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Real-time estimation of the reproduction number has become the focus of
modelling groups around the world as the SARS-CoV-2 pandemic unfolds.
One of the most widely adopted means of inference of the reproduction
number is via the renewal equation, which uses the incidence of infection
and the generation time distribution. In this paper, we derive a multi-type
equivalent to the renewal equation to estimate a reproduction number
which accounts for heterogeneity in transmissibility including through
asymptomatic transmission, symptomatic isolation and vaccination. We
demonstrate how use of the renewal equation that misses these heterogene-
ities can result in biased estimates of the reproduction number. While the
bias is small with symptomatic isolation, it can be much larger with asymp-
tomatic transmission or transmission from vaccinated individuals if these
groups exhibit substantially different generation time distributions to unvac-
cinated symptomatic transmitters, whose generation time distribution is
often well defined. The bias in estimate becomes larger with greater popu-
lation size or transmissibility of the poorly characterized group. We apply
our methodology to Ebola in West Africa in 2014 and the SARS-CoV-2 in
the UK in 2020–2021.
1. Introduction
The effective reproduction number, R, defined as the average number of sec-
ondary infections generated by each primary case, is of fundamental
importance in infectious disease epidemiology. When R is above 1, infection
prevalence is expected to increase, whereas when R is below 1, it will decline.
As such, interventions for epidemic control generally aim to reduce the R to
below unity.

Estimation of R has taken on particular significance over the past year in
light of the global COVID-19 pandemic, which is so far responsible for over
200 million cases, and 4.5 million deaths worldwide [1]. Given the importance
of R in elucidating the extent of control measures required to suppress the epi-
demic, real-time estimation of R has been the focus of disease modelling groups
and government health departments worldwide [2].

The effective reproduction number principally depends on the transmission
ability of the pathogen in a totally susceptible population (one with no existing
immunity) and the level of immunity in the population. The transmission
ability is often represented by the basic reproduction number, R0, defined as
the average number of secondary infections arising from a primary case in a
large, totally susceptible population. R may be further modified by changes in
the number, frequency and closeness of contacts in a population, hygiene prac-
tices, seasonal variation, population demographics and pathogen evolution. R
is generally estimated from trends in infections, cases, hospitalizations or
deaths over time [3–6].
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There are two distinct reproduction numbers than can be
derived from data on infection incidence. The instantaneous
reproduction number, henceforth denoted R(t), represents
the average number of individuals someone infected at time
twould infect if conditions remained unchanged. Conversely,
the case reproduction number, Rc(t), represents the average
number of people an individual infected at time t actually
infects, which will depend on changes in policy or behaviour
over the period of that cohort’s infection, and can thus
only be estimated in retrospect [7,8]. The work of this paper
focusses on the former, which is better suited to track
changes in transmission in real time, and which will reduce
immediately following the start of a successful intervention [7].

Prompted by the SARS-CoV-2 pandemic, there has been a
significant body of recent work considering the optimal
approach for estimating R, and potential sources of error.
A simple and widely used approach to estimate the effective
reproduction number uses the renewal equation, which uses
as inputs the generation time distribution, ω(τ) (the distri-
bution of times, τ, between infection in a case and infection
of their infector) and the time-series of infection incidence
[7]. This method only considers the average reproduction
number and a single generation time distribution across all
infected individuals.

However, heterogeneity in transmission may result from
biological and behavioural differences between individuals.
An example of a biological difference between individuals
is symptomatic and asymptomatic infection. Similarly, a
subset of symptomatic individuals may change their behav-
iour to limit their social contacts (self-isolation), as is
currently mandated in UK law for both confirmed SARS-
CoV-2 cases and their immediate household. Heterogeneity
may also arise owing to the deployment of novel pharmaceu-
ticals (e.g. antiretroviral therapy) or through vaccination
priming the immune response in a subset of individuals.

