
Research Article
PIPINO: A Software Package to Facilitate the Identification
of Protein-Protein Interactions from Affinity Purification
Mass Spectrometry Data

Stefan Kalkhof,1,2 Stefan Schildbach,3 Conny Blumert,4,5

Friedemann Horn,4,5 Martin von Bergen,1,6,7 and Dirk Labudde3

1Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
2Department of Bioanalytics, University of Applied Sciences and Arts of Coburg, 96450 Coburg, Germany
3Department of Applied Computer Sciences & Biosciences, University of Applied Sciences Mittweida, 09648 Mittweida, Germany
4Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
5Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
6Department of Metabolomics, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
7Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark

Correspondence should be addressed to Stefan Kalkhof; stefan.kalkhof@hs-coburg.de and
Dirk Labudde; labudde@hs-mittweida.de

Received 30 September 2015; Revised 28 November 2015; Accepted 29 November 2015

Academic Editor: Yudong Cai

Copyright © 2016 Stefan Kalkhof et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The functionality of most proteins is regulated by protein-protein interactions. Hence, the comprehensive characterization of the
interactome is the next milestone on the path to understand the biochemistry of the cell. A powerful method to detect protein-
protein interactions is a combination of coimmunoprecipitation or affinity purification with quantitative mass spectrometry.
Nevertheless, both methods tend to precipitate a high number of background proteins due to nonspecific interactions. To address
this challenge the software Protein-Protein-Interaction-Optimizer (PIPINO)was developed to perform an automated data analysis,
to facilitate the selection of bona fide binding partners, and to compare the dynamic of interaction networks. In this study we
investigated the STAT1 interaction network and its activation dependent dynamics. Stable isotope labeling by amino acids in cell
culture (SILAC) was applied to analyze the STAT1 interactome after streptavidin pull-down of biotagged STAT1 from human
embryonic kidney 293T cells with and without activation. Starting from more than 2,000 captured proteins 30 potential STAT1
interaction partners were extracted. Interestingly, more than 50% of these were already reported or predicted to bind STAT1.
Furthermore, 16 proteins were found to affect the binding behavior depending on STAT1 phosphorylation such as STAT3 or the
importin subunits alpha 1 and alpha 6.

1. Introduction

Proteins are team players. Virtually all protein functions are
triggered, controlled, modulated, and conducted by protein
complexes. Deregulation of protein complexes is the cause
of many diseases as being documented, for example, cervical
cancer, bacterial infection, leukemia, neurodegenerative dis-
eases, andHuntington disease [1]. Consequently, the directed
modulation of protein interactions is one of the upcoming
fields in pharmacology and drug design [2, 3].

Unfortunately, the information which protein complexes
are formed and are present at certain conditions can not
directly be obtained from transcriptome or genome data.
Thus, the comprehensive analysis of protein-protein inter-
action networks (interactome) and its quantification and
dynamics are one of the most important issues in the
postgenomic era.

In the last decades protein interactions were intensively
investigated using small as well as large scale approaches.
Much of the data is available and has been integrated in

Hindawi Publishing Corporation
BioMed Research International
Volume 2016, Article ID 2891918, 13 pages
http://dx.doi.org/10.1155/2016/2891918

http://dx.doi.org/10.1155/2016/2891918


2 BioMed Research International

protein-protein interaction (PPI) databases such as Biologi-
cal General Repository for Interaction Datasets (BioGRID)
[4], the molecular interaction database (MINT) [5], the
Biomolecular Interaction Network Database (BIND) [6],
Mentha [7], the Database of Interacting Proteins (DIP)
[8], the IntAct molecular interaction database (IntAct) [9],
and the Human Protein Reference Database (HPRD) [10].
To prevent an enrichment of false positive interactions all
database systems claim to use strict quality filters. At present,
more than 50,000 nonredundant human PPIs are listed in
at least one of the main public repositories. Interestingly,
the overlap between the databases is still very small and
many of the binary interactions are only listed in a single
database. Furthermore, the recently updated commercial
ProlexysHumanProtein InteractionDataset (Hynet) claimed
to contain more than 300,000 experimentally determined
human PPIs (unpublished data). Thus, one might conclude
that either all public databases are still far from being
comprehensive and/or that the databases still contain a huge
amount of false positives.

One of the most powerful methods for small and large
scale PPI studies is affinity purification or coimmunoprecip-
itation combined with mass spectrometry [11–13]. However,
one has to be aware that there are several sources for the
detection of false positive interaction partners. The cura-
tion of the obtained data is time consuming and thereby
expensive. Therefore it is desirable to reduce the number of
false positives to a minimum to spare resources and identify
valuable interaction partners.

To experimentally identify true novel protein-protein
interaction partners it is important to carefully conduct the
PPI experiments including proper controls as well as to
evaluate the experiments in respect to high quality data
from previous studies. The data analysis should include
statistical analysis of the raw data, data evaluation in respect
of known contaminants such as beads binding proteins, and
the recovery of already observed or predicted interaction
partners. Additionally, putative PPI data can be filtered using
functional information or correlation to large scale protein
interaction networks. However, usually data analysis pro-
grams aim to filter the experimental data either using control
experiments or by integration of functional information.

The software PIPINO (Protein-Protein Interaction Opti-
mizer, http://www.bioforscher.de/pipino) is a novel attempt
to integrate and combine the strengths of both approaches.
PIPINO allows standardizing the data analysis process and
offers a semiautomatic analysis pipeline. Beside various
statistical methods for evaluating the data the software is
capable of functionally annotating and enriching/filtering
data entries with additional information. This refinement is
accomplished by the use of curated interaction databases.
Thus, a comprehensive interaction network can be created
and used for the data analysis of a specific protein of interest.
Database information and reliabilities in form of database
scores for corresponding interactions can be used to assess
the probability of the correctness of an interaction within the
network through a normalized score as well as a visual repre-
sentation. Additionally, it is possible to analyze and visualize
perturbation of a network as it might be triggered by, for

example, a bait phosphorylation.Theperformance of the soft-
ware is demonstrated for the analysis of the interactome of the
signal transducers and activators of transcription 1 (STAT1)
with and without phosphorylation dependent activation.
PIPINO is available at http://www.bioforscher.de/pipino.

