulation.com/cgi-bin/pub/
programs/pmatch/bin/p-match.cgi.

Results of testing are given in the Supplementary Material.

ALGORITHM

The algorithm is based on simultaneous use of a positional
weight matrix (PWM) and a set of aligned TF binding sites
used to construct this matrix. To construct a matrix in TRANS-
FAC, we first compile a set of sites by grouping all sites from
the database which match a chosen ‘experimental evidence
quality criteria’ and which are known targets of a selected TF
or a family of similar TFs (sites for orthologous factors of
mammalian species are grouped together). On the next step,
we align sites by using a combination of Gibbs site sampling
method (14) and a recursive application of Match program
(15) ensuring that the ‘core’ of each site, which is often sup-
ported by experimental evidences, is included in the align-
ment. At last, we choose such a window (i, j) for matrix
construction (1 < i, j < length of the alignment; and
w = j � i > 6 bp), which provides the lowest false positive
(FP) level for a selected sensitivity level (often chosen as
50%). These tests are done with a leave-one-out procedure,
which helps to smoothen the small sample effects.

The PWMs are computed from the nucleotide frequency
matrix using the following formula:

wi;B ¼ f i;B · Ii;B 2 fA‚C‚G‚Tg‚

where
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X

B2fA;C;G;Tg
f i;B log2 f i;B �

X

k¼1;4

1

4
log2

1

4
‚

where, fi,B is the frequency of observing nucleotide B in the
position i of the alignment, and wi,B is the corresponding ele-
ment of the weight matrix. Ii is the maximal amount of
information in the position i of the matrix which is calculated
as a difference between entropy of this position and the
entropy of evenly distributed four nucleotides.

The P-Match search algorithm utilizes PWMs from
TRANSFAC and computes d-score value which measures
similarity between a sub-sequence X of the length L in
DNA and a given TF site S from the site set V (S 2 V).
The d-score is calculated using weights of the nucleotides
in the individual positions of the site taken from the corres-
ponding weight matrix:

d ¼
MaxWeight�

P
i¼1; L jwi;B Xið Þ�wi;B Sið Þ j

MaxWeight
‚

MaxWeight ¼
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where B(Xi) and B(Si) are the nucleotides in ith position of the
subsequence X and the site S, respectively. The d-score ranges
from 0.0 to 1.0, where 1.0 denotes an exact match of the
nucleotide weights of the site S to the corresponding weights

of the sub-sequence X. Similar to the Match algorithm, we
compute two separate d-scores: dmatrix—for the whole site and
dcore—for the core positions of the site, which are the five most
conserved positions in the alignment. In the search, we choose
two independent cut-off values for these two d-scores (in each
site set, the cut-offs are the same for all sites in the set). Only
those matches are reported whose both d-scores dmatrix and
dcore exceed the corresponding cut-offs.

The sets of aligned sites contain many sites that are similar
to each other. Therefore, the straightforward application of the
P-Match algorithm to a DNA sequence may produce several
matching of different sites from the set to the same place on
DNA. Such redundancy can be removed from the output by
invoking a special (default) option of the program, which
outputs then one match with the highest d-score out of several
overlapping matches. This is very useful for reducing the
output, although for some application the information on
such multiple matching can help to reveal the most promising
potential TF binding sites. In addition, the high similarity of a
match in the sequence under study to an existing known site in
a promoter of another gene can give an idea about the function
of the found potential binding site.

Estimation of optimal d-score cut-offs

Selection of the cut-off values largely depends on the user’s
objectives. Similar to (15), we have pre-calculated three dif-
ferent cut-offs for each TRANSFAC matrix that has the site
alignment set attached to it: (i) to minimize false negative rate
(under-prediction error); (ii) to minimize false positive rate
(over-prediction error), (iii) to minimize the sum of both
errors.