The generation time distribution is hard to estimate
directly, given that it is often difficult to identify the exact
timing of an infection event, let alone the timing of two
sequential infection events required for inference of the
generation time distribution. Generally, generation time dis-
tribution estimates are derived from serial interval (the time
between symptom onset in a case and symptom onset of
their infector) data, sometimes supplemented by partial
data (e.g. time windows of exposure) on infection times in
secondary cases. The serial interval and generation time dis-
tributions typically have similar means but different
variances [9]. Additionally, serial intervals can be negative,
unlike generation times [9]. Recent literature has suggested
using forward-looking serial intervals (in which time is
measured forwards from symptom onset in an infector)
gives the same estimate of R as with the generation time
distribution [10]. The optimal approach for inferring the gen-
eration time distribution from serial interval data will depend
upon the joint relationship of the infectious distribution and
the incubation period [11].

The observed serial interval and the generation time dis-
tribution can be affected by both censorship (given long serial
intervals cannot be observed) [12] and by the epidemic
dynamics at the time of measurement (given in an exponen-
tially growing outbreak, there will be many more recent
infecteds) [10].

In practice, in a novel outbreak, initial estimates of the
generation time distribution are based on an analysis of the
‘first few hundred cases’ [13–17], with little emphasis on
characterizing heterogeneities among infected individuals.
Such heterogeneity is the focus of this paper.

We derive a multi-type equivalent of the renewal
equation which accounts for heterogeneity in transmission
including variation in case isolation behaviour, sympto-
matic/asymptomatic infection and heterogeneity introduced
owing to vaccine roll-out. We refer to the R derived through
the multi-type approach that accounts for these sources of
heterogeneity as the multitype R. We then explore how
much the multi-type R differs from a naive R derived from
a single-type branching process based on the generation
time distribution of the reference group (the group of unvacci-
nated, non-isolating, symptomatic individuals, from which
the generation time distribution is calculated).

We consider two applications: to Ebola virus disease
(EVD) in Guinea in 2014–15, and to SARS-CoV-2 in the UK
between March 2020 and January 2021, to illustrate the poten-
tial impact on R estimates of neglecting heterogeneities owing
to case isolation and asymptomatic transmission. In the
theoretical parts of the paper, we assume the growth rate is
known, while in the application parts of the paper, we
assume the growth rate can be estimated from incidence
case time-series in real time.
2. Methods
2.1. Single-type renewal equation
For a single-type epidemic, the renewal equation gives the
relationship between the expected incidence, or number of
new infected individuals on time t, E[I(t)], with the true
number of incident cases a time τ ago, I(t� t), the instantaneous
reproduction number at time t, R(t) and the generation time
distribution, as function of time τ since infection, v(t):
E[I(t)] ¼ R(t)

Ð1
0 v(t)I(t� t)dt [7]. The renewal equation assumes

(i) deterministic growth of infection incidence, which will be
locally exponential and (ii) that the generation time distribution
remains fixed through calendar time.

With a constant growth rate r in the period t� tmax to t, the
incidence I(t) will grow exponentially1 I(t) ¼ kert . The relationship
between the reproduction number and the growth rate r is then
given by equation (2.1) [18–20]:

R ¼ 1Ð1
0 v(t)e�rtdt

: ð2:1Þ

This enables us to generate the relationship between the
reproduction number and growth rate for various generation
time distributions in a homogeneous epidemic. In this paper,
we use the gamma distribution, because it is frequently used
in fitting generation time distributions, and it is analytical
tractabile. Assuming the generation time distribution is well
described by a gamma distribution with shape a and rate b, the
analytic equation for the reproduction number in terms of the
epidemic growth rate is given by equation (2.2):

v(t) ¼ ba

G(a)
ta�1e�bt; R ¼ (rþ b)a

ba
: ð2:2Þ

2.2. Multi-type renewal equation
Moving to a paradigm where there are n groups with generation
time distribution for a case in group i given by vi(t), we consider
the next generation matrix, an n × n matrix where Rj!i represents
the average number of secondary cases in group i resulting from
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one index case in group j. The values of Rj!i in turn will depend
on the overall susceptibility and infectiousness of each group,
and the extent of assortativity between groups.

In this case, the renewal equation becomes multi-dimensional
and takes the form given in equation (2.3). As above, this
assumes that the growth rate r, the generation time distribution
for each group and assortativity remain constant in the period
up from time t − τmax to time t:

I1(t)

..

.

In(t)

0
B@

1
CA ¼

ð1
0

R1!1v1(t) � � � Rn!1vn(t)

..

. . .
. ..

.

R1!nv1(t) � � � Rn!nvn(t)

0
B@

1
CA

I1(t� t)
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.

