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Abstract
Approx. every third hospitalized patient in Europe suffers from musculoskeletal injuries or diseases. Up to 20% of these 
patients need costly surgical revisions after delayed or impaired fracture healing. Reasons for this are the severity of the 
trauma, individual factors, e.g, the patients’ age, individual lifestyle, chronic diseases, medication, and, over 70 diseases that 
negatively affect the bone quality. To investigate the various disease constellations and/or develop new treatment strategies, 
many in vivo, ex vivo, and in vitro models can be applied. Analyzing these various models more closely, it is obvious that 
many of them have limits and/or restrictions. Undoubtedly, in vivo models most completely represent the biological situation. 
Besides possible species-specific differences, ethical concerns may question the use of in vivo models especially for large 
screening approaches. Challenging whether ex vivo or in vitro bone models can be used as an adequate replacement for such 
screenings, we here summarize the advantages and challenges of frequently used ex vivo and in vitro bone models to study 
disturbed bone metabolism and fracture healing. Using own examples, we discuss the common challenge of cell-specific 
normalization of data obtained from more complex in vitro models as one example of the analytical limits which lower the 
full potential of these complex model systems.
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Introduction

Bones of the skeleton are more than the supporting 
framework for the human body

Based on recent statistical investigations, approx. every third 
hospitalized patient in Europe suffers from musculoskeletal 
injuries or diseases. Their treatment makes up to 15% of 
all therapeutic costs (Eurostat), of which most costs being 
caused by surgical revisions after delayed or impaired frac-
ture healing. A large British study with almost 3000 patients 
showed delayed or impaired fracture healing in 20% of these 
patients (Hernandez et al. 2012). Besides the type and sever-
ity of the trauma, individual factors including the patients’ 
age and individual lifestyle (e.g., reduced physical activity, 

imbalanced diet, alcohol, or cigarette consumption), as well 
as emerging chronic diseases and their medication strongly 
affected fracture risk and fracture healing (Hernandez et al. 
2012; Ihle et al. 2017; Schlundt et al. 2018; Sheu and Dia-
mond 2016). Indeed, today, over 70 diseases and health con-
ditions are known that negatively affect bone quality and, 
thus, increase fracture risk. The increasing prevalence and 
incidence of such disease-associated changes in bone qual-
ity favored the establishment of the terms systemic bone 
disease and secondary osteoporosis. Facing constantly 
increasing life expectancy and ageing society, systemic bone 
diseases and secondary osteoporosis gain more and more 
relevance. For example, in a representative German level 
1 trauma center, 80.5% of all patients suffer from one or 
more chronic diseases requiring medication (Ø 4.3 drugs per 
patient): approx. 13% are diabetics (Pscherer et al. 2016b, 
2015), 22% are at risk for malnutrition (Ihle et al. 2017), 
15% drink alcohol on a daily base, and 42% are smokers 
(Ehnert et al. 2019a). These patients are above-average in 
developing post-surgical complications, e.g., delayed wound 
or fracture healing, which, in turn, results in significantly 
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prolonged hospital stays (Wintermeyer et al. 2018), and 
often aggravates the underlying disease.

Diabetes mellitus (DM) may serve as good example, rep-
resenting the metabolic disease with the highest prevalence 
and incidence in developed countries (Hopps and Caimi 
2011). Due to the classical DM-dependent complications, 
e.g., hypoglycemic or hyperglycemic episodes, impaired 
vision, or polyneuropathies diabetics have a higher fre-
quency of falls. Due to structural changes of bones [type 
1 DM: osteopenia and osteoporosis/type 2 DM: increased 
bone mineral density (Blakytny et al. 2011; Hofbauer et al. 
2016; La Fontaine et al. 2011)], fracture rate is significantly 
higher in diabetics than in metabolically healthy controls 
(Hamann et al. 2012; Hofbauer et al. 2007), and seems at 
least partly to be influenced by the medication obtained 
(Hidayat et al. 2019; Kalaitzoglou et al. 2019; Kheniser et al. 
2018; Pscherer et al. 2016a). For example, diabetics treated 
with sulfonylurea are commonly associated with a higher 
risk of falls and fractures (Adil et al. 2017; Lapane et al. 
2015; Rajpathak et al. 2015). Similarly, an increased fracture 
risk has been reported in diabetics receiving glitazones and 
sodium-glucose transport protein 2 inhibitors for blood glu-
cose control (Lim et al. 2017; Mori et al. 2017; Soroceanu 
et al. 2004; Watts et al. 2016). The first-line medication for 
type 2 diabetes is Metformin, which is not associated with an 
increased fracture risk (Hegazy 2015). Interestingly, studies 
suggest that incretin-based drugs, e.g., glucagon-like peptide 
1 receptor agonists and Dipeptidyl-peptidase 4 inhibitors, 
can even favor bone health (Nuche-Berenguer et al. 2009; 
Yang et al. 2017). These data are retrieved from databanks 
reporting the incidence of fractures. Although this can give 
valuable advice when choosing a treatment, one cannot con-
clude on the underlying mechanisms. For obtaining such 
information, advanced model systems are required.

The example on DM shows how a disease can disturb the 
balanced interplay between the bone resident cells, control-
ling bone formation and resorption, either directly or indi-
rectly by its medication. The resulting changes in bone qual-
ity may increase the risk for fractures. In case of a fracture, 
possible disease-related alterations in the local blood vessels 
(micro- and macro-angiopathies) and inflammation in the 
surrounding soft tissue, often negatively affect the fracture 
healing (El-Ganainy and Elgeidi 2010; Kline et al. 2009; 
Mazziotti et al. 2011; Mehta et al. 2010; Retzepi and Donos 
2010; Robinson et al. 2009; Wukich et al. 2011). Therefore, 
models investigating fracture healing should also address 
points, e.g., inflammation and vascularization.

There is first evidence that the disease-dependent altera-
tions in the bone also affect other organs within the human 
body. Researchers in Colorado (USA) proved that produc-
tion of insulin by β-cells, and thus regulation of blood 

sugar levels, is tightly controlled by osteocalcin produced 
by bone forming osteoblasts (Hwang et al. 2011; Kidder 
et al. 2009; Villafan-Bernal et al. 2011). Hyperglycemic 
episodes and compensatory formation of insulin suppress 
maturation of osteoblasts, by stimulating the production, 
release, and activation of TGF-β (transforming growth fac-
tor beta) by osteoblasts, osteoclasts (Ehnert et al. 2010; 
Ehnert et al. 2017; Freude et al. 2012), and immune cells. 
Serum levels of active TGF-β are chronically elevated in 
diabetics, which may act immune-modulatory and pro-
fibrotic throughout the entire body (Ehnert et al. 2015; 
Pscherer et al. 2013). Normally produced to fight exces-
sive inflammation, chronically elevated TGF-β levels in 
diabetics may suppress acute immune responses and thus 
favor infections in these patients. Furthermore, TGF-β as a 
key driver in scar formation is known to favor fibrosis and 
cirrhosis in various tissues, including kidney, liver, heart, 
and lung (Fabregat and Caballero-Diaz 2018; Lichtman 
et al. 2016; Meng et al. 2016; Yue et al. 2017). Thus, DM 
represents a prime example for the underestimated role of 
the bones in the human body.