2. Material and Methods

2.1. Generation of the Experimental PPI Dataset

2.1.1. Plasmid Construction. An expression vector of biotiny-
lated STAT1 was prepared as has been descripted recently for
STAT3 [14]. Briefly, Rc/CMV-STAT1-Bio was constructed by
cloning the human STAT1 cDNA into the EcoRI and SalI
sites of pBluescript II KS (−). Afterwards the stop codon
was replaced with a BamHI site by site-directed mutagenesis
and a 23-amino acid carboxy-terminal biotinylation tag was
added. Finally a Bsu36I-ApaI fragment of pB-STAT1-Bio was
subcloned into the respective sites of Rc/CMV-STAT1. Thus,
the expression vector Rc/CMV-STAT1-Bio was obtained.
A BirA mammalian expression vector was constructed by
subcloning the BirA cDNA into the EcoRI and Xho I sites
of pBluescript II KS (−) (Stratagene, Heidelberg, Germany).
Subsequently, the cDNA was inserted into the KpnI and
XbaI sites of the expression vector pcDNA 3.1+ (Invitrogen,
Karlsruhe, Germany).The expression vector for GFP-Bio was
prepared as descripted [14].

2.1.2. Pull-Down of Proteins with Streptavidin Beads. Ultra-
link streptavidin beads (from Thermo Fisher scientific,
Waltham, USA) were washed with cell lysis buffer. After
this equilibration step 50𝜇L beads were incubated with cell
lysates containing 3mg of total protein to precipitate the
biotinylated proteins including their interaction partners.
After incubating the beads 1.5 hours at 4∘C on a rotating
platform the beads were washed 3 times with cell lysis buffer,
and bound proteins were eluted by boiling 3 minutes with
50 𝜇L SDS sample buffer.

2.1.3. SILAC Sample Preparation. For the investigation of
activation dependent STAT1 interactions, three independent
biological replicates were analyzed in two technical replicates.
Therefore cell lysates of STAT1-Bio expressing cells, which
were either treated with erythropoietin or left untreated,
were compared. As a control, streptavidin pull-downs were
performed from whole cell extracts of cells expressing either
GFP-Bio and used as a third group.

In detail, cells were grown in SILAC Dulbecco’s min-
imal essential medium (SILAC DMEM, (PAA, Pasching,
Austria)) without lysine and arginine, supplemented with
10% dialyzed fetal calf serum (PAA, Pasching, Austria)
and 1% penicillin/streptomycin (Invitrogen, Paisley, UK).
84 𝜇g/mL 12C-L-arginine and 146 𝜇g/mL 12C-L-lysine (both
from Sigma-Aldrich, St. Louis, USA) were added to the
“light” media while the same concentrations of 13C
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media, respectively. After determining the time for full
incorporation of the isotopic amino acids, HEK 293T cells
were cultivated at least 6 days with SILAC medium before
harvesting.

After washing the cells three times with PBS, whole
cell extracts were prepared using modified RIPA buffer
for affinity purifications (50mM Tris-HCl, pH 7.8, 150mM
NaCl, 1% NP-40, 0.25% sodium deoxycholate 1mM EDTA).
Protease inhibitors 5𝜇g/mL leupeptin, 5 𝜇g/mL aprotinin,
and 1 𝜇g/mL pepstatin A were added freshly. Cells were
incubated with RIPA buffer 10min on ice, and extracts
cleared by centrifuging for 10min at 13,000×g and 4∘C. Total
protein concentrations were determined using a Bradford
Assay.

For SILAC experiments, equivalent total protein amounts
of light and heavy extracts were incubated separately with
ultralink strep beads streptavidin beads for 1.5 hours. After 3
washing steps, bound proteins were eluted with SDS sample
buffer, then combined, and subjected to SDS-PAGE.

2.1.4. Protein Separation, Liquid Chromatography Tandem
Mass Spectrometry, and Data Analysis. Samples from cells
grown in heavy, medium, and light medium were mixed
and 0.125M Tris-HCl buffer containing 4% SDS, 20% (v/v)
glycerol, 0.1% (m/v) bromophenol blue, and 10% (v/v) 2-
mercaptoethanolwas added.After heating themixtures 5min
at 95∘C the proteins were separated using 1D-SDS-PAGE
(12%). After staining the proteins each lane was cut into
10 slices of approximately equal protein amounts. Proteins
were destained and desalted within the gel slices and tryptic
digestion was carried out using porcine trypsin.

All protein digestions were analyzed by nano-uHPLC/
nano-ESI-MS/MS using a LTQ Orbitrap XL ETD (Thermo)
online coupled via a chip-based nano-ESI source (Nanomate,
Advion) to a nano-uHPLC (nanoAcquity UPLC, Waters
Corporation, Milford, USA) as described before [15].