In(t� t)

0
B@

1
CAdt:

ð2:3Þ

We can assume an exponential solution as for the single-type
case, with a vectorized k, with elements ki corresponding to the
steady-state proportion of infections occurring in group i
(equation (2.4)):

I1(t)

..

.

In(t)

0
B@

1
CA ¼

k1
..
.

kn

0
B@

1
CAert: ð2:4Þ

Substituting equations (2.4) into (2.3) yields an eigenvalue
equation (equation (2.5)):

R1!1
Ð1
0 v1(t)e�rtdt . . . Rn!1

Ð1
0 vn(t)e�rtdt

..

. . .
. ..

.
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Ð1
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CA: ð2:5Þ

To infer the overall reproduction number R, we factorize the
matrix into the product of the scalar reproduction number R and
the normalized next generation matrix M, whose elements Mj!i

give the relative risk posed to a member of group i by an infected
member of group j. Rearranging gives equation (2.6), the multi-
type equivalent to equation (2.1):

R¼ 1

max eigen

M1!1
Ð1
0 v1(t)e�rtdt ... Mn!1

Ð1
0 vn(t)e�rtdt

..

. . .
. ..

.

M1!n
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0 v1(t)e�rtdt ... Mn!n

Ð1
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>>:

9>>=
>>;
:

ð2:6Þ

We assume that the matrixM can be simply expressed using: (i)
the relative infectiousness of each group, ηi, (ii) the relative suscep-
tibility of each group, ξi, and (iii) the assortativity between the
groups, given by a matrix Awhose elements Aij give the proportion
of group j’s contacts which are made with individuals in group i
(equation (2.7)). The relative infectiousness and susceptibility of
each group are denoted relative to the most infectious and most
susceptible group, respectively. We consider η to be determined
by biological factors and fixed through the course of an outbreak:

M ¼ hjT � A
jhjT � Aj ;

X
i

Aij ¼ 1: ð2:7Þ

The deterministic formulation above means we only consider
central R estimates. We address stochastic variation in the
application part of our work.
2.3. Mathematical treatment of heterogeneity
In this paper, we use the same formalism as outlined by Fraser in
[7], where transmissibility b(t, t) measures the instantaneous rate
of onward infections generated by a primary case as a function of
time since their infection t and calendar time t. As in [7], we
assume b(t, t) can be expressed as b(t, t) ¼ R(t)v(t) where R(t)
is the instantaneous reproduction number which depends only
on calendar time, and v(t) is the generation time distribution
which depends only on time since infection. Transmissibility
will reflect both the pathogen shedding rate and the extent of
contacts an infected person has over the course of their infection.

We consider three scenarios relevant to many infectious dis-
eases, but in particular to SARS-Cov-2: heterogeneity owing to
(i) the isolation of symptomatic cases on symptom onset; (ii) the
presence of asymptomatic carriers; and (iii) differential transmission
potential of vaccinated individuals, which will be increasingly
important as vaccination is rolled out. In all scenarios, we consider
epidemic growth rates of −0.3, −0.15, 0, 0.15 and 0.3 d−1 which cor-
respond to halving times of 2.3 and 4.6 days, steady-state and
doubling times of 4.6 and 2.3 days, respectively. We consider refer-
ence group sizes corresponding to 20%, 50% and 80% of the total
population. In (i) and (ii), we assume homogeneous mixing between
groups, while in (iii) we allow for assortativity in mixing. In all scen-
arios, we assume the incidence of infection is known accurately, with
no reporting delays, which would enable calculation of the epidemic
growth rate. We also assume the generation time distribution is well
characterized for the reference group. For details on how the gener-
ation time distribution of the non-reference group is constructed in
each case, see the electronic supplementary material, methods.