Cellular interactions in bones

Facing new regulations on the re-evaluation and licens-
ing of drugs and medical devices, it should be man-
datory to examine the effect of drugs, especially that 
for sustainable medication, on the bone health. In the 
human body, bones of the skeleton constantly adapt to 
the stress exposed. New bone structures are formed by 
cells of the osteogenic lineage, e.g., mesenchymal stem 
cells (MSCs), osteoblasts, and osteocytes. Inferior or 
damaged bone matrix is resorbed by osteoclasts, derived 
from the hematopoietic lineage. In the bone marrow, new 
blood cells are produced, which provide bone cells with 
required oxygen and nutrients via a system of blood ves-
sels (Buckwalter et al. 1996; Florencio-Silva et al. 2015). 
Therefore, healthy bone function requires an orchestrated 
interplay between vessel forming endothelial cells, blood 
cells, bone forming, and resorbing cells, that are often 
mediated via paracrine and systemic mediators. Yet, lit-
tle is known about the role of the bone marrow-resident 
adipocytes (Horowitz et al. 2017). In case of a fracture, 
additional factors gain importance, e.g., the invading 
immune cells which represent main drivers for successful 
bone healing (Kolar et al. 2010; Ma et al. 2019; Pfeiffen-
berger et al. 2019). Therefore, depending on the intended 
research interest, in vitro or ex vivo model systems have 
to display the complex interactions of many different cell 
types (Fig. 1).
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Models to investigate bone quality 
and function

In vivo models

So far, this interplay between many different cell types can 
only be adequately displayed in vivo in animal models, as 
the entire composition of cells within the body is given. 
Providing the natural blood supply, cell–cell and cell–matrix 
interactions in vivo models remain the gold standard to 
investigate bone metabolism, systemic bone diseases, or 
fracture healing (Haffner-Luntzer et al. 2019; Holstein et al. 
2009; Simpson and Murray 2015). When the model is based 
on smaller animals, e.g., mice or rat, the great variety of 
inbred stains with specific gene over-expression or knock-
out can be utilized to investigate specific mechanisms. When 
fracture healing is investigated the smaller animal models 
have the advantage, that bones can be broken with a defined 
force, resulting in a relatively reproducible fracture that 
represents the pathology of a trauma (Haffner-Luntzer et al. 
2019). Despite these advantages, the small anatomy repre-
sents a challenge when it comes to fixing the fractured bones 
(Holstein et al. 2009). Fixation is normally not needed when 
healing of bone defects with a defined size, which can be 
drilled into the bones, is investigated. These models show 
some popularity due to their high reproducibility (Gomes 
and Fernandes 2011; Harris et al. 2013; Vajgel et al. 2014). 
With increasing size of the animals, fractures or bone defects 
may preferably be generated with saws or drills, providing a 

high degree of reproducibility. Due to the larger size of the 
bones for example in pigs, dogs, or sheep, the fixation of 
the fractured bones is quite representable to the human situ-
ation. Therefore, larger animals are preferably used to test 
orthopedic implants or biomaterials (Haffner-Luntzer et al. 
2019). Additionally, in some of these models, primary (post-
menopausal) osteoporosis can be induced by ovariectomy 
in female animals (Haffner-Luntzer et al. 2019). This brief 
overview shows the advantages and great variety of existing 
in vivo models when it comes to investigating bone metabo-
lism, systemic bone diseases, or fracture healing. However, 
some limitations remain to be addressed:

• There exist partly huge species-dependent differences in 
bone metabolism (Aerssens et al. 1998);

• The use of inbred rodent strains cannot display the great 
inter-individual differences observed in humans;

• Due to strictly controlled housing conditions, animals 
are not exposed to the same environmental influences as 
patients, especially in case of a disease;

• Based on the altered posture (tetrapod motion vs upright 
walk), mechanical strain in bones often differs between 
animals and humans.

• A considerable amount of animals is needed to obtain 
representative results.

Taking up the example of DM again, there exist a great 
variety of animal models, in which DM is induced either 
genetically (for example  Lepob/ob,  LepRdb/db, TallyHo/JngJ, 

Fig. 1  Overview of the different cell types within the bone. Cells resi-
dent in the bone communicate with each other by direct cell–cell and 
cell–matrix interactions, as well as via secreted factors. Representa-
tives of these factors are given in the figure: ANG (angiogenin), IL-8 
(interleukin 8), VEGF (vascular endothelial growth factor), MCP-1 

(monocyte chemoattractant protein), OPG (osteoprotegerin), RANKL 
(receptor activator for nuclear factor kappa B ligand), TGF-β (trans-
forming growth factor beta), and SDF-1 (stromal cell-derived fac-
tor-1) Bone sketch was obtained from https ://smart .servi er.com/

https://smart.servier.com/
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KK, NZO or MKR mice and ZDF, OLETF, or GK rats) or 
by a specific diet (for example by high caloric and fatty diet) 
(King 2012; Rees and Alcolado 2005). Focusing on rodent 
models for type 2 diabetes, bone mineral density often sug-
gests the development of osteopenia and osteoporosis. This 
is contrary to the human situation, where type 2 diabetics 
often leads to higher bone mineral density than age- and 
gender-adjusted controls (Kawashima et al. 2009; Rendina-
Ruedy et al. 2016; Rosen and Bouxsein 2006; Won et al. 
2011).

Besides associated ethical concerns, this example shows 
that animal models are only of limited use to investigate 
metabolic bone diseases or the influence of drugs on the 
bone. This example underlines the absolute need for models 
adequately representing the human bone disease.

Ex vivo bone cultures

Culture models closest to the in vivo situation are the so-
called ex vivo organ cultures. Depending on the research 
interest, different ex vivo bone cultures exist (Fig. 2).

Stem cell behavior during linear bone growth and 
hypertrophic ossification is best observed in the so-called 
long bone or limb organ cultures. In the literature, dif-
ferent long bone organ cultures are described (Abubakar 
et al. 2019; Houston et al. 2016; Muzic et al. 2013; Paradis 
et al. 2019; Parivar et al. 2006; Proffit and Ackerman 1964; 
Smith et al. 2013, 2015; Uribe and Rosello-Diez 2019). 
Already in the 1960s, ex vivo long bone cultures have been 
described (Proffit and Ackerman 1964): proximal phalan-
ges, metacarpal, and metatarsal bones were dissected from 

the paws of young rats and kept several days in culture, 
during which the bones grew and mineralized (Abubakar 
et al. 2019; Proffit and Ackerman 1964). This method was 
also described for long bones of mice (Houston et al. 2016; 
Kunimoto et al. 2016; Okubo et al. 2015, 2013; Uribe 
and Rosello-Diez 2019) or chicken (Smith et al. 2015). 
Based on the study from Abubakar et al, approx. 75% of 
ex vivo bone growth studies are performed using ex vivo 
long bone cultures (Abubakar et al. 2016). By culturing an 
explanted bone, the complete cellular composition of the 
intact organ is provided, representing closely the in vivo 
situation. This is a great advantage, when bone growth or, 
to a certain degree, bone metabolism is investigated. Pre-
serving the surrounding soft tissue, during the so-called 
limb bud cultures promised even better representation 
of the in vivo situation (Muzic et al. 2013; Paradis et al. 
2019; Parivar et al. 2006; Smith et al. 2013). As a fracture 
model, a limiting factor will be the lack of the vascular 
system, which is required for the formation of the fracture 
hematoma (Kolar et al. 2010).

Murine or rat femur head and calvarial cultures (Batush-
ansky et al. 2019; Garrett 2003; Madsen et al. 2011; Moham-
mad et al. 2008; Sathi et al. 2015) comprise approx. 16% of 
ex vivo bone growth studies (Abubakar et al. 2016). How-
ever, these cultures can also be used for investigating bone 
and cartilage metabolism or bone defect healing. When co-
cultured with other cells, e.g., cancer cells or immune cells, 
even for investigating bone metastases (Choudhary et al. 
2018; Curtin et al. 2012; Marino et al. 2019; Salamanna 
et  al. 2016; Salih 2019) or inflammatory bone diseases 
(Sloan et al. 2013).

