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Insects search for and find odor sources as their basic behaviors, such as when

looking for food or a mate. This has motivated research to describe how they achieve

such behavior under turbulent odor plumes with a small number of neurons. Among

different insects, the silk moth has been studied owing to its clear motor response

to olfactory input. In past studies, the “programmed behavior” of the silk moth has

been modeled as the average duration of a sequence of maneuvers based on the

duration of periods without odor hits. However, this model does not fully represent

the fine variations in their behavior. In this study, we used silk moth olfactory search

trajectories from an experimental virtual reality device. We achieved an accurate input by

using optogenetic silk moths that react to blue light. We then modeled such trajectories

as a probabilistic learning agent with a belief of possible source locations. We found

that maneuvers mismatching the programmed behavior are related to larger entropy

decrease, that is, they are more likely to increase the certainty of the belief. This

implies that silkmoths include some stochasticity in their search policy to balance the

exploration and exploitation of olfactory information by matching or mismatching the

programmed behavior model. We believe that this information-theoretic representation of

insect behavior is important for the future implementation of olfactory searches in artificial

agents such as robots.

Keywords: Bombyx mori, infotaxis, olfaction, ethology, adaptive-behavior, exploration-exploitation

1. INTRODUCTION

Odor source localization is a search problem that requires fast decision-making based on sporadic
and stochastic detection of chemical particles. Despite the challenge of turbulent and dilute plumes
that often have a complex spatio-temporal structure (Mafra-Neto and Cardé, 1994; Celani et al.,
2014), insects such as the fruit fly (van Breugel and Dickinson, 2014) and various species of moths
(Vickers, 2005) rely on olfactory searches to conduct essential behaviors such as searching for food
or potential mates. The high performance that insects show on such a complex search problem
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despite their simple brain motivates researchers to further
analyze and understand the decision processes that these insects
execute when conducting olfactory searches (Baker et al., 2018).

With this motivation, our research group has analyzed
the olfactory behavior of the male silk moth Bombyx mori
(lepidoptera: bombycidae). Despite having wings, this insect is
unable to fly, and has a body that is on average 30 mm long
and 10 mm wide. It has two antennae of approximately 6 mm
in length on its head. This insect has been widely employed to
analyze olfactory behavior because it exhibits only one action:
It walks only when it detects a pheromone (Bombykol) released
by its female counterpart (Obara, 1979). Such behavior consists
of a series of maneuvers called a “surge,” “zigzag,” and “loop.”
This sequence of maneuvers has been approximated to a mean-
response model denoted as “programmed behavior” (Kanzaki
et al., 1992).

Based on the mean durations of the surge, zigzag, and loop
maneuvers, the programmed behavior has been algorithmically
defined as follows: first, immediately after a pheromone stimulus,
the moth advances in a straightforward manner through a surge
motion. Then, if there is an absence of pheromone detections, the
moth moves on a zig-zag pattern, trying to detect pheromones
again. Finally, if the pheromone remains undetected, the moth
transitions into a loopmotion until the next detection. A diagram
of the programmed behavior is shown in Figure 1. Because the
silkmoth is motionless by default and only elicits its programmed
behavior after the first pheromone hit, this search strategy has
been labeled as “reactive” by Voges et al. (2014). Despite the
simplicity of this sequential pattern, the male silk moth can
effectively locate females with remarkable efficiency.

However, this model does not reflect how the motions of the
moth vary in response to fine spatio-temporal fluctuations of
the odor plume and individual differences among specimens. In
previous studies, such variability was investigated by identifying
maneuver transitions with machine learning (Shigaki et al.,
2018b) and fuzzy logic (Shigaki et al., 2019b). Although
these studies succeeded in identifying deviations from the
programmed behavior, they relied on data from electro-
physiological signals obtained from implanting electrodes in the
wing muscles or brain of the silk moth; however, electrode
implantation is technically challenging and risks degrading
the tissues of the moth. Therefore, an analysis method that
allows modeling adaptive olfactory behavior from non-intrusive
experimental measurements is necessary.