We parameterize the assortativity matrix A in a similar way to
[21], which described HIV transmission by considering mixing
within and between sexual activity groups via the contact rates
of members from each group c1 and c2; the proportion of the
population in each group, p1 and p2, and an assortativity parameter
δ. We do not explore the effect of heterogeneity in contact rate
by individuals in each group, making the simplifying assump-
tion that contact rates are uniform independent of group,
resulting in the parameterization given in equation (2.8) where p1
is the smaller population such that all matrix elements are less
than or equal to 1:

A(d) ¼
d (1� d)

p1
p2

1� d 1� (1� d)
p1
p2

0
BB@

1
CCA: ð2:8Þ

With homogeneous mixing, all matrix elements in a row
will be the same, as the extent of interaction any individual
has with group i is determined solely by the proportion of
the population that is in group i. For plotting, we vary δ in a
two-part linear manner, from 0 (disassortative) to p1 (homo-
geneous) from the left of the x-axis to the middle, and from
p1 to 1 (assortative) from the middle of the x-axis to the
right-hand side. This standardizes homogeneous mixing at the
centre of the x-axis.
2.4. Equivalent single-type formulation
The single-type formalism of the reproduction number provides
a more straightforward means of inferring the reproduction
number. Additionally, existing software packages used for
epidemic analysis will typically only work with single-type
renewal processes, so there is a benefit to expressing the
multi-type renewal processes as an equivalent single-type.

Equations (2.3) and (2.4) can be re-written as equation (2.9):

I1(t)

..

.

In(t)

0
B@

1
CA¼ R

ð1
0

M1!1v1(t) � � � Mn!1vn(t)

..

. . .
. ..

.

M1!nv1(t) � � � Mn!nvn(t)

0
B@

1
CA

k1
..
.

kn

0
B@

1
CAer(t�t)dt:

ð2:9Þ



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210429

4
The total number of newly infected individuals is then

I(t) ¼
X
i

R
ð1
0

X
j

kjMj!ivj(t)er(t�t)dt

¼R
ð1
0
~v(t)er(t�t)dt a, ð2:10Þ

where ~v(t) is given by equation (2.11), in which C is chosen as a
normalizing constant such that

Ð1
0 ~v(t)dt ¼ 1:

~v(t) ¼ C
X
i,j

kjMj!ivj(t) ¼ C
X
j

kjvj(t)
X
i

M j!i

 !
: ð2:11Þ

Equation (2.10) shows that the multi-type renewal equation
can be written as single-type renewal equation with a weighted
mean generation time distribution. The weighting is given by
the overall relative reproduction number of group j, and the jth

element of the eigenvector, which corresponds to the equilibrium
proportion of infections that occur in group j. It is worth noting
that in practice during an epidemic, the true equilibrium pro-
portion of infections occurring in each group may not be known
exactly. This does not affect our theoretical results as we derive
the equilibrium proportion of infections directly from the eigen-
vector of the mixing matrix shown in equation (2.9), and we
assume no importations or stochasticity. Given this, the weighted
single-type approach derived in equation (2.10) will return the
same multi-type R as derived in equation (2.6).
2.5. Use in EpiEstim for application to COVID-19 in the
UK and Ebola virus disease in Guinea

Equations (2.1) and (2.6) describe the relationship between
the instantaneous reproduction number, the growth rate and
the generation time distribution of different groups. In practice,
the growth rate is not directly observed, but can be estimated
from the incidence time-series. This leads to uncertainty in the
growth rate estimates, and in turn the corresponding reproduc-
tion number estimates, which are not represented in the
equations above.

The R package EpiEstim implements estimation of the instan-
taneous reproduction number, based on an incidence time-series
and a discrete generation time distribution. We used EpiEstim
given its frequent use in real-time epidemic modelling, and it
being the best-performing package according to a recent review
of methods to estimate R in real time by Gostic et al. [8]. EpiEstim
uses a single-type renewal equation to estimate the posterior dis-
tribution of the instantaneous reproduction number, capturing
uncertainty in the estimates. We therefore use EpiEstim to com-
pare the naive R estimates, with the multi-type R based on
appropriately weighted single-type generation time distribution
(equivalent to the multi-type approach). EpiEstim makes several
important underlying assumptions including that: (i) a constant
proportion of all infections are detected; (ii) aside from cases
on the first day, no cases are imported (such that each case
could be attributed to a previous case in the time-series);
(iii) that the generation time is constant throughout the outbreak;
and (iv) that the offspring distribution is Poisson distributed.

In all applications, R values were estimated over sliding
weekly windows, over which we assume r is constant. This is
likely to be a reasonable approximation unless there are very
rapid changes in policy and short generation times. We assume
that the generation time distribution is known only for the
unvaccinated, symptomatic and non-isolating reference group.
Moreover, we assume that the proportion of individuals in
each group is constant.