Fig. 2  Overview of different available ex vivo bone models
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It has been critically discussed whether ex vivo bone cul-
tures requiring specific and/or intact bones can significantly 
reduce the amount of experimental animals used, when per 
animal often only two conditions can be tested (Barrach 
and Neubert 1980; Lessmollmann et al. 1976). Better effi-
ciency in reducing the number of experimental animals is 
given when the explanted bones are sliced, e.g., in the model 
described by Srinivasaiah et al. where femurs of young rats 
are sliced into discs with a thickness of each 300 µm (Srini-
vasaiah et al. 2019). Similar holds for mandible slice cul-
tures. Unfortunately, destroying the intact explanted organ 
may affect the cellular composition within the model, as 
certain cell types can only be found in a specific niche 
within the organ (Birbrair and Frenette 2016; Morrison 
and Scadden 2014; Pinho and Frenette 2019). This might 
be one reason why slice cultures make up the least propor-
tion of ex vivo bone growth studies (Abubakar et al. 2016). 
So far, mandible or molar slice cultures are preferably used 
to investigate stem cell behavior and bone repair (Alfaqeeh 
and Tucker 2013; Colombo et al. 2015; Marino et al. 2016; 
Smith et al. 2010). The main advantage of mandibular slice 
cultures is that they can be transferred into the human situ-
ation. To do so, immature molar slices from young adults 
were cultured for several days, to investigate biocompat-
ibility of filling materials and to investigate odontoblast 
response to damage, eliminating possible species-dependent 
differences (Melin et al. 2000; Tecles et al. 2008).

Similarly, trabecular core cultures utilize bones of larger 
animals and even humans (Davies et al. 2006; Endres et al. 
2009; Kluter et al. 2020; Knothe Tate and Knothe 2000; 
Rawlinson et al. 1991; Simpson et al. 2009; Stoddart et al. 
2006; Templeton et al. 2015; Vivanco et al. 2013). The larger 
trabecular core cultures are used to investigate bone metabo-
lism, especially in response to mechanical load (David et al. 
2008; Davies et al. 2006; Knothe Tate and Knothe 2000), but 
the model can also be used to investigate biocompatibility 
of materials during defect healing (Kluter et al. 2020), or as 
model to investigate cancer-dependent effects on bone (Salih 
2019). In contrast to slice cultures, which are comprised of 
a trabecular and cortical bone compartment, trabecular core 
cultures mainly consist of trabecular bone. Therefore, trabec-
ular core cultures represent a great model to investigate alter-
ations in bone metabolism and biocompatibility of materi-
als. The possibility to generate these ex vivo cultures from 
human bone slices or biopsies further allows investigation 
of molecular mechanisms in metabolic bone diseases, when 
the bone samples are obtained from patients with the under-
lying disease (Bellido and Delgado-Calle 2020; Owen and 
Reilly 2018). When the models should be used for screen-
ing approaches, one has to keep in mind the metabolism of 
the different drugs within the body, e.g., first path effects 
and metabolism in the liver. When screening for effects of 
established drugs on bone metabolism, this may not be a 

problem, as the known metabolites can be tested. It becomes 
challenging, when novel substances shall be screened–in this 
case, only direct effects of the drugs on the bone tissue can 
be observed, e.g., seen with implant coatings. Furthermore, 
the availability of the required native human or large animal 
material is still limited, such that these models cannot be 
easily used for large-scale drug/substance screenings. This 
raises the need for a permanently available and up-scalable 
in vitro model, which represents metabolism and vasculature 
of human bone.

In vitro models

In the past years, several attempts have been explored to 
establish model systems that represent bone metabolism and 
vasculature. It is self-explanatory that these processes can-
not be displayed in conventional 2D mono-cultures. In the 
conventional 2D cultures on cell culture plastic, the organic 
(mostly collagen) and inorganic (mostly hydroxyapatite) 
matrix characteristics for bone are missing. However, this 
bone matrix essentially functions as regulators for bone cell 
function and differentiation (Florencio-Silva et al. 2015; 
Green et al. 1995). Furthermore, in most cases, a co-culture 
of 2 or sometimes 3 cell times was described, which cannot 
adequately represent the in vivo situation. Being able to mix 
only a limited amount of cell types with each other, the pur-
pose of the in vitro models has to be clearly defined. When 
investigating the biocompatibility of implant materials or 
bone metabolism, bone forming osteogenic cells and bone 
resorbing osteoclastic cells are essential. It has been reported 
that vessel forming endothelial cells or even hematopoietic 
cells affect bone metabolism (Fuchs et al. 2009, 2007); 
therefore, including these cell types in the co-culture shall 
be considered. In case of investigating effects during fracture 
healing, not only addition of hematopoietic and endothelial 
cells but all sorts of immune cells should be considered, as 
they comprise the fracture hematoma in vivo (Kolar et al. 
2010). Hematopoietic cells and immune cells are also crucial 
for testing biocompatibility of materials, but in this case, the 
so-called hemocompatibility and inflammatory response are 
investigated separately.

Previous attempts to establish co-cultures based on pri-
mary human osteoclasts, osteoblasts, and/or osteocytes to 
resemble bone metabolism proved to be strongly donor-
dependent and time-consuming:

• To obtain a number of osteoblasts and/or osteocytes suf-
ficient for experiments, the cells have to be cultured for 
several weeks up to months;

• The use of osteoprogenitor cells, e.g., MSCs derived 
from bone marrow or fat tissue may speed up the expan-
sion time, but might elongate the period of differentiation 
(Ehnert et al. 2011; Zachos et al. 2014);
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• By that time, the donors will no longer be available for a 
blood donation to generate osteoclasts; therefore, a com-
patible donor for the isolation of monocytes has to be 
found;

• Meeting these requirements, the co-culture itself lasts up 
to 6 weeks depending on the protocol used (Forte et al. 
2016; Greiner et al. 2009; Heinemann et al. 2011, 2013; 
Jablonski et al. 2016; Papadimitropoulos et al. 2011; 
Penolazzi et al. 2016; Tortelli et al. 2009; Wu et al. 2015; 
Zehnder et al. 2017);

To quickly obtain larger amounts of cells, a few models 
utilize human cell lines for their co-cultures (Jablonski 
et al. 2016; Wu et al. 2015). This has the advantage that 
large amounts of cells can be obtained in a short time 
to provide sufficient amount of model material for larger 
screening approaches. However, one cannot neglect that 
the choice of the cell line has to be carefully done to repre-
sent best the primary counterpart and even then the use of 
cell lines cannot represent the inter-individual differences 
characteristic for humans.

The co-culture models not only differ in the type of 
cells used. There are also essential differences in the indi-
vidual setup of the co-cultures (Fig. 3). Again considering 
only co-cultures of bone forming and resorbing cells:

• Not all co-cultures allow direct cell–cell interactions 
(Forte et al. 2016);

• Even less provide cell–matrix interactions (Forte et al. 
2016; Heinemann et al. 2011, 2013; Tortelli et al. 2009; 
Wu et al. 2015);

• Only a few models respect the natural 3D organization 
of cells (Heinemann et al. 2013; Papadimitropoulos et al. 
2011; Penolazzi et al. 2016; Tortelli et al. 2009);

• And only one model considers mechanical stimulation of 
bone cells (Penolazzi et al. 2016).

Recently, there is growing evidence that osteogenic and 
osteoclastic cells are not only influenced by the surround-
ing matrix (Florencio-Silva et al. 2015; Green et al. 1995) 
and mechanical stimuli (Frost 1994), but also strongly by 
bone marrow resident adipocytes (Horowitz et al. 2017) or 
endothelial cells of blood vessels (Kirkpatrick et al. 2011). 
However, it is not yet known how changes in bone metabo-
lism affect vascularization or vice versa how an altered vas-
culature affects bone metabolism. So far, most co-culture 
models focused on the influence of osteogenic cells and 
endothelial cells in direct and indirect co-cultures (Fuchs 
et al. 2007; Ghanaati et al. 2011; Hofmann et al. 2008; Li 
et al. 2014; Ma et al. 2020; Shi et al. 2016; Sun et al. 2016), 
not considering, that the interplay of the presence of osteo-
clastic cells may alter the function of the osteogenic cells 
or vice versa (Zachos et al. 2014). Even more complex is 
the situation, when investigating fracture healing. There, 
the fracture hematoma consisting of hematopoietic cells 
and different immune cells is thought to be the key driver 
for fracture healing (Kolar et al. 2010). Pfeiffenberger et al. 
have described an equine in vitro model, addressing this 
complex situation, using coagulated blood as 3D carrier for 
mesenchymal stem cells (Pfeiffenberger et al. 2019).