Mascot [16] (version 2.3.01, Matrix Science, London, UK)
embedded in ProteomeDiscoverer (version 1.4, Thermo Sci.)
was used to perform the identification and quantification
of proteins. For the database search a concatenated tar-
get/decoy database which contains all correct as well as the
reversed entries of the Swiss-Prot database species human
[17] (http://www.expasy.org/, UniProt Consortium, 09-2010,
40924 forward and reverse sequences) was utilized. Thereby
the protein and peptide false discovery rates were controlled
to be below 0.05. For peptide identification up to a maximum
of three isotope-labeled amino acids and maximum two
tryptic missed cleavages were considered. A mass error of
up to 0.5Da for MS/MS product ions and up to 20 ppm
for MS precursor ions was tolerated. Methionine oxidation,
acetylation (protein N-terminus), asparagine and glutamine
deamidation (all optional), and cysteine carbamidomethyla-
tion (complete) were considered as modification. On request
the complete GeLC-MS raw data as well as details concerning
identifications and quantifications will be provided. All raw
quantitation ratios as well as the results of all filtering and
statistical analysis steps of the three conditions are summa-
rized in Supplementary Table 1 (see Supplementary Material
available online at http://dx.doi.org/10.1155/2016/2891918).

2.2. Data Analysis Using PIPINO

2.2.1. Overview. Data analysis was accomplished using the
in-house software called “PIPINO” (Protein-Protein Inter-
action Optimizer). It is capable of visualizing and analyzing
data and supports the selection of bona-fide interaction
partners based on literature data such as protein interac-
tion networks, frequency data, and bead proteome lists.
The application is written in pure Java and is available
as a standalone version including a detailed description at
http://www.bioforscher.de/pipino.

2.2.2. Data Upload. In this study MS raw data were pro-
cessed and protein abundance ratios were calculated by
ProteomeDiscoverer (Thermo Sci.). However, this is not a
prerequisite for the application of PIPINO. In fact, initial
quantitative proteomics data analysis by any other software
or search engine can be used.

For a successful import of user data, the software requires
a column separated data format containing experimental
data (experiment descriptors, enrichment ratios) paired
with general information regarding the experiment (protein
of interest, UniProt accession numbers, gene names, and
descriptors). The parser is flexible enough not to demand
a special data format. The knowledge of the concrete data
format and where needed information is located are suf-
ficient to import data. This input system enables to use
common shared data formats, for example, generated by
ProteomeDiscoverer (Thermo Sci.), MaxQuant [18] (MPI
Munich), Biotools (Bruker Daltonics), and user defined data
formats.

2.2.3. Parsing and Converting. User data is parsed and
converted into a uniform intermediate data format under-
standable by the software. This can be achieved through a
step-by-step transformation that utilizes regular expressions
(RegEx). An example of a transformation can be found in the
Supplementary Information.

First the document needs to be structured separating the
header from the content and specifying field delimiters. The
numbers of different experiments and samples per experi-
ment (replicates) in the document are required in this step.
The source columns of the user’s document (characterized by
the header fields) can be mapped to the target data model
fields of the software. In this mapping either the whole
data field or just a fragment specified through an extraction
pattern in form of a regular expression can be used. A
preview shows the outcome of the model conversion on a few
data rows and indicates whether values have been calculated
properly. If the transformation result is satisfying and valid
the conversion parameters can be stored as a template for
upcoming data imports of the same data source. Finally
the complete experimental data will be converted to the
intermediate data format and represented in a tabular form.

Insufficient entries (e.g., missing values, less frequent
data) or known nonbinding partners can be removed via
accession numbers or gene names in an optional filter
process. Additionally, a predefined list of bead proteomes [12]
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and a list taken from the Protein Frequency Library (PFL)
[19] are provided, which can be used to mark these entries in
the current data. Further user defined lists can be applied as
negative, positive, and general markers. These marker types
can support the analysis process.

2.2.4. Data Analysis. The enrichment ratio 𝑟
𝑖,𝑗

and the
probability value 𝑝

𝑖,𝑗
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Finally the ratio 𝑟
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(4) and the probability value 𝑝
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can be calculated. For the probability value 𝑝
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paired 𝑡-test 𝑇(𝑥, 𝑦) against a zero vector is utilized. Proteins
with less than two samples for an experiment are considered
as insufficient and therefore neither enrichment ratios nor
probability values are calculated:
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2.2.5. Data Visualization by Volcano Plot. As intermediate
data is present, a visualization procedure can be initiated with
the volcano plot to get an overview of the data distribution.
The diagram applies the logarithmic enrichment ratio on the
abscissa.The probability value (𝑝 value) can be interpreted as
qualitymeasure of the data and is applied on the ordinate.The
logarithmic application of the enrichment ratio compensates
the scattering of the data regarding the 𝑝 values.Thus the plot
is divided into a depleted part to the left of the ordinate and
an enriched part to the right. As a result, all data points in
the first quadrant of the diagram have been found enriched

in the experiments. In general the more distant a data point
can be found to the abscissa the more likely is its accuracy. As
multiple experiments can be present in a single file, PIPINO
is capable of switching between these experiments when
displaying the volcano plot.

Furthermore, it is possible to highlight certain data points
in the plot through their gene names or specifying thresholds
on the data values for highlighting. In addition you can freely
specify an area by adjusting thresholds for the ratio and the
𝑝 value which results in a separation of the data points in
the upper right area of the diagram. It is possible to select
the separated data, as well as highlighted data or single data
points. Selected entities are displayed in a detail table andmay
be exported to various data formats on demand for further
investigation.

2.2.6. Integration of Data from PPI Databases. PIPINO is
capable of combining information from two different data
sources, which can be categorized into the user defined input
data of experiments and established interaction database
inputs. The used interaction databases for information
retrieval are listed in Table 1. IntAct, BioGRID, Mentha, and
DIP encourage both the IMEx [20] standard and the PSI-MI
standard [21] while covering a well curated interaction space.
HPRD does not yet support the IMEx and PSI-MI standard
but related toMosca et al. [22] this database contains valuable
and unique data regarding binary protein interactions. In
addition the PIPs database is used to further enrich the inter-
action databases. The software is capable of including more
interaction databases as required, respectively, to change the
used databases according to specific needs.