We estimate the instantaneous reproduction number for EVD
case data from Guinea between March 2014 and July 2016, with
data taken from [22]. We use a generation time with mean of 15.3
and standard deviation of 9.3 days following [23]. This is
assumed to be reflective of a non-isolating cohort. We assume
that isolation occurs at the point of hospitalization at 14.9 days
after infection (56.5% of the way into a non-isolated transmissibil-
ity profile), based on the sum of the mean incubation period and
the mean delay from symptoms to hospitalization given in [24].
While the delay to hospitalization follows a distribution, here
we use the mean as a single time-point delay to illustrate the
impact of accounting for isolation in a simple way. We assume
that 34% of infected individuals are hospitalized (J.T. Unwin,
A. Cori, N. Imai, K.A.M. Gaythorpe, S. Bhatia, L. Cattarino, C.A.
Donnelly, N.M. Ferguson, M. Baguelin 2022, unpublished data),
and that individuals who seek and do not seek hospitalization
mix homogeneously.

We estimate the instantaneous reproduction number of SARS-
CoV-2 using time-series of COVID-19 deaths in the UK fromMarch
2020 to January 2021. We use incidence of deaths rather than cases
because ascertainment of deaths varies less through time, especially
given in the early months of the epidemic testing capacity was
being built up. Given R estimates from the renewal equation are
robust to constant under-reporting, we assume that reported
deaths remained a constant fraction of cases over time. The ration-
ale mimics that used byNouvellet et al. in [25]. Note that owing to a
delay between infection and death, the resulting estimates of Rwill
be lagged and smoothed—the average delay from infection to
symptom onset is estimated to be around 5.5 days in the UK [26],
while estimates of the delay from symptom onset to death range
fromaround13days [27] to 18days [28].Other papers have demon-
strated inference of R accounting for lagged metrics, for example
[29]. DailyUKCOVID-19 deathswere taken from the government’s
coronavirus data repository [30]. We assumed a generation time
in the absence of isolation with mean of 5.29 days and standard
deviation of 2.08 days as in [31], and that 63% of individuals
are symptomatic. In a sensitivity analysis (see the electronic
supplementary material, methods), we further account for uncer-
tainty in the mean and standard deviation of the generation time.
Note that in what follows we describe scenarios in which the
poorly characterized group have a lower reproduction number or
a longer generation time distribution as ‘optimistic’ scenarios and
vice versa. As such, the use of terms ‘optimistic’ and ‘pessimistic’
pertain to the transmissibility profile of the non-reference group
and not the impact on inferred R.
3. Results
3.1. Symptomatic isolation and non-isolation
Isolation of symptomatic cases on onset will necessarily
reduce the transmissibility profile for those who isolate (for
example, figure 1a–c—corresponding to isolation 25%, 50%
and 75% into the generation time distribution, compared to
figure 1d—corresponding to no isolation). In a growing epi-
demic, isolation will mean the multi-type R is lower than
the naive R (using the single-type approach) and vice-versa
for shrinking epidemics (figure 1e). This error is higher
with higher growth/reduction rates, as well as with higher
isolating populations (figure 1e). The error is zero at the
extremes: if isolation occurs immediately upon infection; or
if isolation occurs following all infection (figure 1e). This is
because if isolation occurs immediately, isolators do not con-
tribute to the infectious pool, so the weighting of the non-
isolating group in equation (2.11) is zero. Likewise, if isolation
occurs following the infectivity period, it is equivalent to no
isolation occurring.

Overall, over the parameter space explored, the multi-
type R is a maximum of 1.5 times higher than the naive R
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when the epidemic growth rate is −0.3 d−1, and isolation
occurs among 80% of the population 43% of the way into
the transmissibility profile. The multi-type R is 0.73 times
lower than the naive R when the epidemic growth rate is
0.3 d−1, and isolation occurs among 80% of the population
23% of the way into the transmissibility profile (figure 1e).

Case isolation heterogeneity was considered in the context
of the EVD outbreak in Guinea between March 2014 and July
2015 in figure 2a, and for SARS-CoV-2 between March 2020
and February 2021 in figure 2b. Both applications confirm
that case isolation has limited impact on the overall derived R.