Cut-offs minimizing false negative rate (minFN). We use
leave-one-out method for estimation of the false negative
rate of site recognition. Iteratively, from a site set V, we
remove one site S(r) (1 < r < jV j ). The reduced set
V\fS(r)g is used then to run P-Match in order to recognize
the removed site S(r). On the basis of these runs, we set the
minFN cut-offs to such values that provide recognition of at
least 90% of the removed sites S(r). We decided to tolerate an
error rate of 10%, taking into account that the set of sites might
contain ‘weak’ representatives.

Cut-offs minimizing false positive rate (minFP). We have
applied the algorithm described above to the sequences of
the third exons of human genes (�2 · 106 bp) because
these sequences are presumed to contain no biologically rel-
evant TF binding sites. For every matrix, the lowest cut-off for
which no match is found in the set of exon sequences is set to
be the minFP cut-off. Since the selection of the background
sequences can influence the cut-off selection, we are going to
evaluate the use of other genomic sequences to make altern-
ative minFP cut-off estimates.

Cut-offs minimizing the sum of both errors (minSum). We
compute the number of matches found in the exon sequences
for each matrix using minFN cut-offs. This number is defined
as 100% of false positives. For every cut-off ranging from
minFN to minFP, we calculate the sum of corresponding per-
centages for false positives and false negatives. The cut-off
that gives the minimum sum is set as minSum cut-off.
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INPUT AND OUTPUT

P-Match (available also as a command line executable for
Linux and Windows) takes three files as input:

(i) A library ofweightmatrices inTRANSFAC format (see an
example of one matrix entry in the Supplementary
Material). Each matrix entry contains description of the
nucleotide count matrix as well as an alignment of the
sites that were used to build thematrix. Current web instal-
lation of P-Match uses 142 matrices of TRANSFAC
public 6.0, but any other matrix.dat file of the same
format can be used with the command line variant of
the program.

(ii) A profile file containing a set of matrix accession numbers
and two cut-offs for the d-score: for the whole site and for
the core positions of the site.

(iii) A DNA sequence file. It can contain one or several
sequences in FASTA or EMBL formats. P-Match searches
sites for potential TF binding sites in these sequences and
outputs all found sites in form of a table (compliant with
the Match/Patch/TRANSPLORER/MatInspector output
format).

The P-Match Web Interface is designed in such a way that all
necessary parameters are specified by the user on the initial
page. TheWeb Interface provides various possibilities to work
with the sequence files. The content of a file can be pasted in
the input window, or taken from a directory on a local com-
puter. Files used in previous runs can be stored on the server in
user-specific directory under specified names and can be
reused in the next runs.

Profiles can be specified by three alternative mechanisms:
(i) The user selects a taxon (vertebrate, invertebrates, plants,
fungi or all) which specifies the set of corresponding weight
matrices. Subsequently, the user may select a set of d-score
cut-offs (minFN, minFP and minSUM) or may set equal cut-
off values for all matrices (e.g. 0.75 for core of site and 0.85 for
the whole site). (ii) The user selects one of the predefined
tissue-/cell type-specific (e.g. liver-, muscle-, immune-cell)
or process specific (cell cycle) profiles. By default, cut-offs
in these profiles are set to minFN. (iii) The user selects one of
the profiles that he/she had defined beforehand using the tool
‘P-Match Profiler’.

Entry to the ‘P-Match Profiler’ web tool is given on the start
page of the P-Match web interface. In the ‘Profiler’, the user
can flexibly select different matrices from the whole TRANS-
FAC1 public 6.0 matrix library (matrices which are associated
with site set alignments only) and define cut-offs individually
or simultaneously to all matrices in the selection and save the
profile under a specified name. The user can also modify the
existing profiles.