A crucial factor for establishing a general network is the
usage of mutual known identifiers. The UniProt accession
number is chosen as a primary key for PPIs caused by its wide
dissemination. Unfortunately there are still many proteins
not natively assigned with a UniProt accession number.
Therefore an ID mapping process was established to resolve
as many interactions as possible, even from interactions that
exhibit missing information with respect to the input format
information. The dataset will be automatically completed
as far as possible through a mapping of UniProt accession
numbers and associated gene names as well as taxonomic
information from the UniProtKB. If the refinement fails, the
interaction will be discarded and is not integrated into the
network.

Finally, all nonredundant interactions obtainable from
these databases are merged together into an interaction
network.This network is used as a basis for all upcoming con-
siderations regarding validated protein-protein interactions
and will be referred to as raw network. Due to the heavy
resource load the network preparation step is currently not
yet a functional module of PIPINO. Nevertheless, the latest
prepared raw network is provided next to the standalone
software until a suitable module can been offered.

2.2.7. Data Visualization as PPI Network. Next to the visual-
ization by volcano plot, there is another approach to visualize
the intermediate data, which is based on a network structure,
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Table 1: Interaction databases used to create a PPI netpwork. Databases marked with an asterix (∗) had been taken from the IMEx interface
(http://www.ebi.ac.uk/intact/imex/main.xhtml) instead from direct database sources. An interaction was counted as invalid with one of the
following reasons: it does not have a valid UniProt accession number or it could not be mapped to one, it has no valid gene name or it could
not be mapped to one, or it has no valid taxonomy ID or it could not be mapped to one. Unfortunately, some mapping processes do not yet
cover a large percentage of specific databases (cf. DIP∗ with 97% invalid interactions or InnateDB with 100% invalid interactions).

Name Date Interactions IMEx
Total Invalid Valid

Mentha 17.08.14 461,408 47.236 (10%) 414.172 (90%) M
IntAct 18.07.14 424,706 128.680 (28%) 326.026 (72%) ✓

BioGRID 01.08.14 749,913 493.819 (66%) 256.094 (34%) ✓

MINT∗ 26.03.13 122,356 17.968 (15%) 104.388 (85%) ✓

PIPs 12.09.08 34,216 9.466 (28%) 24.750 (72%) M
HPRD 13.04.10 39,240 29.288 (75%) 9.952 (25%) M
UniProt∗ 18.08.14 11,919 2.272 (19%) 9647 (81%) ✓

DIP∗ 07.01.14 107,619 104.050 (97%) 3.569 (03%) ✓

MPIDB∗ 18.08.14 1,759 767 (44%) 992 (56%) ✓

I2D∗ 18.08.14 1,117 263 (24%) 854 (76%) ✓

BHF-UCL∗ 18.08.14 911 315 (35%) 596 (65%) ✓

InnateDB∗ 17.08.14 680 93 (14%) 587 (86%) ✓

MatrixDB∗ 18.08.14 1,244 864 (69%) 380 (31%) ✓

MolCon∗ 18.08.14 495 129 (26%) 366 (74%) ✓

MBInfo∗ 18.08.14 638 306 (48%) 332 (52%) ✓

respectively, a tree structure.The perfuse visualization toolkit
[23] (beta release 2007.10.21) is utilized for this visualization.
As precondition a prepared network (raw network data) as
well as prepared intermediate data needs to be specified. The
network visualization takes the raw network data to span
a network around a protein of interest with a user defined
depth, the so-called focused network. Depending on the
given depthmore time for calculating the network is required
and more resources are needed for displaying. This centered
network does not yet contain any further information stated
by the user. Certainly it can be enriched with the user
data resulting in a specialized network containing relevant
interactions taken from the experiment. To direct the focus
closer to missing entities within the network a truncated
network variant can be derived.The reduction of the network
starts at the outer leaves and continues iteratively until
the root (protein of interest) is reached. While truncating,
confirmed interactions connecting a leave with a node (end
point interactions) are removed. Therefore the truncated
network only contains valuable information if unconfirmed
proteins are present.

As soon as a network is ready to be displayed it is possible
to choose between different network visualization methods
to select the best matching focus for the desired intention.
A dynamic network powered by a force field, for example,
can identify interaction hubs while a static radial network
provides a clear structured overview of the network depth.
A hierarchic arranged network otherwise is more suitable to
identify interaction pathways with the highest comfort. The
edges of the network indicate the overall scoring from the
interaction databases and therefore can be used as a measure
of the interaction reliability. Alternatively a tabular viewof the

network can be requested showing all available information
column-wise and sortable.

The network nodes and leaves are colored regarding the
status of an entry. As a result, it is possible to distinguish
between data entries occurring only in the network, only
in the intermediate data, and in both datasets. Export func-
tionality can be used to generate lists of filtered proteins for
further examination, for example, highlighting these proteins
within the volcano plot.

3. Results

3.1. Workflow. The software PIPINO (Protein-Protein Inter-
action Optimizer) supports the analysis of AP-MS data
by facilitating (i) raw data processing, (ii) interactive data
visualization, (iii) comparison with data from PPI databases,
and (iv) comparisonwith lists of proteins frequently observed
in AP-MS experiments or known to bind nonspecifically and
by providing additional network presentations (Figure 1).The
current version of PIPINO is capable of dealing with a wide
range of data from affinity purification mass spectrometry
(AP-MS) experiments. In order to demonstrate the function-
ality and the handling of the software, this section outlines
the application to the STAT1 interaction network.