The reason for the limited impact can be seen by consid-
ering the equivalent single-type renewal process airing from
equations (2.10) and (2.11). The isolating group produces
fewer onward infections than the non-isolating group (mani-
festing in the sum over Mj→i) which means their contribution
to the weighted generation time distribution is lower. The
impact of isolation is particularly low in the case of a growing
epidemic. This is because the generation time distribution
undergoes exponential discounting (equation (2.10)) which
reduces the relative contribution of late transmission in a grow-
ing epidemic—the part of the generation time distribution that
case isolation has an impact on.
3.2. Symptomatic and asymptomatic transmission
We compared the naive R estimates from the single-type
model (equation (2.1)) using the generation time distribution
of symptomatic individuals with those from the multi-type
model assuming asymptomatics have a different generation
time distribution (equation (2.6)). We explore this difference
as we vary the relative reproduction number of symptomatic
and asymptomatic individuals.

If the generation time distribution of asymptomatic
carriers is longer than that of symptomatic carriers
(figure 3, right), the multi-type R will exceed the naive R in
a growing epidemic and will be lower than the naive R in a
declining epidemic. This trend is reversed for dynamics in
which the generation time distribution of asymptomatic car-
riers is shorter than that of symptomatic carriers (figure 3,
left). The error in inferred R becomes greater at higher absol-
ute values of growth rate, with higher asymptomatic
infection rates, and with higher relative reproduction
numbers of asymptomatic individuals (figure 3c,d).

With the extent of variation explored, the multi-type R
exceeded the naive R by up to three times when the generation
time distribution of asymptomatics was twice as long as that of
symptomatics, and asymptomatics were responsible for
all onward infection (figure 3d). While this represents a rela-
tively extreme scenario, it may be relevant for pathogens with
early onset of symptoms among symptomatic cases but late
onset of infectiousness, by which point symptomatic individ-
uals may have reduced their contacts substantially, meaning
asymptomatic individuals would be more responsible for
onward transmission.

Potential asymptomatic transmission of SARS-CoV-2 in
the UK is considered in figure 4a. A different asymptomatic
generation time distribution can result in a substantial differ-
ence in the inferred R. We explore an optimistic case, in which
asymptomatic transmitters have half the reproduction
number and have half the generation time distribution as
symptomatic counterparts, and a pessimistic case, in which
asymptomatic transmitters have a prolonged (twice) gener-
ation time distribution and twice the reproduction number
of their symptomatic counterparts.

In figure 4b, we consider a three-type branching process
consisting of asymptomatic carriers, symptomatic carriers
who isolate and symptomatic carriers who do not isolate.
Results were broadly similar when accounting for uncertainty
in the mean and standard deviation of the generation time
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reference generation time distribution is assumed to be gamma distribution with a mean of 15.3 days and a standard deviation of 9.3 days. We assume 36%
of cases isolate with isolation occurring 55% of the way into the infectious distribution. (b) Time-varying R values for the SARS-CoV-2 outbreak from March
2020 to February 2021 in the UK, based on optimistic and pessimistic assumptions around isolation. In both cases, we assume 63% of infections are symptomatic
and the reference generation time distribution (corresponding to non-isolating symptomatic individuals) is gamma distributed with a mean of 5.29 days and a
standard deviation of 2.08 days. Optimistic assumptions are that isolation occurs among 75% of symptomatic infection after 30% of infectivity has passed. Pessimistic
assumptions are that isolation occurs in 25% of symptomatic infection after 70% of infectivity has passed. In both cases, R estimates are based on sliding weekly
windows.
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distribution (see the electronic supplementary material),
though as expected uncertainty in the R estimates was greater.

3.3. Vaccinated and unvaccinated groups with
assortative and disassortative mixing

In what follows, we explore scenarios in which vaccination
reduces susceptibility to infection and results in a simul-
taneous and equal reduction in both the generation time
distribution and the peak transmissibility among the subset
of vaccinated individuals who still get infected. In previous
examples, we have considered homogeneous mixing between
groups. However, assortativity of mixing may be relevant to
vaccination, given vaccination policy may target age cohorts
[32,33] or because of differential vaccine uptake [34,35].