Furthermore, the bone is not an isolated organ. Many 
drugs get after first path effect activated and metabolized 
in the liver. Therefore, the discussion arose whether bone 

Fig. 3  Advantages and disadvantages of the different available in vitro bone models. With increasing complexity of the model system, fewer 
methods are available for analyses
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cultures shall be included in the so-called organ on a chip 
approaches. A simpler way would be to test the effect of 
not only native but also activated or metabolized substances 
on the bone cultures. As elaborated above this may not be 
a problem when screening for effects of established drugs 
on bone metabolism but becomes challenging, when novel 
substances shall be screened. However, this approach is only 
feasible when a suitable human ex vivo or in vitro model is 
available in large quantities.

Challenges of the in vitro models

Increasing the number of cell types in a co-culture while 
addressing the requirements on 3D conformation, matrix 
composition, and mechanical stimuli, e.g., mechanical load 
or perfusion, significantly increases the complexity of the 
culture model, which, in turn, limits the availability of meth-
ods for analysis (James Kirkpatrick et al. 2007). For over-
view see Fig. 4.

Medium composition

All cell types have individual requirements on the medium 
composition. Therefore, considering different cell types for 
a co-culture may require modulation of the medium com-
position. For example, osteogenic differentiation medium 
frequently contains dexamethasone, which is a well-known 
immune-suppressant. By altering the immune response of 
mononuclear cells, the glucocorticoid may interfere with 
osteoclast formation in co-cultures addressing bone metabo-
lism (Kim et al. 2006; Warabi et al. 2001). Dexamethasone 
in the differentiation medium may be replaced by cholecal-
ciferol (vitamin  D3), which acts via the vitamin D recep-
tor both on osteogenic and osteoclastic cells (Ehnert et al. 
2011). And yet mononuclear cells as precursors for osteo-
clasts need to be activated to attach to the cell culture plastic 
and differentiate into osteoclasts. Human myeloid cell lines, 
e.g., THP-1 or HL-60, normally get activated upon exposure 

to PMA (phorbol 12-myristate 13-acetate) (Daigneault et al. 
2010; Padilla et al. 2000), which, in turn, may affect function 
of other cells in the co-culture. In this case, sequential seed-
ing of the cells may be inevitable to prevent an unwanted 
exposure to PMA. Addition of PMA is not required when 
using murine macrophage cell lines, e.g., RAW 264.7 or 
J774, which are adherent cells by nature. Osteoclast differ-
entiation is normally induced by the addition of macrophage 
colony-stimulating factor (M-CSF) and receptor activator 
of NF-κB ligand (RANKL) to the medium. These two fac-
tors are produced by many osteogenic cells, such that these 
supplements may be reduced or even removed from the co-
culture medium. When additionally, vascularization shall 
be addressed, endothelial cells have to be included in the 
co-culture model. Endothelial cells normally grow in more 
complex media than osteogenic or osteoclastic cells. The 
various growth factors included in their medium, e.g., vascu-
lar endothelial growth factor 165, epidermal growth factor, 
basic fibroblast growth factor, or insulin-like growth factor, 
may affect the other cells in the co-culture, possibly aggra-
vating the inclusion of these cells in a co-culture.

Choice of cell types and cell–cell ratios

Even simpler seem the questions for the adequate cell types 
and cell numbers for a co-culture. Resuming the example of 
M-CSF and RANKL, which should be produced by osteo-
genic cells–however, when comparing the three most com-
monly used osteogenic cell lines MG-63, Cal-72, and SaOS-
2, expression of M-CSF seems to increase with increasing 
degree of osteogenic differentiation of these cells (Rochet 
et al. 2003). However, depending on the subset of cells in 
culture, M-CSF expression may be even absent (Trojani 
et al. 2005). We have observed similar effects with RANKL 
expression: while SaOS-2 cells express RANKL in lev-
els comparable to human osteoblasts, Cal-72 cells barely 
express RANKL. These cell lines not only differ in their 
expression profile, but also in proliferation and osteogenic 
differentiation (Lauvrak et al. 2013)—therefore, when con-
sidering the highly proliferative MG-63 cells for co-culture, 
less cells might be needed than when using Cal-72 cells or 
SaOS-2 cells. Even more difficult is finding the right den-
sity of myeloid cells applied to the co-culture. During seed-
ing, the density of the myeloid cells should be high to allow 
fusion of the cells to pre-osteoclasts (Jansen et al. 2012). 
However, to resemble the cell–cell ratio observed in bone, 
during maturation, the cell ratio of osteoclasts and osteo-
genic cells has to shift strongly towards the osteoblasts and 
osteocytes, which make up to 95% of the cells in the bone 
(Florencio-Silva et al. 2015). Similar holds for the endothe-
lial cells. These cells normally require a certain cell density 
on soft surfaces to migrate towards each other, align, and 
form tubes (Arnaoutova and Kleinman 2010). So far, it is not 

Fig. 4  Schematic overview of the factors influencing each other in 
complex model systems
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known how these cells may act in a direct co-culture, when 
the matrix gets mineralized by osteoblasts or even degraded 
by osteoclasts.

Characteristics of the carrier material

Taking into consideration that the surrounding matrix is not 
only essential for tube formation of endothelial cells but 
also regulates bone metabolism, the right choice of mate-
rial seems to be fundamental. While endothelial tube for-
mation assay is mainly done on soft hydrogels in 2D culture 
(Arnaoutova and Kleinman 2010), caving in soft hydrogels 
may prevent the fusion of monocytic cells early in osteoclas-
togenesis. Furthermore, there is evidence that 3D arrange-
ment of cells on stiff and porous carriers favors osteogenic 
maturation of cells (Griffith and Swartz 2006). For bone 
tissue engineering, a large number of different hydroxyapa-
tite-containing scaffolds exist (Ayobian-Markazi et  al. 
2012; George et al. 2006; Jain et al. 2015; Mayr-Wohlfart 
et al. 2001), which favor cell attachment, proliferation, and 
maturation of osteogenic cells (Jain et al. 2015; Thein-Han 
and Misra 2009). Therefore, 3D cultures seem to be more 
beneficial for the differentiation when compared to 2D cul-
tures (Bulnheim et al. 2014). Therefore, when a co-culture 
of osteogenic and osteoclastic cells with endothelial cells is 
aspired, an indirect co-culture approach, i.e., by separation 
with permeable culture inserts, could be advantageous as the 
soft hydrogel required by the endothelial cells can be easily 
combined with a stiffer and porous 3D carrier required by 
the bone cells. However, 3D cultures also raise new chal-
lenges, i.e., proper adjustment of the physical characteris-
tics of the 3D matrix to the human physiology, uniform cell 
seeding on scaffolds, and adequate supply with nutrients 
(Henkel et al. 2013), factors associated with each other. Pore 
size, porosity, water uptake rate, and stiffness are essential 
physical characteristics of scaffolds (Haussling et al. 2019; 
Weng et al. 2020; Zhu et al. 2018). Pore size and porosity 
affect both cell attachment and cell infiltration into the scaf-
fold (Murphy and O’Brien 2010). Furthermore, these fac-
tors and the water uptake rate are directly associated with 
nutrient and waste diffusion, a factor that may be actively 
influenced by applying medium flow to the cultures (Murphy 
and O’Brien 2010). There are studies, showing that carriers 
with stiffness over 60 kPa favor osteogenic differentiation 
of MSCs (Engler et al. 2006; Sun et al. 2018). Lowering 
the stiffness of scaffolds may induce expression of stem 
cell markers, e.g., Sox2, in MSCs, which proved to inhibit 
osteogenic differentiation (Ding et al. 2012; Marcellini et al. 
2012; Park et al. 2012; Seo et al. 2013) in favor for adipo-
genic differentiation (Zhao et al. 2014). However, the chosen 
scaffolds should also not be too stiff to pass on mechanical 
stimuli to cells (Dawson and Oreffo 2008).