3.2. Preexperiments for Analysis of the Interactome of STAT1
with and without Phosphorylation Dependent Activation. To
map the STAT1 interactome with and without phosphory-
lation an AP-MS strategy was used as descripted recently
in Blumert et al. [14]. It is based on in situ biotinylation
of the bait protein to enable an efficient enrichment of
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Figure 1: Utilization of PIPINO during preparation, data processing, and visualization of experimental AP-MS data.

bait/prey complexes and SILAC and allows the discrimina-
tion of potential false positives based on the relative protein
quantities compared to a control AP-MS experiment.

The carboxy-terminus of STAT1 or GFP (for control)
was fused to a 23-amino acid peptide tag carrying a tar-
get sequence for biotin protein ligases (biotag) and was
coexpressed with the codon-optimized bacterial biotin pro-
tein ligase variant hBirA for in situ biotinylation in HEK
293T. Translation and biotinylation efficiency were moni-
tored by Western blotting and visualized using streptavidin
horseradish peroxidase conjugates. GFP-Bio and STAT1-Bio

were found to be expressed in comparable amounts. For both
proteins the biotinylation efficiency was not dependent on
the amount of coexpressed hBirA or on the amount of biotin.
Thus, it was considered to be stable and complete.

Cytokine-dependent tyrosine-phosphorylation and
transactivation potential of either untagged STAT1 or STAT1-
Bio were examined to verify that the STAT1 functionality was
not affected by biotinylation. Because HEK 293T express only
marginal levels of functional interleukin-6 receptor which
is required for STAT1 activation, a chimeric receptor EG
consisting of the extracellular domains of the erythropoietin
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receptor and the transmembrane and cytoplasmic parts of
the interleukin-6 signal transducer gp130 was coexpressed,
and cells were stimulated by adding erythropoietin (EPO) to
the medium to activate STAT1. After EPO stimulation and
overexpression of either STAT1 or STAT1-Bio the abundance
of tyrosine-phosphorylation of STAT1 and STAT1-Bio was
found to be equal.

3.3. AP-MS Analysis Resulted in 2221 Captured Proteins.
A triple labelling SILAC strategy was applied to relatively
compare the quantities of captured prey proteins between the
control bait (GFP-Bio) and the target prey without activation
(STAT1-Bio) and with EPO activation (pSTAT1-Bio). There-
fore HEK 293T cells overexpressing GFP-Bio were labeled
with “light” amino acids (Arg and Lys), cells expressing
STAT1-Bio were labeled with “medium” amino acids (13C

6
-

Arg and D
4
-Lys), and cells expressing STAT1-Bio and which

were additionally stimulated with EPO were labeled with
“heavy” amino acids (13C15

6

N
4
-Arg and 13C15

6

N
2
-Lys). An

equal number of cells per condition were lyzed, bait/prey
complexes were enriched by affinity chromatography, and the
eluates were mixed. The combined eluates of the streptavidin
pull-downs were separated by one-dimensional SDS-PAGE
and the proteolytic peptides which were generated by tryptic
in-gel digestion were analyzed using nano-HPLC/nano-ESI
Orbitrap mass spectrometry. In total three biological repli-
cates were measured in two technical replicates.

A data processing using the ProteomeDiscoverer revealed
the identification and quantification of 2221 captured proteins
(2 peptides, FDR < 0.05) in at least one of the six mea-
surements. A file containing a list of all proteins including
protein database identifiers and the relative quantification
results between the three different channels (GFP-Bio, STAT-
Bio, and pSTAT-Bio) was exported.

3.4. Parsing and Initial Processing with PIPINO. After parsing
the data with an appropriate template (specified in the
Supplementary Information) an initial data analysis can
be conducted. In this step (i) technical replicates can be
combined, (ii) optionally the biological replicates can be
normalized and log

2
-transformed, and (iii) mean values and

significance (𝑡-test) are calculated. Furthermore, all proteins
not quantified in at least three measurements (including
technical replicates) were removed.Thus, in case of the STAT1
dataset 963 reproducibly quantified proteins (quantified in
three replicates based on at least two peptides of which one
was required to be unique) remained for further analysis once
1220 proteins have been sorted out.

3.5. Enrichment of Potential PPIs Based on Discarding of Typ-
ical False Positive Observed Proteins. Database information
on proteins being frequently copurified such as endogenously
biotinylated proteins (6 proteins) and typically bead binding
proteins as well as proteins which are known to bind proteins
involved in protein folding or degradation such as chaperons
and proteases (19 proteins) was integrated and flagged to
reduce the candidate list. The remaining 942 proteins were
further investigated. Furthermore, a list of proteins which

are frequently observed in numerous pull-down experiments
as reported, for example, by Boulon et al. [19] and thereby
assumingly represent unspecific binders was excluded as well.

3.6. Integration of PPI Database Information and Additional
User Defined Data. Particularly for most of the human
proteins but also for proteins of many other species there is
information on known interaction partners listed in several
databases. Automatic access to this information is highly
valuable since this data can be used to judge the quality of
the purification, to guide the following filtering steps, and to
prevent redundant reporting of the so-called novel PPIs.

PIPINO allows the integration of all standard databases
such as BioGRID [4], MINT [5], Mentha [7], DIP [8], IntAct
[9], and HPRD [10] but also of costumer created databases.
These databases were combined into a raw network compris-
ing 1.451.141 valid but redundant interactions (Table 1). The
network creation processmerged redundant entries, removed
interactions interacting with itself or with a protein with a
different taxonomy identifier, and resulted in 498.345 nonre-
dundant interactions between 79.369 different proteins. The
PPI network of Homo sapiens comprises 201.110 interactions
between 22.306 proteins.

This raw network was centered on STAT1 computed
from the interaction databases MINT, IntAct, and Mentha
entries forwhich interaction scores are available.Thenetwork
was enriched by the altered experimental data to create a
specialized network containing 17.568 proteins including 1240
proteins from the experiment, of which 1230 were part of
the applied database. 10 proteins could not be found in the
interaction databases. Further refinements of the network
through truncation resulted in 1.575 remaining proteins. The
possible interaction partners as well as the unconfirmed
proteins in general can now be subjected for further analysis
and studies.