We assume vaccination reduces individuals’ susceptibility
to infection by 70%. We trial three different simultaneous
decreases in the duration and peak height of transmissibility
of vaccinated individuals: by 25%, 50% and 75%, correspond-
ing to reductions in individual reproduction number of
44%, 75% and 93.75% relative to the unvaccinated group
(figure 5a–c). The difference between the naive and multi-type
R is highest for disassortative mixing, given with disassortative
mixing a substantial share of transmission passes through the
vaccinated group, whose generation time distribution is not
included in the unweighted single-type approach. The differ-
ence in inferred R reduces to zero in the limit of totally
assortative mixing, as this represents two isolated outbreaks,
for which the epidemic growth rate is totally driven by the
unvaccinated group (figure 5d–f ). The difference in inferred R
reduces especially quickly as the contribution of the unvacci-
nated group (for whom the generation time distribution is
well characterized) increases. This can be seen by considering
the relative sizes of the elements of the eigenvector in equation
(2.5) corresponding to the proportion of infections that are in
the vaccinated and unvaccinated groups (shown in figure 5g–i
for a growing epidemic, and in figure 5j–l for a shrinking epi-
demic). The greater the proportion of infections (or k-value) in
the unvaccinated group, the closer the multi-type R is to the
naive R.
4. Discussion
In this paper, we have shown how and when heterogeneity
in the generation time distribution can distort estimates of
the reproduction number. While in the parameter range we
explored, the impact on the inferred reproduction number is
limited in the case of symptomatic case isolation, it can be con-
siderable if asymptomatic or vaccinated individuals have
particularly different generation time distributions from unvacci-
nated, symptomatic individuals (for whom the generation time
distribution will be best characterized). The difference in inferred
R will be smaller for lower growth rates; where the poorly
characterized groups represent a small part of the population;
or where there is highly assortative mixing between groups.

There are several assumptions underlying this work. In
the theoretical part, we assume a known, fixed growth rate,
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and that there is no heterogeneity in transmissibility within
groups, only between. In our applications, we assumed
generation times and assortativity were fixed over the
course of the outbreak, and that a constant proportion of
individuals were symptomatic or isolators. In reality, gener-
ation time distributions change over the course of an
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outbreak, e.g. because of increasing competition between
infectors [36], the implementation of interventions, or
changes in behaviours including increased adherence to
symptomatic isolation [37].
In using the renewal equation, we assumed transmissibil-
ity could be separated into a reproduction number,
depending only on calendar time t, and a generation time dis-
tribution depending only on time since infection, τ. However,
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behaviour is likely to change as an epidemic progresses, for
instance through a reduction in out-of-household contacts,
which may cause the generation time distribution to change
independently of case isolation.

For the multi-group case, we assumed that relative
infectiousness and susceptibility between groups remained
constant through time. This too is a simplifying assumption:
interventions such as the adoption of face coverings may alter
the relative susceptibility and infectiousness of groups,
especially if there is a correlation between the group and
the adoption of certain behaviours. For example, isolation
on symptom onset may well be correlated with compliance
to mask-wearing and handwashing.

Various papers have discussed the use of R in public
health policy. In the last 18 months, R has been central to
understanding the state of the epidemic in the UK [38] and
was one of the key metrics assessed in recommendations
from the Scientific Pandemic Influenza Group on Modelling
consortium [39]. While our study shows that disregarding
heterogeneity in transmission does not affect the central ques-
tion of whether R is greater than or less than 1 in an epidemic,
we find that the further R is from 1 the greater the potential
error when ignoring such heterogeneity. This could have
multiple consequences, including: (i) underestimating the
likely attack rate and therefore the epidemic burden [40];
(ii) inadequate planning of vaccination to achieve herd immu-
nity [41,42]; (iii) misinformed decisions in favour of or against
a given control measure which is effective at certain levels
of R but not others [43,44]; and (iv) wrongly estimating
the end date of the epidemic, which has potential logistical
implications on international assistance or aid [45].

Multiple pathogens have been demonstrated to have both
symptomatic and asymptomatic clinical courses, including
important epidemic viruses SARS-CoV-2 [46], Influenza
[47], EVD [48] and Middle East respiratory syndrome
(MERS) [49]. Additionally, previous work has shown that a
difference in the generation time distribution of asympto-
matic versus symptomatic carriers of COVID can lead to
biased estimates of the effective reproduction number [50].