Reaction volume of the model system

Besides the effects, the physical characteristics of the carrier 
material might have on the co-culture; the ratio of culture 
medium to cell number has to be considered, too. In a static 
3D co-culture to completely cover cells on porous scaffolds 
with medium, the volume is likely to be increased. In this 
case, the increase in medium volume may be at least partly 
be compensated by the increase in surface area available 
for the cells to attach and grow (Hadida and Marchat 2020; 
Zhang et al. 2018). However, applying mechanical forces or 
perfusion to a model system would increase the required cul-
ture/reaction volume even more without any compensation 
in cell numbers and may increase the risk for contaminations 
due to the increased number of structural junctions (Hadida 
and Marchat 2020). An increase in culture/reaction volume 
would dilute factors secreted by cells in the culture medium 
and thus effectively lowers the sensitivity of established ana-
lytical methods. However, the use of scaffolds bares also 
other challenges:

• The scaffold limits microscopic analyses—the use of 
fluorophores may circumvent some of these limitations 
(Tendulkar et al. 2016); however, penetration depth and 
possible autofluorescence of the material remain limiting 
factors.

• Assay substrates and reaction products require time for 
perfusion.

• Assay substrates or reaction products may react with the 
scaffold material.

• The scaffold material or particles released from the car-
rier into the reaction solution may disturb photometric 
measurements.

• Cells may not be efficiently released from the scaffolds, 
which may disturb or even impede preparation of RNA 
or protein lysates for analyses.

Normalization of functional assays 
in complex in vitro models

Undoubtedly, co-cultures represent a great chance for 
research and screening purposes; however, the described 
mainly technical limitations suppress their full potential. 
While some limitations can be addressed by a deliberate 
choice of cells and materials, others are not that easy to 
address. Often forgotten is the cell-specific normalized of 
functional measurements in co-cultures, an important issue 
that will be further explored in the following section. For 
overview, see Table 1.



3945Archives of Toxicology (2020) 94:3937–3958 

1 3

Ta
bl

e 
1 

 S
ui

ta
bi

lit
y 

of
 d

iff
er

en
t n

or
m

al
iz

at
io

n 
m

et
ho

ds
 fo

r c
om

pl
ex

 c
ul

tu
re

 sy
ste

m
s

M
ito

ch
on

dr
ia

l a
ct

iv
ity

St
ab

le
 

tra
ns

-
fe

c-
tio

n 
(e

.g
. 

G
FP

) 
of

 c
el

l 
lin

es

C
el

lu
la

r s
ta

in
in

gs
To

ta
l p

ro
te

in
 

co
nt

en
t

To
ta

l D
N

A
 c

on
te

nt

A
TP

N
A

D
H

/
N

A
D

PH
M

TT
X

TT
, 

M
TS

, 
W

ST
-

1

Re
sa

-
zu

rin
 

(p
ho

to
-

m
et

ric
)

Re
sa

-
zu

rin
 

(fl
uo

-
re

s-
ce

nt
)

D
oO

, 
D

iI,
 D

iD
, 

D
iR

 +
 de

riv
-

at
iv

es

FM
 

D
ye

s +
 de

riv
-

at
iv

es

C
el

l 
Tr

ac
ke

r 
(e

.g
. 

C
FS

E)

C
al

ce
in

 –
 

A
M

 +
 de

riv
a-

tiv
es

D
N

A
 

dy
es

 
(e

.g
. 

D
A

PI
 o

r 
SY

TO
X

)

D
N

A
 

dy
es

 
(e

.g
. 

H
oe

-
ch

st 
33

34
2)

H
ist

o-
lo

gi
ca

l 
st

ai
ns

 
(e

.g
. 

H
&

E)

Im
m

u-
no

hi
sto

-
lo

gi
ca

l 
st

ai
ng

-
in

gs

Im
m

u-
no

flu
o-

re
sc

en
t 

st
ai

n-
in

gs

SR
B

 
st

ai
n-

in
g

D
et

ec
-

tio
n 

of
 A

A
 

(e
.g

. 
Lo

w
ry

, 
B

CA
)

Q
ua

n-
tifi

ca
-

tio
n 

of
 

D
N

A
 

(p
ho

to
-

m
et

ric
)

Q
ua

n-
tifi

ca
-

tio
n 

of
 

D
N

A
 

(fl
uo

-
re

s-
ce

nt
)

Q
ua

nt
i-

fic
at

io
n 

of
 D

N
A

 
(q

PC
R

)

D
et

ec
ts

 
vi

ab
le

 
ce

lls

+
+

+
+

+
+

(+
)

−
−

−
+

−
−

−
−

−
−

−
−

−
−

D
et

ec
ts

 a
ll 

ce
lls

 in
 th

e 
sy

ste
m

−
−

−
−

−
−

−
+

+
+

*
−

+
+

+
+

+
+

+
+

+
+

Ti
m

e-
re

so
lv

ed
 

m
ea

su
re

-
m

en
ts

 
po

ss
ib

le

−
−

−
−

−
−

+
+

+
+

−
−

−
−

−
−

−
−

−
−

−

M
et

ho
d 

to
xi

c 
to

 th
e 

ce
lls

+
−

+
−

−
−

−
*

−
−

−
−

na
−

na
na

na
na

na
na

na
na

M
et

ho
d 

aff
ec

ts
 c

el
l 

fu
nc

tio
ns

na
−

na
−

−
−

−
/+

−
/+

−
/+

−
/+

−
na

+
na

na
na

na
na

na
na

na

Se
ns

iti
ve

 
to

w
ar

ds
 p

H
 

ch
an

ge
s

−
/+

−
−

/+
−

/+
+

+
−

?
?

−
+

na
+

na
na

na
na

na
na

na
na

A
ffe

ct
ed

 b
y 

ce
llu

la
r 

str
es

s

−
/+

−
/+

+
+

+
+

?
−

−
?

−
/+

na
−

na
na

na
na

na
na

na
na

En
d-

po
in

t 
m

ea
su

re
-

m
en

t

+
+

+
+

+
+

−
/+

−
/+

−
/+

−
/+

+
+

+
+

+
+

+
+

+
+

+

D
et

ec
tio

n 
m

et
ho

d
L

F
A

A
A

F
F

F
F

F
F

F
F

A
A

F
A

A
A

F
F

Re
qu

ire
s c

o-
fa

ct
or

s
−

−
+

+
+

+
+

*
−

−
−

−
−

−
+

+
+

−
+

−
+

+



3946 Archives of Toxicology (2020) 94:3937–3958

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

M
ito

ch
on

dr
ia

l a
ct

iv
ity

St
ab

le
 

tra
ns

-
fe

c-
tio

n 
(e

.g
. 

G
FP

) 
of

 c
el

l 
lin

es

C
el

lu
la

r s
ta

in
in

gs
To

ta
l p

ro
te

in
 

co
nt

en
t

To
ta

l D
N

A
 c

on
te

nt

A
TP

N
A

D
H

/
N

A
D

PH
M

TT
X

TT
, 

M
TS

, 
W

ST
-

1

Re
sa

-
zu

rin
 

(p
ho

to
-

m
et

ric
)

Re
sa

-
zu

rin
 

(fl
uo

-
re

s-
ce

nt
)

D
oO

, 
D

iI,
 D

iD
, 

D
iR

 +
 de

riv
-

at
iv

es

FM
 

D
ye

s +
 de

riv
-

at
iv

es

C
el

l 
Tr

ac
ke

r 
(e

.g
. 