For each of the filtered proteins (or if desired for all
identified proteins) the information is provided whether and
in which databases the proteins have been reported as bait
binding partner.

3.7. Adjustment of Experimental Thresholds Using an Inter-
active Volcano Plot. As an additional filtering step the data
can be analyzed using the quantification information. In
the STAT1 example the enrichment of all captured proteins
is quantified compared to the pull-down of biotinylated
GFP. The ratio of these quantities as well as 𝑝 values can
be utilized to further enrich potential protein interaction
partners. The number of background proteins as well as
the relative quantities of the captured binding partners can
have high variations in AP-MS or Co-IP-MS experiments.
Thus, to define and apply ratio or significance thresholds
is not as straightforward as it is in standard proteomics
applications. To support the definition of thresholds the
processed data can be interactively visualized by the use of
the integrated volcano plot as has been depicted in Figure 2.
The volcano plot offers details on statistically significant
entries corresponding to their median magnitude change
throughout the experiment. The interactive handling of the
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Figure 2: Volcano plots of results of the STAT1AP-MS experiment. (a)Themean log
2

ratios of STAT1-Biowith EPO treatment versusGFP-Bio
are plotted versus the corresponding 𝑝 values. X proteins are being depicted in red passing the thresholds of 𝑝 value below 0.005 and log

2

-
FC > 1 and were treated as putative STAT1 binding partners. (b) Analogously the volcano represents the AP-MS analysis of phosphorylated
STAT1 versus GFP control. (c) Representation of the STAT1 activation experiments. Proteins which are identified as putative binding partners
or which are derived as PPIs from literature are plotted depending on their binding properties to phosphorylated (enriched shown in blue)
or nonphosphorylated (enriched shown in red) STAT1 proteins.
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plot enables to refine the thresholds and directly obtain
information on the enrichment of known binding partners
as well as on the depletion of background proteins (e.g., as
listed in frequency libraries).

The volcano plots of either the STAT1-Bio versus GFP-Bio
(Figure 2(a)) or the pSTAT1-Bio versusGFP-Bio (Figure 2(b))
reveal a clear separation of the data. Whereas the majority of
the proteins are not significantly enriched, a minor fraction
was observed with a log

2
FC > 1 and a 𝑝 value < 0.005.

For the pSTAT1 dataset 15 proteins fulfill these additional
criteria. With a proportion of > 50% well known STAT1
binding proteins are highly enriched. For the STAT1 dataset
17 proteins are part of the defined significance region of the
volcano plot. Interestingly, only 2 of those have been already
reported.

3.8. Network Analysis Reveals Information on Shared PPIs and
Coverage of Known PPIs. At each time point and after every
adjustment of a filtering criterion the result can be visualized
using three different types of network presentations (Figure 3,
cf. Section 2.2.7). Furthermore, the amount of data which
should be shown can be tailored. Whereas in the focused
network only database information is shown, experimental
and database information are combined in the specialized
network (Figures 3(a) and 3(b)). Finally, the truncated net-
work shows only the experimental proteins and their direct
protein binding partners (Figure 3(e)).

The sophisticated overlay of interaction databases and
experimental data helps to identify interaction pathways
between proteins. It is possible to detect currently uninvesti-
gated protein interactions as well as to identify possible pro-
tein hubs within the experiment. The information provided
by the network analysis can be used to further encircle possi-
ble interaction partners while excluding irrelevant proteins.

In case of the pSTAT1 dataset using the truncated network
proteins are visualized which either do directly interact
with STAT1 or are only separated by one or two nodes
(Figure 3(e)). These proteins are highly enriched after the
filtering procedure, indicating that finally a highly purified
bona-fide PPI list was obtained.

3.9. Phosphorylation Dependent Binding. Particularly the
investigation of differences or dynamics in protein networks
which are caused by drugs, toxic compounds, external stim-
uli, mutation, and so forth is an upcoming topic. In this
study we investigated alterations caused by a cell treatment
with EPO. EPO treatment caused a STAT1 phosphorylation,
activation, and translocation to the nucleus. Thus one can
expect a huge impact to the STAT1 interactome. Since all three
conditions were processed and analyzed simultaneously it is
possible to directly determine in a single analysis whether
a protein binds STAT1 (enrichment in either the STAT1 or
pSTAT1 pull-down compared to the GFP control pull-down)
and if the same protein does bind differentially to STAT1.
One protein which is well known to form heterodimers with
STAT1 after phosphorylation but not without phosphoryla-
tion is STAT3 [24, 25]. As expected STAT3 was significantly

identified as a pSTAT1 protein and was 5.3-fold enriched
compared to the STAT1 pull-down.

A semiautomatic analysis revealed that in total 30 pro-
teins were found to bind either STAT1 or pSTAT1 (Table 2).
Of these proteins 16 were more than 1-fold enriched with a
maximum value of 4.5. Of those 6 proteins were found to
be much more enriched without activation whereas 10 were
enriched after activation (Figure 2(c)). Other STAT1 interact-
ing proteins which were found to be highly enriched are the
Importin subunits alpha 1 and alpha 6, which are involved
in the phosphorylation dependent nuclear import of STATs
[26]. Furthermore, plectin and the lactate dehydrogenase B
chain, two proteins which were predicted to bind to STATs,
were found to be enriched. Other proteins which are enriched
upon STAT1 phosphorylation are the filament proteins alpha-
internexin and desmin, as well as the RNA binding proteins
poly(A) binding protein, cell cycle associated protein 1, and
the polypyrimidine tract binding protein 2.