To identify adaptive olfactory behavior, recent studies have
used the information-theoretic framework of infotaxis, which
was first proposed by Vergassola et al. (2007). A recent study by
Pang et al. (2018) investigated the features of odor encounters
that modulate the intensity of upwind turns in the fruit fly
Drosophila melanogaster and the mosquito Aedes aegypti. The
authors found through simulations that, compared to a centerline
inferring odor source search algorithm, infotaxis produced
trajectories that were more similar to those of the actual
animals, in the sense that they exhibit weaker upwind turns
later in a sequence of odor encounters. Similarly, Calhoun et al.
(2014) recently demonstrated the possibility of using infotaxis
to model the multi-stage foraging behavior of the nematode

Caenorhabditis elegans. In their paper, the authors showed that
infotaxis-like search strategies, which minimize the entropy of
the probability distribution of odor source locations, reflects both
the “local” and “global” stages of the C. elegans foraging behavior.

In this paper, we investigate the potential causes of variability
in the behavioral maneuvers of the silk moth B. mori by
using a non-invasive experimental method and an infotaxis-
based model similar to those described in recent studies. We
measured the silk moth trajectories and input stimuli data
with a tether, a two-dimensional treadmill, and a virtual odor
plume. To ensure accurate and reproducible stimuli, we used
optogenetic silk moths that react to the impulses of blue light
in the same way as with pheromone particles. We modeled
the trajectories and stimuli measurements as infotaxis agents
and found that; maneuvers that mismatch the programmed
behavior model correspond to higher expected information
rewards regarding the location of the source. In summary, we
believe that this paper demonstrates the possibility of using
non-invasive experimental measurements and infotaxis-based
modeling to identify variability in the olfactory behaviors of the
male silk moths.

This paper is structured as follows: section 2 states the
research questions of this paper. Section 3 describes the usage
of optogenetic silk moths, the experimental virtual reality
system to measure their behavior, and how to model it as
infotaxis agents. Section 4 shows the results of the behavior
measurement experiments and calculations of the information
entropy of infotaxis-modeled silk moths. Section 5 discusses the
contributions of this study and possible future areas of research.

2. PROBLEM STATEMENT

In this paper, we look for possible causes of adaptive mechanisms
in the olfactory behavior of the silk moth, which are not
represented in the programmed behavior model. Specifically, we
investigate the following two hypotheses:

• Are deviations from the programmed behavior motivated by
higher information gains?

• Can a probabilistic framework such as infotaxis explain how
the male silk moth balances exploration and exploitation of
olfactory information?

To test the first hypothesis, we need to measure the behavior of
the silk moth in an olfactory environment that can be accurately
reproduced in each experimental run. Therefore, in this paper
we utilize a “virtual reality” behavioral measurement system
in which we can subject moths to virtual odor plumes and
measure their motor response to odor stimuli. However, such
a system faces the challenge of an accurate stimulation of the
moth antennae. In other words, stimulating the antennae with
gaseous pheromone particles results in uncertain stimulation
because such particles diffuse in the air; hence, they do not
produce stimuli with the same intensity or duration each time. To
overcome this, we employed genetically modified silkmoths that
elicit their normal olfactory behavior response when subjected
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FIGURE 1 | (A) Specimen of a male silk moth pictured next to a ruler in mm. (B) Conceptual diagram of the “programmed behavior” model of the male silk moth

behavior.

to a blue light stimulus at their antennae; thus, we can present
reproducible olfactory inputs.

To test the second hypothesis we modeled the trajectories of
silkmoths as an agent that minimizes the information entropy
of its probabilistic belief of the location of an odor source.
Such a maximally informative agent is based in the infotaxis
algorithm (Vergassola et al., 2007). We related the decrease in
entropy of the infotaxis-modeled moth to the time steps in which
the moth behavior matched or mismatched the programmed
behavior model. Finally we determined whether infotaxis can
explain the exploration-exploitation strategy of the silk moth
behavior by evaluating the distribution of entropy reductions by
either matching or mismatching behaviors.