C
FS

E)

C
al

ce
in

 –
 

A
M

 +
 de

riv
a-

tiv
es

D
N

A
 

dy
es

 
(e

.g
. 

D
A

PI
 o

r 
SY

TO
X

)

D
N

A
 

dy
es

 
(e

.g
. 

H
oe

-
ch

st 
33

34
2)

H
ist

o-
lo

gi
ca

l 
st

ai
ns

 
(e

.g
. 

H
&

E)

Im
m

u-
no

hi
sto

-
lo

gi
ca

l 
st

ai
ng

-
in

gs

Im
m

u-
no

flu
o-

re
sc

en
t 

st
ai

n-
in

gs

SR
B

 
st

ai
n-

in
g

D
et

ec
-

tio
n 

of
 A

A
 

(e
.g

. 
Lo

w
ry

, 
B

CA
)

Q
ua

n-
tifi

ca
-

tio
n 

of
 

D
N

A
 

(p
ho

to
-

m
et

ric
)

Q
ua

n-
tifi

ca
-

tio
n 

of
 

D
N

A
 

(fl
uo

-
re

s-
ce

nt
)

Q
ua

nt
i-

fic
at

io
n 

of
 D

N
A

 
(q

PC
R

)

Tr
ea

tm
en

t 
of

 c
el

ls
 

re
qu

ire
d 

(e
.g

., 
fix

at
io

n,
 

pe
rm

ea
-

bi
liz

at
io

n,
 

ly
si

s, 
et

c.
)

−
−

−
−

−
−

−
−

−
−

−
+

−
+

+
+

+
+

+
+

+

Q
ua

nt
ifi

-
ca

tio
n 

re
qu

ire
s 

ad
di

tio
na

l 
ste

p 
(e

.g
., 

re
so

lv
in

g,
 

qP
C

R
, 

im
ag

in
g,

 
et

c.
)

−
−

+
−

−
−

+
+

+
+

+
(+

)
(+

)
+

+
+

+
+

−
+

+

Se
ns

iti
vi

ty
 o

f 
th

e 
si

gn
al

G
M

W
W

W
G

M
M

M
G

G
G

G
M

G
*

G
*

W
G

*
W

G
*

G

St
ab

ili
ty

 o
f 

th
e 

si
gn

al
W

W
G

G
G

M
M

M
M

M
W

*
M

M
G

G
W

G
G

G
M

*
M

Q
ua

nt
ifi

ca
-

tio
n

M
M

G
*

G
*

G
*

G
*

W
W

W
G

*
G

*
G

*
G

*
W

W
W

M
G

M
G

G

M
od

ifi
ca

-
tio

ns
 

re
qu

ire
d 

fo
r 2

D
-3

D
 

tra
ns

fe
r

G
G

W
W

W
W

M
M

M
M

M
M

M
M

M
M

na
na

M
M

M

In
te

rfe
re

nc
e 

w
ith

 3
D

 
m

at
ric

es

+
+

+
*

+
*

+
*

+
*

+
*

+
*

+
*

+
*

+
*

+
*

+
*

+
*

−
*

−
*

+
+

+
*

−
*

−
*

In
flu

en
ce

d 
by

 a
lte

re
d 

vo
lu

m
es

−
−

+
+

+
−

−
*

−
*

−
*

−
*

+
−

+
*

−
−

−
−

+
−

−
−

U
ni

fo
rm

 
be

tw
ee

n 
di

ffe
re

nt
 

ce
ll 

ty
pe

s

−
−

−
−

−
−

+
+

+
+

−
+

°
+

°
−

/+
−

/+
−

/+
−

/+
−

/+
+

°
+

°
−



3947Archives of Toxicology (2020) 94:3937–3958 

1 3

Mitochondrial activity for normalization

Most publications use the mitochondrial activity of cells for 
viability measures and normalization. There exist a consid-
erable amount of assays to quickly and simply determine 
the bioenergetic status of intact cells (Brand and Nicholls 
2011). Normalizing a system to the mitochondrial activity 
has the beauty that theoretically only viable cells are taken 
into consideration.

In cellular monolayers, often the bioenergetic intermedi-
ates ATP, NADH, or NADPH are determined. Though it 
is appealing to measure the amount of ATP in a cell using 
luminescence, the amount of cellular ATP does not safely 
report mitochondrial function as most of the adenine nucleo-
tide in cells is present as ATP (Brand and Nicholls 2011). 
Therefore, many researchers determine the cellular NADH 
or NADPH. This is executed either by measuring autofluo-
rescence or using colorimetric or fluorescent substrates 
which get reduced in an NADH- or NADPH-dependent 
manner (Henriques et al. 2011).

Examples for colorimetric assays are the classical MTT 
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazo-
lium bromide) assay, or assays using water-soluble tetra-
zolium derivatives e.g. XTT (2,3-bis(2-methoxy-4-nitro-
5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt), 
MTS (3-(4,5-dimethyl-2-thiazolyl)-5-(3-carboxymethoxy-
phenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt), 
or WST-1 (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-
disulfophenyl)-2H-tetrazolium monosodium salt). While 
MTT is reduced to insoluble formazan crystals, the second-
generation tetrazolium salts XTT, MTS, and WST-1 are 
reduced to hydrosoluble colored formazans in mitochon-
dria of living cells, which ultimately reduces the toxicity of 
the assays and abolishes the need for an additional step of 
solubilization (Henriques et al. 2011). However, the water-
soluble tetrazolium methods require an intermediate electron 
transfer reagent, mainly PMS (5-methyl-phenazinium methyl 
sulfate) or menadione, which represents the reduced agent in 
the assay transferring its electrons to the tetrazolium salts. 
Noteworthy, the production of colored aqueous formazan is 
amplified by the use of PMS in the assays, thereby increas-
ing their detection limit (Henriques et al. 2011).

The non-toxic Resazurin conversion assay can be meas-
ured either photometric or fluorescent, which increases 
the sensitivity of the assay significantly. The water-soluble 
Resazurin (blue and non-fluorescent) is reduced to highly 
fluorescent Resorufin (pink) in mitochondria of intact cells. 
This reaction requires also NADH or NADPH as co-factor. 
Therefore, the amount of produced Resorufin is supposed 
to linearly increase with the amount of cellular NADH and 
NAPDH content available (Brand and Nicholls 2011).

Water-soluble assays have the advantage that the formed 
product is actively exported into the culture supernatant, Ta
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which allows measurements in real time. One has to con-
sider that the substrates and products may require time 
to perfuse in 3D cultures and may even react with the 
scaffold material. Furthermore, the scaffold material itself 
may limit the use of photometric assay–reaction solution 
must be transferred to separate plates or cuvettes for meas-
urement, which still bears the risk that scaffold particles 
resolved in the reaction solution may interfere with the 
optical measurement. Measuring fluorescence, e.g., in the 
Resazurin conversion assay, is less susceptible for such 
interference.