The transmissibility profile of an individual depends prin-
cipally on the extent and duration of viral shedding, and their
effective contact rate. Symptom presentation may impact both
variables. Viral shedding will itself depend on individual viral
load, and the efficiency and duration of viral expulsion. Viral
load studies for influenza infection have shown that asympto-
matic and paucisymptomatic cases had 1-2 log10 fewer copies
of viral RNA than symptomatic cases and shorter shedding
times [51]. Similarly, studies on MERS found the duration of
polymerase chain reaction-positivity increased with disease
severity [52]. Symptoms themselves also increase viral expul-
sion: a cough can produce an estimated 3000 droplets and a
sneeze an estimated 40 000 [53]; both far more efficient
shedding processes than breathing or talking [54].

There have been varying conclusions from studies on
the difference in viral load between symptomatic and asympto-
matic infections in SARS-CoV-2 infection. Where some studies
have found viral load to be similar between symptomatic and
asymptomatic SARS-CoV-2 patients [55,56], others have
found statistically significant differences in viral load [57,58]
and clearance time [59,60], or that shedding duration increases
with disease severity [61]. A further study in Catalonia has
found severity to be positively correlated with viral load, and
that higher viral loads led to a greater extent of onward
transmission [62]. A recent literature review including 79
studies on SARS-CoV-2 concluded that the sum of evidence
suggests viral load is similar between symptomatic and asymp-
tomatic individuals, most studies ‘demonstrate faster viral
clearance among asymptomatic than those who are sympto-
matic’ [63, p. e19]. A further systematic review of the
reproduction number and secondary attack rate suggested
asymptomatic cases were around one-seventh as infectious as
symptomatic individuals [64]. Conversely, symptomatic
SARS-CoV-2 infecteds are likely to reduce their contacts follow-
ing onset: in the UK, isolation of 10 days is mandated for
individuals developing symptoms (and subsequently receiving
a positive test for) of COVID-19, and for their households [65].

Early studies demonstrate vaccinated individuals infected
with SARS-CoV-2 have a lower viral load than unvaccinated
individuals [66,67] and lower susceptibility to SARS-CoV-2
infection [68]. Reduction in peak viral load and viral clearance
times have also been demonstrated with oral and inactivated
poliovirus vaccine [69,70]. Understanding the generation time
distribution ofmultiple groups becomes increasingly important
with disassortative mixing, for instance when estimating the
reproduction number of sexually transmitted infections in het-
erosexual contact networks with human papillomavirus, for
which vaccination uptake was previously limited to females.

As vaccines against SARS-CoV-2 continue to be rolled out
over the coming months, understanding the impact of the
vaccine on susceptibility and transmissibility will be increas-
ingly important for accurate inference of R. Given the vaccine
schedule is broadly age-prioritized, mixing by vaccination
status will be more assortative.

Estimating the contemporaneous generation time
distribution should be regarded as similarly important to
estimation of the reproduction number itself, which currently
occupies the work of academic modelling groups worldwide
for SARS-CoV-2. Better capturing the heterogeneities of
the generation time distribution will become increasingly
important as vaccination is rolled out, as well as with the
emergence of new strains which may exhibit different trans-
missibility profiles. Upcoming SARS-CoV-2 challenge trials
in the UK should enable detailed analysis of viral load pro-
files and symptomatic rates, which can inform updated
generation time distributions [65].

While estimation of the generation time distribution is
necessarily a time-consuming endeavour, testing systems
should integrate additional epidemiological information in
tandem with their test and trace protocols. Updated estimates
of the serial interval could be obtained by requiring test
applicants to supply their symptom onset date, with linkage
to traced contacts should they also enter the testing system.
For a more direct means to estimate changes in the generation
time distribution, or indeed the incubation period, individ-
uals could be asked for dates of contact with known
infected in the previous week, and this too linked with
contacts who enter the test and trace system.

Data accessibility. Data on Ebola cases are taken from: Heterogeneities in the
case fatality ratio in theWest African Ebola outbreak 2013–2016 [22]. Data
on SARS-CoV-2 deaths in the UK taken from the Government dashboard:
https://coronavirus.data.gov.uk/. Both data and code are available in
the Github repository: https://github.com/willgreen236/Heterogeneity_
transmission.git.
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