Among the six proteins that showed stronger bind-
ing without activation are two proteins being involved in
degradation (ubiquitin carboxyl-terminal esterase L1 and
ubiquitin-conjugating enzyme E2M), two mitochondrial
enzymes (electron-transfer-flavoprotein and NADH dehy-
drogenase (ubiquinone) Fe-S protein 3), the phosphofructok-
inase, and the coiled-coil-helix-coiled-coil-helix domain con-
taining 3, which has been reported to be important for protein
import in mitochondria but also to act as transcription factor
and to regulate the BAG1 promotor. Interestingly, two known
STAT1 binding partners the cytoskeletal protein spectrin [27]
and especially STAT2, which is known to form STAT1/STAT2
heterodimers [28], showed no activation dependent binding.

4. Discussion

AP-MS is one of the most powerful approaches to identify
protein interactions and can be applied for high-throughput
studies. Several analysis tools have been designed to facilitate
and automatize the identification of protein-protein inter-
actions based on AP-MS data (recent review [29]) such as
socioaffinity (SA) scoring [30], purification enrichment (PE)
scoring [31], IDBOS [32], SAINT, CompPASS, or MiST. The
scope of these approaches is to score and rank potential
protein interaction partners based on data modelling. In case
of SA, PE, and IDBOS, reliable modelling is based on large
scale datasets, being created using the same AP-MS pipeline
for dozens of baits.However,most of the experimental studies
focus on the interactome of a low number or even single
baits. For these low-throughput studies it is still a serious
challenge to carefully control the false positive rate. The
programs SAINT [33] and CompPASS [34] are applicable
for small-scale sets. However, drawbacks of both programs
are descripted by Teng et al. [29]. The CompPASS method
was reported to perform well for large number of unrelated
baits but seemed to filter out some true interactions with
higher detection frequency when all baits belong to the same
protein pathway. SAINT was observed to overpenalize true
interactions, which were detected with high intensity but are
not detected in all replicates.
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(a) (b)

(c) (d)

(e)

Figure 3: Different network layouts in different detail levels. (a) A specialized STAT1-centric network containing experimentally and literature
derived PPIs arranged by a force field. (b) The same data depicted with a radial layout. (c) The corresponding truncated network arranged
by a force field. (d) A detailed zoom-in of the hierarchical layout. (e) A truncated subnetwork with a scoring threshold of 0.85. Green nodes
represent interaction partners not found in the experiment (only listed in database entries), the blue nodes are confirmed interaction partners
(found in the databases and the experiment), and the red nodes represent the protein of interest.
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Table 2: AP-MSdata of all proteins being determined as putative interaction of phosphorylated and/or nonphosphorylated STAT1. Significant
enrichments are highlighted in bold.

Gene
name

Binding to phosphorylated STAT1 Binding to nonphosphorylated STAT1 Binding depending on phosphorylation
Known
from
literature

STAT1 + EPO versus GFP STAT1 versus GFP STAT1 + EPO versus STAT1
log
2

ratio
Standard
deviation

𝑝 value
(𝑡-test) log

2

ratio Standard
deviation

𝑝 value
(𝑡-test)

log
2

ratio
Standard
deviation 𝑝 value (𝑡-test)

CHCHD3 −1.78 1.17 5.9𝐸 − 02 1.32 0.22 4.4E − 03 −4.35 1.20 2.4E − 02 No
ETFB −1.48 0.58 2.3𝐸 − 02 2.45 0.12 4.1E − 04 −4.33 1.01 1.8E − 02 No
NDUFS3 −2.16 0.84 2.3𝐸 − 02 1.29 0.10 1.0E − 03 −3.82 1.02 2.3E − 02 No
UBE2M −0.06 0.13 2.4𝐸 − 01 1.93 0.33 4.9E − 03 −3.53 0.54 7.7𝐸 − 03 No
UCHL1 −0.86 0.48 4.5𝐸 − 02 2.27 0.37 4.3E − 03 −3.48 1.10 3.2E − 02 No
PFKL 0.26 0.45 2.1𝐸 − 01 1.82 0.26 3.5E − 03 −2.44 0.26 3.7E − 03 No
PGD −0.18 0.72 3.3𝐸 − 01 1.18 0.13 1.8E − 04 −1.20 0.97 9.1𝐸 − 02 No
ERP44 −0.49 0.43 5.3𝐸 − 02 1.58 0.47 3.4E − 03 −1.10 0.99 1.1𝐸 − 01 No
CANX −0.40 0.45 8.6𝐸 − 02 1.70 0.53 3.9E − 03 −1.09 1.26 1.8𝐸 − 01 No
PYGL −0.02 0.29 4.5𝐸 − 01 1.26 0.33 2.4E − 03 −0.97 0.79 9.0𝐸 − 02 No
UQCRC1 0.29 0.30 4.6𝐸 − 02 1.30 0.45 1.5E − 03 −0.68 0.70 9.4𝐸 − 02 No
GLO1 0.96 0.83 5.1𝐸 − 02 2.29 0.20 9.5E − 05 −0.66 1.00 2.8𝐸 − 01 No
HSD17B4 −0.06 0.39 4.1𝐸 − 01 1.54 0.36 1.7E − 03 −0.44 0.72 4.0𝐸 − 01 No
FARSB −0.24 0.49 2.0𝐸 − 01 1.11 0.25 1.5E − 03 −0.37 0.83 4.4𝐸 − 01 No
STAT2 3.35 0.38 2.0E − 04 3.23 0.55 6.5E − 04 −0.24 0.65 5.2𝐸 − 01 Yes
ACTG1 1.08 0.61 3.6E − 03 0.34 0.24 1.6𝐸 − 02 0.42 0.86 3.4𝐸 − 01 No
TBCA 1.25 0.76 1.0𝐸 − 02 1.36 0.54 2.4E − 03 0.72 1.08 2.1𝐸 − 01 No
SPTAN1 1.22 0.25 1.1E − 03 0.37 0.36 6.6𝐸 − 02 0.75 0.48 5.1𝐸 − 02 Yes
STAT1 5.61 0.53 8.1E − 07 4.47 0.75 1.4E − 05 0.97 1.02 6.9𝐸 − 02 Yes
LDHB 1.06 0.30 1.7E − 04 −0.16 0.47 2.2𝐸 − 01 1.09 0.89 3.0E − 02 Yes
STMN1 1.45 0.19 3.0E − 03 −0.39 0.70 1.7𝐸 − 01 1.26 1.26 1.4𝐸 − 01 No
PABPC3 1.28 0.18 3.3E − 03 −0.59 0.43 7.2𝐸 − 02 1.43 0.29 1.3E − 02 No
CAPRIN1 1.13 0.28 4.1E − 04 −0.32 0.24 2.2𝐸 − 02 1.55 0.58 4.0E − 03 No
PTBP2 1.16 0.06 3.8E − 04 −0.63 0.02 1.3𝐸 − 04 1.71 0.07 6.1E − 04 No
DES 2.11 0.61 3.1E − 03 −0.30 0.48 1.5𝐸 − 01 2.25 0.73 8.6𝐸 − 03 No
PLEC 1.74 0.24 3.1E − 03 −1.23 0.89 7.0𝐸 − 02 2.86 0.71 2.0E − 02 Yes
INA 3.28 0.52 4.1E − 03 −0.32 0.49 1.9𝐸 − 01 2.97 0.17 1.1E − 03 No
KPNA6 1.99 0.26 2.9E − 03 −1.50 0.13 1.3𝐸 − 03 3.18 0.51 8.3𝐸 − 03 Yes
KPNA1 3.90 0.31 1.0E − 03 −1.06 0.29 1.2𝐸 − 02 3.67 0.58 1.1𝐸 − 03 Yes
STAT3 3.45 0.05 3.9E − 05 −2.67 0.31 2.2𝐸 − 03 5.28 0.40 1.9𝐸 − 03 Yes