3. MATERIALS AND METHODS

Here, we describe our methodology for conducting olfactory
search experiments with optogenetic male silk moths and a
non-invasive behavior measurement system. We also describe
the method we used to represent the silk moth trajectories
as those of an infotaxis agent. The silk moth experiments
in this study were examined and approved by the Tokyo
Institute of Technology Gene Recombination Experiments Safety
Management Committee.

3.1. Virtual Reality System for
Measurement of Moth Behavior
We conducted non-intrusive behavioral measurements on
tethered male silk moths. Although similar systems to measure
the olfactory behavior of insects have been used in the past
(Shigaki et al., 2018a, 2019b), in this study we ensure that
odor stimuli are accurately presented by using optogenetic
silk moths. Using genetically modified specimens that react to
blue light stimuli in the same way as normal specimens react
to the pheromone bombykol, allowed us to present stimuli
accurately and with reproducibility. This is because gaseous
pheromones diffuse in the air; therefore, not all stimuli present
the same amount of pheromone molecules to the antennae

of the moth. Furthermore, in this case, the response of the
antennae is measured using an electroantennogram (EAG),
which is technically challenging and subjected to electrical noise;
in addition, damage to the antennaemay occur. Our non-invasive
behavior measurement system for the silk moth is shown in
Figure 2, and fulfills the following purposes:

• Measuring the pose (x, y, θ) of the moths.
• Accurately presenting light stimuli to the antennae of the

moth.
• Subjecting moths to a virtual odor plume to which we can alter

the emission rate, wind speed, and other parameters.

To measure the pose of the silk moth, we fixed its back to a thin
aluminum rod (Ø 2 mm; length 150 mm) with glue (G17 Bond,
Konishi K.K., Osaka, Japan) and placed it on a polysterene sphere
(Ø 60 mm), which served as a two-dimensional treadmill. When
the moth walked, the sphere moved in response because it was
being levitated by the flow of wind from a small fan (FW1251-
1051C2ALARX, ARX,Wanchai, HongKong). Themovements of
the sphere were detected using two optical sensors, such as those
found in a computer mouse (ADNS-5030, Avago Technologies,
California, USA), at a sampling rate of 20 Hz. They were then
translated into translational and rotational movements of the
moth, that is, the pose.

We developed a virtual representation of an odor plume
by modeling the dispersion of white smoke in a wind tunnel.
First, we recorded videos of the dispersion of smoke. We also
calculated the statistics of the position and intensity of the pixels

in the smoke video. Based on these statistics, we programmed a

random process that generates virtual circular puffs that match

the intensity and transit the positions of the real smoke puffs in
the video. An example of a virtual plume is shown in Figure 2A.
In addition to the virtual representation of the odor plume,
we also programmed a virtual representation of a silk moth.
As in the real world, the virtual moth reacts to the virtual
plume and travels toward its source. By using a virtual odor
plume environment, we can tune parameters such as wind speed,
emission rate, and particle lifetime. Tuning such parameters is
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FIGURE 2 | (A) A diagram of the behavioral measurement system used in our experiments. (B) An actual ChR2 moth used in the measurement system with optic

fibers pointed at its antennae to present blue light stimuli. (C) The dimensions of the virtual environment to which we subjected the moths and their initial position.

particularly useful in infotaxis-based behavior modeling because
it allows for faster testing of various plume structures and
higher reproducibility; compared with real plume experiments.
In summary, the following process describes the operation of our
experimental device:

1. Themoth in the virtual world encounters a puff of pheromone.
2. Blue light is shown to the real moth depending on which

antenna of the virtual moth reacted.
3. The real moth moves after receiving the stimulus.
4. The movement of the real moth is sent to the virtual world.
5. The virtual moth reflects the movement of the real moth.
6. The loop is repeated until either the moth reaches the virtual

source or until a predetermined time limit is passed.