After submitting the form to the server, the P-Match pro-
gram makes the search of the TF binding sites according to the
given parameters. An output example of the P-Match program
is shown in Figure 1. Every match found by the program is
shown in a separate line of the result table. It is compliant with
Match output and contains: matrix ID, position of the match,
strand (+) or (�), indicating the strand orientation of the
match, two d-scores of the match, corresponding subsequence,
names of TFs associated with the matrix and the TRANSFAC
site accession number of the corresponding site that provides

the match. The matrix ID, factor name and the site accession
number are hyperlinked to the corresponding entries of
TRANSFAC database on the gene-regulation.com server. A
visual representation of locations of the found matches can be
generated after pressing the ‘graphic’ button (Figure 2b). Sites
are shown above the sequence and the orientation of the ‘>’
sign corresponds to the (+) or (�) location of the sites. The
name of the matrix is given as well.

In Figure 1, we show the results of a P-Match search in the
promoter of the human gene for p53 using the predefined cell
cycle-specific profile. Four sites that are known in this pro-
moter (see TRANSFAC1 database) were found by P-Match
(marked in the figure) along with a number of new sites.

The algorithm is implemented in C++ and the program is
wrapped by a Perl script to maintain a user-friendly web inter-
face. The P-Match tool is available at http://www.gene-
regulation.com/cgi-bin/pub/programs/pmatch/bin/p-match.cgi.
It is associated with the public version of TRANSFAC data-
base (rel. pub 6.0), which is also available at this server. The
gene-regulation.com server is established as a portal web site
for databases and software devoted to study molecular mech-
anisms of gene regulation. In addition to TRANSFAC data-
base, it contains other public releases of databases developed
by BIOBASE GmbH, including TRANSPATH1, the database
on signal transduction, (16); TRANSCompel1, on composite
transcription regulatory elements (17); CYTOMER1, a data-
base and ontology of human tissues, organs and cell types (18)
and several other databases. It contains also a number of pro-
grams for TF site recognition such as Match, Patch as well as
software program AliBaba2 (19), which applies a strategy
similar to P-Match. All of these databases and software
resources are very useful for further interpretation of the res-
ults obtained by P-Match program. User can attain further
confirmation of the predicted sites by applying other tools
to the same sequence; predicted TFs can be scanned through
TRANSPATH in order to understand signal transduction path-
way potentially involved in the regulation of the genes under
study.

COMPARISON WITH MATCH

We performed extensive testing of P-Match on sets of genomic
TF binding sites, on chromosome sequences and on artificially
simulated random sequences in order to compare the recog-
nition accuracy of this method versus classical weight matrix
methods. Comparison with the weight matrix approaches such
as MatchTM tool was done using leave-one-out method
described above. To compare the methods, we plotted the
estimated values of the false negative errors versus false
positive rate (estimated on the set of exon3 sequences) for
the complete range of cut-off values. An example of such a
comparative plot for the weight matrix V$E47_01 is given in
Figure 2. In this example, the P-Match curve crosses with the
Match curve at the FN value equal 0.2 showing a clear advant-
age over Match for the lower level of FN, which corresponds
to the high sensitivity of the method, whereas for the FN level
higher than 0.3, Match performs better in-site recognition
accuracy. The tests show that P-Match generally provides
superior recognition accuracy in the area of low false negative
errors.

W434 Nucleic Acids Research, 2005, Vol. 33, Web Server issue

http://www.gene-regulation.com/cgi-bin/pub/programs/pmatch/bin/p-match.cgi


DISCUSSION

Here, we describe a novelmethod for recognition of TF binding
sites in gene regulatory regions of genomes. The method com-
bines principles of patternmatchingwith the weighting schema
of PWMs. It has clear advantages over the simple pattern
matching based on Hamming distance since the new method
takes into account the differential ‘importance’ of nucleotide
positions in the site while it calculates the distance to the
potential match (the match d-score). Such differential ‘import-
ance’ of positions is a fundamental principle of the structure of
TF binding sites and it is well captured by PWMs where dif-
ferent positions clearly diverge in their level of conservation.
Often, central positions of the sites are more conserved and
compose so-called site core, while the peripheral positions are
less conserved. Therefore, mismatches to the pattern in the core
positions of the site considered as more important than mis-
matches in the peripheral positions.