The described assays may also be used to measure via-
bility in ex vivo bone cultures. However, these methods 
have been originally developed for the conventional 2D 
mono-cultures. Using them in more complex 3D systems, 
e.g., co-cultures or ex vivo cultures, often requires adap-
tion of the methodology. For that reason, there are certain 
limitations of the assays which the researchers have to be 
aware. 3D carriers or their solutes may interfere with the 
optical measurements, especially, when the assay is based 
on adsorption measurements. In case of fluorescent assays, 
possible autofluorescence of the 3D carrier material may 
disturb the measurement. In most cases, it is sufficient to 
simply transfer the reaction solution to a new microwell 
plate to eliminate the disturbances. When transferring the 
reaction solution is required, kinetic measures cannot be 
easily done any more. Even more challenging is the fact 
that the assays cannot differentiate between different cell 
types. Cell lines, even from the same lineage, do not have 
the same mitochondrial activity (Fig. 5a). This is not a 
limitation when mono-cultures are analyzed. In case of 
co-cultures, however, the increase in Resorufin conver-
sion cannot be traced back to the different cell types. This 
is exemplarily shown in Fig. 5b, where the mitochondrial 

activity in the mono-cultures is in sum higher than the 
mitochondrial activity in the corresponding co-culture. It 
becomes even more complex, when cells are cultured on 
3D carriers, as the mitochondrial activity of the same type 
of cell may change in response to stress such as slight vari-
ations in the pH or the stiffness of the carrier (Fig. 5c). 
In culture systems aiming to investigate bone function, 
where formation and degradation of matrix are a func-
tional readout, this represents another limiting factor. 
From toxicological assays, it can be observed that cells 
under stress often show increase mitochondrial activity, 
prior to measurable damage by leakage of lactate dehy-
drogenase or reduction in total protein or DNA. Normal-
izing the mitochondrial activity to the total protein content 
may even be used as measure for cellular stress. Therefore, 
when using mitochondrial activity for normalization, it is 
advisable to use also alternative measures, e.g., total pro-
tein or DNA content, or glucose consumption (Haussling 
et al. 2019), although these measures also cannot easily 
distinguish between different cell types in a co-culture.

Optical cell tracking for normalization

Some studies also use different fluorescent labels to dis-
criminate between different cell types in a co-culture. The 
available trackers and associated methods allow a great 
variety in the experimental setup. Most easily applied are 
the so-called cell trackers. Long-chain carbocyanines, e.g. 
DiO (3,3′-dioctadecyloxacarbocyanine perchlorate–green), 
DiI (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine 
perchlorate–yellow), DiD (1,1′-dioctadecyl-3,3,3′,3′-
tetra-methylindodicarbocyanine perchlorate–red), DiR 
(1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine 
iodide–far red), or their derivatives, are weakly fluorescent 

Fig. 5  Limitations of using mitochondrial activity for normaliza-
tion. Mitochondrial activity was assessed by Resazurin conversion 
assay. a Mitochondrial activity varies between different osteogenic 
cell lines. Exemplary, 5 * 104 cells of the SCP-1, MG-63, Cal-72, and 
SaOS-2 cell line were seeded, and after 24 h, mitochondrial activity 
was determined. b Mitochondrial activity was measured in THP-1 
and SaOS-2 cell cultures both in mono-culture and direct co-culture. 

c Surface stiffness affects mitochondrial activity. 5 * 104  cells of the 
same cell line were seeded on surfaces with different stiffness, and 
after 24 h, mitochondrial activities were measured. Experiments were 
repeated three times (N = 3) in triplicates (n = 3). Comparison of 
groups was performed by Kruskal–Wallis test followed Dunn’s mul-
tiple comparison test
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in aqueous solution but highly fluorescent and even quite 
photostable when incorporated into cell membranes (Texier 
et al. 2009). These lipophilic dyes diffuse laterally within 
the plasma membrane of cells in culture medium or other 
aqueous buffers, resulting in staining of the entire cell. Such 
cell tracers have to be used with care-extensive washing of 
cells which is recommended to avoid the so-called micro-
environmental contaminations, which occurs by passing 
on the dye from one cell to the neighboring cell (Lassailly 
et al. 2010). In co-cultures including osteoclast, this might 
not be sufficient, as osteoclasts are derived from activated 
myeloid cells, which possess phagocytic activity and thus 
may actively spread the tracers (Lassailly et al. 2010).

Comparably, lipophilic styryl dyes, also referred to as FM 
dyes, diffuse rapidly but also reversibly into plasma mem-
branes of cells resulting in a strong fluorescent enhance-
ment (Wu et al. 2009). FM dyes, e.g., FM1-43 (N-(3-trieth-
ylammonium-propyl)-4-(4-(dibutylamino)styryl)pyridinium 
dibromide–red), FM2-10 (N-(3-triethylammonium-propyl)-
4-(4-(diethyl-amino)styryl)pyridinium dibromide–orange), 
FM4-64 (N-(3-triethylammonium-propyl)-4-(6-(4-(diethyl-
amino)phenyl)hexatrienyl)pyridinium dibromide–red), or 
FM5-95 (N-(3-trimethylammoniumpropyl)-4-(6-(4-(diethyl-
amino)phenyl)hexatrienyl)pyridinium dibromide–red), are 
widely used to study endocytosis, vesicle trafficking, or 
organelle organization in living cells (Bolte et al. 2004). 
Nowadays, modified dyes which allow fixation of the stain 
(FX modifications) are available. Furthermore, fine chemical 
modifications of FM1-43, which is one of the most widely 
used FM probes, resulted in new probes, SP-468 (red) and 
SQ-535 (far red), which have enhanced photophysical prop-
erties, e.g., reduced crosstalk, higher brightness, or improved 
photostability (Collot et al. 2019). Similar to the long-chain 
carbocyanine dyes, it cannot be granted that dyes incorpo-
rated into the plasma membranes will not cause micro-envi-
ronmental background by passing on the stain to neighbor-
ing cells or due to phagocytosis.

Live cell dyes work slightly different. The non- or low 
fluorescent dyes freely pass through plasma membranes into 
the cells, where they are transformed into cell membrane-
impermeable fluorescent reaction products. The best-known 
representative of this group is calcein-AM (AM = acetox-
ymethyl) which is part of many live–dead staining kits. 
The non-fluorescent calcein-AM easily passes the plasma 
membrane, where it is converted to green-fluorescent cal-
cein by intracellular esterases (Bratosin et al. 2005). The 
beauty to mark viable cells using fluorogenic compounds, 
e.g., calcein-AM and its derivatives (blue, orange, and red), 
has increased their frequency of use in cell and molecular 
biology. However, leakage of the fluorescent calcein or its 
interactions with exogenous stimulants, e.g., metal ions or 
electrochemically generated by-products, have been reported 
(Miles et al. 2015). Therefore, the use of adequate controls 

for accurate measurements and valid conclusions is inevita-
ble. Considering live cell dyes for normalization, the same 
limitations than for measuring mitochondrial activity exist. 
The live cell dyes will not distinguish between the different 
cell types, and, therefore, need to be combined with other 
tracers.

Live cell dyes may be used to visualize living cells also 
in ex vivo cultures, being aware, that the dyes cannot dif-
ferentiate between different cell types. In contrast to that, 
the described lipophilic dyes, which label the cell mem-
branes, would not be of any use for the ex vivo models, 
unlike invasion of labelled cancer cells should be inves-
tigated in a metastasis assay. We have used yet another 
approach, by permanently labelling different cell types. 
For a co-culture of SaOS-2 cells and THP-1 cells, we 
intended to stably transfect (using selection antibiotics) 
these cell lines with plasmids inducing over-expression 
of fluorophores. While green and red fluorescent SaOS-2 
cell lines could be generated, the transfection efficiency 
of the myeloid THP-1 cells was not sufficient. There-
fore, red fluorescent SaOS-2 cells were co-cultured with 
THP-1 cells. After exposure to calcein-AM, all living 
cells should appear green fluorescent, which allowed dis-
crimination between the two cell types. However, some 
cells only showed the nuclear counterstain (Hoechst 
33,342–blue–white arrows) questioning the efficiency of 
the method (Fig. 6a). Similar to all fluorescent tracers or 
markers, the method works very well in 2D cultures, but 
quickly reaches its limits in 3D cultures with non-trans-
parent scaffolds (Fig. 2b) (Tendulkar et al. 2016). To make 
things worse, our transfected SaOS-2 cells showed altered 
mitochondrial and alkaline phosphatase (ALP) activity, 
which in turn affected the formation of mineralized matrix 
by these cells (Fig. 6c, d). This represent a limitation, one 
has to keep in mind, when using stably transformed cell 
lines. These examples show that there is, indeed, a large 
variety of fluorescent markers and tracers that can be used 
to track cells in co-cultures. When appropriate controls are 
done and automated image analysis is possible, these tools 
represent a very good option to trace and normalize cells 
in co-cultures, at least in 2D.