3.2. Use of Optogenetic Moths for
Accurate Antennae Stimulation
The presentation of accurate stimuli is important for the
applied infotaxis-based analysis because updating the probability
distribution of the source position; as well as the calculation of the
expected entropy decrease, are directly affected by whether the
agent experiences a hit or not at a given time step. In addition,
reproducible odor stimuli are an overall useful property for an
olfactory behavior measurement system because their duration
and frequency can be finely tuned. Both properties have been
reported to directly influence the olfactory behavior of moths
(Celani et al., 2014) and other animals (Ache et al., 2016). To

present olfactory stimuli to the moth, previous studies have
presented pheromones from glass tubes placed directly in front
of the antennae of the moth. However, the amount of pheromone
particles that effectively reach the antenna varies owing to their
gaseous nature.

To ensure that each stimulus has the same intensity and
is accurately sensed by the antennae, we utilized genetically
modified moths. These BmOR1-GAL4/UAS-ChR2 silk moths
(ChR2 hereinafter); express channelrhodopsin-2 in their
olfactory receptor neurons. As a result, they execute their
olfactory search behavior when their antennae encounter blue
light, rather than pheromone particles. This property has
been used in previous studies to ensures that all stimuli are
reproducible with the same intensity and duration (Shigaki
et al., 2018b, 2019a). To activate channelrhodopsin-2, i.e., blue
light sensitivity in these moths, we injected all-trans retinal
(ATR) into their abdomen on the day before the experiments;
because insects do not intrinsically possess ATR. All behavior
measurement experiments were conducted from 9:00 to 17:00 to
reduce circadian effects (Tomioka et al., 1993). It is reported that
brain serotonin level increases in the daytime and that serotonin
enhances pheromones sensitivities in the silk moth (Gatellier
et al., 2004).

We generated stimuli for the ChR2 silk moths with LEDs
(LBW5AP-JYKY-35-Z; Osram Opto Semiconductors), which
produced blue light with a 470 nm wavelength and a light
intensity of more than 1.6 mW/mm2. Such values of wavelength
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and light intensity have been reported to reliably produce
olfactory search responses in ChR2 moths (Tabuchi et al., 2013).
On each LED, we attached optical fibers of 3 mm in diameter
to ensure that blue light was directed only to each antenna,
as seen in Figure 2B. In addition, moths are unable to make
yaw turns because their back is glued to an aluminum rod.
The only rotation they are able to make is on their neck
(see Supplementary Video). However, this neck rotation is very
small and it does not decrease the sensibility or the amount of
stimulation to the antennae.

3.3. Modeling the Silk Moth as an Infotaxis
Agent
Infotaxis was first proposed by Vergassola et al. (2007) as an
odor source search algorithm for turbulent environments. In
this algorithm, a point-mass agent is located at a position r and
searches for an odor source by iteratively reducing its uncertainty
about the distribution of possible source locations rsrc. The agent
has knowledge of its trajectory, Tt , which contains its sequence of
positions as well as the odor “hits” it has experienced throughout
the search. The agent also maintains a probability map P(rsrc|Tt)
or “belief” (Thrun et al., 2005) about the location of the source.
This belief spans all possible locations of the source rsrc that in
both the original infotaxis study and the present paper, consist
of a two-dimensional lattice of discrete locations. The certainty
of the belief P(rsrc|Tt) is represented by Shannon’s entropy as in
Equation (1):

St = S
[

P(rsrc|Tt)
]

= −
∑

rsrc

P(rsrc|Tt) ln
(

P(rsrc|Tt)
)

(1)

The goal of infotaxis is to minimize the entropy of the belief
P(rsrc|Tt); therefore, at every time step, the agent calculates the
expected change of entropy by moving from its current position
rt to a future position r′ as defined in Equation (2).