It is worth mentioning here that similar to Match and
MatInspector (5), we use in P-Match a specific schema for

calculating PWMs, which includes additional weighting of
positions by information value. Multiplication of the frequen-
cies with the information vector leads to a higher acceptance of
mismatches in less conserved regions in comparison with
highly conserved regions of sites. This algorithm has better
performance in recognition of TF binding sites if compared
with methods that do not use the information vector (8).

On the other hand, P-Match algorithm gives an advantage
over the Match and other classical PWMs, which is most
clearly seen in cases of highly heterogeneous site sets as it
is schematically presented in Figure 3. With a classical PWM,
in order to cover most of the sites in the set, we will tend to
lower significantly the matrix score cut-off values, which will
result in great increase of false positive rate. Whereas, implica-
tion of the individual sites as patterns with an appropriate
relaxation of the d-score cut-offs will allow to cover the
site set without too high increase of false positive rate. As
we show in our comparative tests, such particularity of
P-Match algorithm allows us to decrease the false positive

A

B

C

Figure 1. P-Match user interface. (A) Input interface. The left panel is used to paste the sequence (or several sequences) and to specify the name of the search. The
right panel contains threemajor sections:matrix selection, cut-off selection and profile selection. (B) P-Match tabulated result page. Everymatch containsmatrix ID,
position of thematch, strand [(+) or (�)], two d-scores of thematch, corresponding subsequence, names of TFs associatedwith thematrix and the accession number of
the site.Martix ID, the factor names and site accession numbers are hyperlinkedwith the corresponding TRANSFAC1 entries. Site which are not hyperlinked are not
present in the public version of TRANSFAC. (C) A visual representation of locations of the foundmatches. Sites are shown above the sequence and the orientation of
the ‘>’ sign corresponds to the (+) or (�) location of the sites. The results of P-Match search are shown for the promoter of humangene for p53 using cell cycle-specific
profile. Four sites that are known in this promoter (see TRANSFAC1 database) were found by P-Match (marked by a frame) alongwith some new sites. Here, matrix
IDs are also hyperlinked with the corresponding TRANSFAC1 entries.
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rate of TF recognition for many matrices over two times and
more in comparison to Match for the 100% sensitivity level
(see table in Supplementary Material).

Nevertheless, for the 50% sensitivity level, for the most
matrices, Match algorithm outperforms P-Match and gives
fewer false positives. This can be explained by the tendency
of P-Match algorithm to capture all the heterogeneity of the
site sets including the ‘weak’ or, in other words, untypical
representatives even under the high d-score cut-offs, whereas
the Match algorithm focuses under high cut-offs on the
‘strong’ sites only and therefore produces less false positives.

Theoretically, this tendency of P-Match algorithm can hamper
the recognition precision, especially in cases of site sets con-
taining many such untypical representatives, since there is
much higher number of the potential sites deviating from a
single consensus over the number of sites that are close to the
consensus. And nucleotide weights of many of these non-
consensus sites can happen to be quite close to the correspond-
ing nucleotide weights of the untypical representatives in the
set. In our future improvements of P-Match, we will consider a
new scoring schema as a combination of d-score and the
classical weight matrix score of Match algorithm.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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Figure 2. A comparative plot for P-Match and Match of estimated values of the false negative errors (by leave-on-out method) versus false positive (FP) rate
(estimated on the set of exon3 sequences). An example of such a comparative plot for the weight matrix V$E47_01.
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Figure 3. Schematic representation of the principles of P-Match algorithm.
With theMatchmethod, in order to covermost of the sites in the set,wewill tend
to lower significantly the matrix score cut-off values, which will result in great
increase of false positive rate. Whereas, implication of the individual sites as
patterns with an appropriate relaxation of the d-score cut-offs will allow to
cover the site set without too high increase of false positive rate. The sizes of the
circles of the Venn diagram schematically represent the number of new po-
tential sites recognized under a certain cut-off value. In the case of P-Match, the
sizes of circles become biggerwhilemoving out of the consensus ‘centre’. Such
undesired behaviour of P-Match is discussed in the text.
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