Using DNA for normalization

Another well-established technique to normalize cell cul-
tures is the quantification of total protein or DNA, as this is 
supposed to be less affected by culture conditions than via-
bility measures. As many cell carriers for 3D cultures con-
tain some protein source, it is not advisable to use total pro-
tein content for normalization in 3D settings. It is less likely 
that cell carriers for 3D cultures contain DNA. Therefore, 
normalization using DNA may be feasible. Just recently, we 
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have described the DNA-based quantification of different 
cell types on scaffold-based 3D cultures (Ruoss et al. 2019).

Using this model, which is based on a co-culture of a 
murine cell line with a human cell line, we could compare 
different methods to retrieve DNA from cells seeded on the 
matrix, as well as the feasibility of different DNA quantifica-
tion methods. Interestingly, the attempt to detach cells from 
the matrix prior to DNA isolation failed to isolate all DNA 
that was contained on the matrix. A simple NaOH-based 
isolation technique (Ehnert et al. 2019b) is frequently used 
to isolate DNA from tissue samples for genotyping in mice 
effectively retrieved all DNA from the scaffolds. Comparing 
different DNA quantification methods showed that the limit 
of detection (LOD) and consequently limit of quantifica-
tion (LOQ) were lowest for the fluorescent-based CyQuant 
assay, which also had the highest sensitivity (101–104%). 
Surprisingly, neither the LOD and LOQ (~ 1.5-fold higher) 
nor the sensitivity (95–98%), was significantly higher for the 
conventional absorption-based quantification of DNA when 

compared with the CyQuant assay. The highest LOD and 
LOQ and the lowest sensitivity (88–98%) had the fluores-
cent-based Hoechst 33342 assay. These three methods can 
only be used in mono-cultures or to assess the total amount 
of DNA in a co-culture. To distinguish between the differ-
ent cell types in the co-culture a PCR using species-specific 
primers was performed. The PCR-based method showed an 
LOD, LOQ, and sensitivity (99%) comparable to the quan-
tification of DNA with the CyQuant assay and conventional 
absorption-based method, but could differentiate between 
the two cell types in the co-culture.

However, aiming for an all human co-culture model, we 
adapted the PCR-based detection method using sex-specific 
primers:

• UGT1A6 (uridine diphosphate glucuronosyl transferase 
1A6), located on chromosome 2, was used to determine 
the total amount of DNA (Ruoss et al. 2019);

Fig. 6  Using fluorescent labels for normalization. SaOS-2 cell 
line was transfected to over-express a red fluorescent protein (RFP: 
Addgene plasmid #54642 tdTomato-N1) or a green-fluorescent pro-
tein (GFP: Addgene plasmid #54737 sfGFP_N1). a RFP-overexpress-
ing SaOS-2 cells (red) were directly co-cultured with THP-1 cells in a 
ratio of 1:2. After 4 days of conventional 2D culture viable cells were 
visualized with Calcein-AM (green). Nuclei were counterstained 
with Hoechst 33342 (blue). b Schematic overview on the respective 

3D culture. c Mitochondrial activity of the un-/labelled SaOS-2 cells 
on day 4 of culture. d ALP activity of the un-/labelled SaOS-2 cells 
on day 4 of culture. e Mineralized matrix formed by the un-/labelled 
SaOS-2 cells after 10  days of culture. Experiments were repeated 
three times (N = 3) in triplicates (n = 3). Comparison of groups was 
performed by Kruskal–Wallis test followed by Dunn’s multiple com-
parison test
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• SRY (sex-determining region Y), located on the Y-chro-
mosome, was used to determine the amount of male 
DNA (Drobnič 2006);

• respective standard curves are given in Fig. 7a.

As model system to study early fracture healing an 
in vitro fracture hematoma was generated as described by 
Pfeiffenberger et al. (Pfeiffenberger et al. 2019). Briefly, 
the in vitro fracture hematomas were generated by mixing 
human whole blood of a male donor and 6 * 104 cells of 
the immortalized (female) MSC SCP-1 cells. After mix-
ing equal volumes of blood and cells (120 µl) in the pres-
ence of calcium ions, in vitro hematomas formed, which 
remained stable over a culture period of at least 4 days. 
Whole DNA was isolated after hematoma dissolution 
and erythrocyte lysis using alkaline DNA extraction with 
NaOH (Ehnert et al. 2019b; Pfeiffenberger et al. 2019). 
Comparing the relative DNA amounts determined by 
UGT1A6 and SRY PCR showed that the relative amount of 
female DNA (SCP-1 cells) in the model system increased 
with the culture time.

Despite the possibility that the normalization to DNA 
content may reach limits, for example when dead cells 
are entrapped in a 3D environment, the proposed method 
represents a good alternative to the existing methods 
when cell-specific normalization of a co-culture system is 
required. Including a third human cell line may be chal-
lenging. A possibility might be the use of immortalized 
cell lines, e.g., the SCP-1 cell line or the HMEC-1 micro-
vascular endothelial cell line, which offer the possibility 
to detect (PCR) sequences introduced into the genome 

during immortalization (hTERT in SCP-1 cells or pSVT in 
HMEC-1 cells).

Summary and conclusion

In recent years, there have been great technical develop-
ments, when considering co-cultures of bone forming and 
resorbing cells. The combination of different cell types in 
2D and 3D cultures, with and without mechanical stimuli, 
has been described many times. Advanced 3D carriers 
and dynamization of the model system allow investigating 
biocompatibility of implant materials or effect of drugs or 
their metabolites on bone metabolism. First attempts have 
been described to also include the interaction with endothe-
lial cells (vascularization) and bone marrow adipocytes in 
these models, widening their application for investigating 
systemic bone diseases, e.g., diabetic osteopathy. When it 
comes to investigating fracture healing in vitro, the situa-
tion is even more complex and only first attempt to gener-
ate in vitro hematomas have been described. Comparing 
the huge technical progress with the advances in analyti-
cal methods to adequately characterize these models, the 
required modifications of the techniques from 2D to 3D 
and from mono-culture to co-culture still lack behind, low-
ering the full potential of the proposed model systems. 
Being aware of the strengths and limitations of the differ-
ent in vitro or ex vivo model systems, they can be used in 
larger screening approaches, but will not be able to replace 
in vivo testing for verification.

Fig. 7  Sex-specific qPCR-based DNA quantification for normaliza-
tion. An in  vitro fracture hematoma was generated as described by 
Pfeiffenberger et al. (Pfeiffenberger et al. 2019), using blood of a male 
donor and (female) SCP-1 cells. Normalization of the cells in culture 
was done by DNA content and sex-specific PCR. a Representative 
standard curves for the sex-specific PCRs. UGT1A6 located on chro-
mosome 2 is representative for the total DNA amount. SRY located on 

the Y-chromosome is representative for the amount of male DNA. b 
Change in relative DNA amounts in the in vitro fracture hematomas 
after 2 and 4  days of culture was determined by sex-specific PCR. 
Experiments were repeated three times (N = 3) in duplicates (n = 2). 
Comparison of groups was performed by Kruskal–Wallis test fol-
lowed Dunn’s multiple comparison test
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Search criteria

On the 5th of April 2020, a search was performed with Pub-
Med and Web of Science, limited to manuscripts in English 
or German language. The search strategy is summarized in 
Table 2.

Considering only manuscripts in English or German 
languages, a total of 981 manuscripts remained for further 
screening, of which 43 were review articles. In Fig. 8, the 
number of papers published per year is presented.
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