E[1S(rt 7→ r′)] = p∗1S∗ + (1− p∗)1S (2)

Where p∗ is the probability of finding the source at r′, and
1S∗ and 1S are the change in entropy if the source is found
or not found at r′, respectively. The agent then executes the
move rt 7→ r′ with the largest negative value of E[1S], or;
in other words, the move that causes the greatest reduction of
uncertainty in the agent’s probability map of the possible source
locations. Figures 3A,B show conceptual representations of the
agent’s belief as well as the effect of odor detections on such belief.
Detailed derivations of the infotaxis formulae are presented in
Appendix A of this paper.

We modeled the body of the silk moth as a point agent with a
radius of 10 mm (half of its average body length). We reduced the
three degrees of freedom of themoth to (x, y) coordinates because
an infotaxis agent moves in a two-dimensional grid ignoring the
orientation. Furthermore, we considered as odor hits only those
that occurred when the moth was facing upwind, that is, when
cos(π − θ + θsrc) > 0 (see Figure 3C), where θ and θsrc are
the angle of the moth and the plume’s centerline, respectively.
We considered this capture region because real moths limit the

odor hits to those coming from the front by flapping their wings
(Loudon and Koehl, 2000).

3.4. Classification of Variability in the Moth
Behavior
We determined whether the behavior of the silk moth matches
the definition of the programmed behavior (Kanzaki et al., 1992)
by comparing it to the definition of Minegishi et al. (2012).
Accordingly, we classified the maneuvers of the silk moth by
simply considering the time elapsed since the last odor hit,
which we call “blank duration” τb as in Celani et al. (2014).
We also classified maneuvers according to both τb and the
moth’s linear and angular velocities (v and ω, respectively) based
on Minegishi et al. (2012). We denote the first and second
classification as “temporal” and “kinematic,” respectively. Table 1
shows a comparison of both schemes used to classify maneuvers
and Figure 4 shows the result of using each scheme. The blank
duration threshold of 500 ms in the “temporal” classification
of Table 1 was selected because this is the average duration of
surge motions after an odor hit as reported in Kanzaki et al.
(1992). Throughout all olfactory search experiments, we classified
the moth maneuvers by both schemes and labeled the state of
the moth at each time step as “matching” if it matches the
criteria of both schemes and “mismatching” if it only matches the
“kinematic” criteria.

To determine whether “mismatching” behaviors are
motivated by higher information gains, we analyze the value
of the entropy change 1S and the expected entropy change
E[1S] regarding the rate of odor hits and the cumulative odor
hits experienced by moths over a search. We are particularly
interested in these variables because recent studies identified that
they influence the decision-process of olfactory behaviors (Celani
et al., 2014; Pang et al., 2018). We also evaluate whether the
distribution of 1S is different for “matching” and “mismatching”
behaviors with a two-sample Kolmogorov-Smirnov test and
by comparing their histograms. In addition, we calculate
the cumulative density function (CDF) of 1S and E[1S] to
specifically determine whether “mismatching” behaviors have a
higher probability of obtaining larger negative values of those
variables, that is, greater information gains. Finally, we calculate
the root mean squared error (RMSE) between the values of 1S
and E[1S] to determine what type of behavior is more similar
to infotaxis, regarding the rate of odor hits and the cumulative
sum of hits, which are our variables of interest. The following
section presents the results of the calculations of 1S and E[1S]
regarding hit rate and cumulative hits, the histograms and CDFs,
and the RMSE of “matching” and “mismatching” behaviors.