Nevertheless, in addition to the computation of empirical
or probabilistic scores (e.g., using CompPASS [34] or SAINT
[33]) several bioinformatics tools can be applied and literature
data can be included to successfully extract a reliable bona-
fide interaction partner list from focused AP-MS analysis.
As have been recently reviewed by Nesvizhskii [35] useful
computational tools allow us to filter the lists of potential
interacting partners based on fold changes and 𝑝 values
(e.g., using Perseus [36]) discarding likely false positive
proteins (Decontaminator [37]), and interference analysis
with predicted (e.g., by text mining or structural homology)
or reported interaction data (e.g., using MINT, FunCoup
[38], or STRING [39]). However, the different tools are
independent and the results cannot be easily combined and
visualized.

We concluded that especially in cases in which in-depth
analysis of the protein interaction network of one or only
a few selected baits is investigated it might be beneficial to
automate the data processing and provide the researcher a
maximumof additional data and visualization options. Based
on these different types of information which are quantita-
tive MS data, reproducibility of the AP-MS measurements,
detection frequencies in previous experiments, biological
functions, presence in PPI repositories, and so forth, the
researcher has the possibility to define own thresholds and
to report and prove the putative protein interactors.

Therefore PIPINO is designed for an initial processing
of small datasets (few or even only one bait) by the use of
interactive visualization and evaluation. The software allows
a full processing starting with raw quantification data as has
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been exported by, for example, MaxQuant, ProteomeDis-
coverer, PLGS, and Biotools, and is conducting all steps
including data normalization, filtering based on fold changes,
𝑝 values, and contaminant lists, an interference analysis
with standard or manually curated PPI databases as well as
pathway analysis within a bait centric network and the PPI
data export. Particularly useful for a fast modification of data
processing process is the fact that the results can be visualized
as an iterative volcano plot or in three different network
presentations.

Thus, the compact and user-friendly interface integrates
all modules in a single application and is prepared for upcom-
ing modules to be integrated as well. Therefore workflows
and pipelines can be kept simple and straightforward. Due
to the use of Java, the software can basically run on all
operating systems and is not limited to Windows or Linux.
Furthermore there is no complicated installation routine
necessary, PIPINO can be started from within its folder,
and therefore it is even possible to execute it as a portable
application.

Using PIPINO the phosphorylation dependent STAT1
interactome studied by a single-step triple-SILAC based AP-
MS approach was analyzed in detail. Starting frommore than
2000 captured proteins it has been possible to finally extract a
list of 30 potential interaction STAT1 partners of which more
than 50% were already reported. Interestingly the semiau-
tomatic analysis with PIPINO also revealed that 16 proteins
were found to change the binding behavior depending on
the STAT1 phosphorylation state such as STAT3 or Importin
subunits alpha 1 and alpha 6.

5. Concluding Remarks

PIPINO can be used as an effective and supportive tool for
analyzing protein-protein interactions obtained from exper-
imental methods located in the field of affinity purification
and mass spectrometry based quantitative proteomics. The
software is capable of processing a large amount of data for-
mats while enlarging the information space through curated
interaction databases. Filtering, annotating, categorizing, and
visualizing data entries, respectively, possible interaction
partners for a protein of interest are available as a solid basis
for interaction analysis.

Enhanced algorithms for network considerations, data-
base handling, information extraction, and data refinement
are currently under development and evaluation.These novel
approaches will further increase the accuracy of current
methods, enhancing the usability of the software and reduc-
ing needed efforts for the user in analyzing possible protein-
protein interactions.
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