4. RESULTS

Here, we present the results of the VR odor source search
experiments using optogenetic silkmoths. First, we present the
trajectories of the moths as well as their information entropy.
We then show the statistics of the matching versus mismatching
states, followed by the relationship between those two states and
the expected decrease in information entropy for each.
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FIGURE 3 | (A) An agent (blue dot) at the start of an infotaxis search. Each cell of the map has the same probability of being the odor source; thus, the entropy is

maximal. (B) An agent that has narrowed down the probability distribution of the source location to an area near the actual source (star symbol). In this case, the

information entropy of the belief is low. (C) How a silkmoth is modeled as a point-mass agent for infotaxis calculations. In this illustrative example, only the green area

will react to pheromone particles owing to the “wingflap effect” i.e., when cos(π − θ + θsrc) > 0. (D) The adaptation of the infotaxis navigation policy to a silkmoth. In

this case, moving forward from position rt to r′ yields more expected entropy decrease than rotating. Please note that a more negative value is more desirable

because it would narrow down the possible locations where the odor source is located.

FIGURE 4 | Classification of moth actions by (A) the kinematic criteria and (B) the temporal criteria.

4.1. VR Olfactory Search Experiments
We subjected ChR2 silkmoths to olfactory search experiments.
We conducted 20 trials in which the moth searched for a
pheromone source in a 350 mm long by 200 mm wide virtual
environment where the wind was blowing in the positive

x-direction at a mean speed of 0.1 m/s. The initial position of the
moth in the virtual environment was (x, y, θ) = (180, 0, −π/6),
where θ is in radians. Moths searched for a source located at (x,
y) = (0, 0) by entering a radius of 35 mm around it under a time
limit of 180 s. The mean± std. dev. of the time required to reach
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TABLE 1 | Definitions for the maneuvers of silk moths when classified by either a

temporal or a kinematic state.

Temporal Kinematic

Surge τb ≤ 500 ms τb ≤ 500 ms and v > 0 or

τb > 200 ms and |ω| < 5deg/s

Rotate τb > 500 ms τb > 500 ms and |ω| > 0

Stop Otherwise Otherwise

the source was 73.92 ± 46.5 s. Figure 5A shows the information
entropy for the experiments where moths found the pheromone
source. The solid line represents the average value, the shaded
range represents the standard deviation, and the gray lines show
the value for each trial. Figure 5B shows the moth trajectories
of these successful trials. The color gradient represents the value
of the information entropy. Table 2 shows the statistics of the
matching and mismatching moth states. Surge (temporal) and
Rotate (kinematic) represent the proportion of time taken when
the silk moths exhibited a mismatching state over the entire
duration of the search experiments. In total we conducted 20
experiments with 10 specimens. Out of these, 12 trials from six
specimens successfully found the odor source under the time
limit; thus achieving a success rate of 60.0%. We considered
only the data from the successful trials for the classification of
matching and mismatching behaviors.

4.2. Relationship Between Behavior
Variability and Information Gains
We investigated whether there is a relationship between
mismatching maneuvers and a higher expected decrease in
entropy E[1S(rt 7→ r′)]. Figure 6 shows the actual rewards
1S and expected rewards E[1S] of the match and mismatch
behaviors. As can be seen in Figures 6A,C, matching and
mismatching behaviors generate large decreases in entropy at
low or high hit rates, respectively. In addition, the matching
behaviors generated penalties (entropy increase) at high numbers
of accumulated hits. Please note that entropy is non-monotonous
(Hajieghrary et al., 2016; Rodríguez et al., 2017) and can increase
on detection to non-detection sequences since the agent’s belief
is narrowed by the detection but broadens again at the non-
detection. Figures 6B,D show that the expected rewards are
greater at low or high hit rates for mismatching and matching
behaviors, respectively. Figures 7A,C show histograms of the
actual and expected rewards, respectively. We validated the
statistical difference in the distributions of the matching and
mismatching states (Kolmogorov-Smirnov test p < 0.01).

Figure 7B shows the cumulative density function of the
actual rewards 1S for matching and mismatching behaviors.
As shown in the figure, mismatching behaviors have a higher
probability of greater entropy reductions (particularly values
of approximately 10−4 and 10−1). Mismatching behaviors also
have a higher probability of a larger decrease in entropy
(values of approximately -4×10−3) as shown in Figure 7D.
Figures 8A,B show the cumulative odor hits and hit rate
against the root mean squared error between the actual

1S and the expected reward E[1S]. This was calculated
as shown in Equation (3), where N is 20 because the
sampling frequency of the behavioral measurement system
is 20 Hz.

RMSE =

√

√

√

√

1

N

N
∑

i =1

(1Si+1 − E[1Si])
2 (3)

5. DISCUSSION

In this study, we investigated the possible causes of variability
in the programmed behavior model of the male silk moth.
Specifically, we asked whether such variability leads to
higher information gains; in other words, if it minimizes
the information entropy of the probability distribution
of the moth regarding the location of an odor source.
We also investigated whether the probabilistic framework
of infotaxis can explain how the male silk moth selects
maneuvers to balance the exploration and exploitation of the
expected rewards.

5.1. Relationship Between Behavioral
Variability and Information Rewards
In a recent study, Shigaki et al. (2019b) simultaneously measured
the odor search behavior of male silkmoths and the neural
activity from their lateral accessory lobe (LAL). The LAL
generates motor commands in response to odor stimuli. That
study found that silkmoths are less likely to “surge” (move
forward) as the frequency of odor hits increases. In terms of
infotaxis, this can be interpreted as moths preferring rotations
(exploration) because, at high odor encounter rates, the expected
decrease in entropy is less than at low rates. Our results found
that matching and mismatching behaviors generate rewards
at high and low hit rates, respectively (Figure 6). Thus, this
leads us to believe that at high hit rates, silk moths prefer
reactive or more exploitative behaviors, and at low rates,
they prefer more stochastic or explorative behaviors such as
rotations instead of straight forward moves. Furthermore, this
tendency was observed on all specimens that reached the
odor source.

An interesting interpretation of these results can also be
made from the viewpoint of reinforcement learning (RL). In
this field, an agent learns to behave according to an optimal
policy with the highest expected accumulated reward over
a time horizon. Nonetheless, many RL algorithms face the
exploration and exploitation dilemma in which greedily selecting
the actions with the highest reward can lead to suboptimal
policies stuck in the local maxima. A common way to avoid
this is to add stochasticity in the selection of actions; thus
balancing exploration and exploitation, using methods such as
ǫ-greedy algorithms (Sutton and Barto, 2018). An analogy can
be made to the behavior of the silkmoth in the sense that some
randomness in the selection of the “surge” maneuver leads to
higher information gains and possibly a better odor source search
performance. This can be clearly seen in Figures 7B,D, where
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FIGURE 5 | (A) Information entropy of infotaxis-modeled silkmoths. Gray lines represent each of the 12 runs that found the odor source. The blue line represents the

average entropy. (B) Trajectories of the successful experimental runs. The star symbol represents the pheromone source.

TABLE 2 | Normalized counts of each maneuver taken by the moths.

Temporal

Kinematic Surge Rotate

Surge 0.1597 ± 0.07 0

Rotate **0.1939 ± 0.11 0.6464 ± 0.19

The “kinematic” classification scheme is based on the linear and angular velocities of the

moths. The “temporal” scheme is based on the time since the last odor hit. The values

with the asterisks indicate “mismatching” behaviors.

the probability of obtaining better rewards is higher for the
mismatching behaviors.

5.2. Exploration and Exploitation in Silk
Moth Behavior
We found that maneuvers that deviate from the programmed
behavior model correspond to a larger expected decrease
in entropy, that is, a higher expected reward in the
terminology of reinforcement learning. Therefore, we
demonstrated the capability of the infotaxis strategy to
quantitatively express maneuvers that deviate from the
programmed behavior as explorative and those that match
it as exploitative.

Another interesting point to note is the relationship
between matching and mismatching behaviors with the
root mean squared error (RMSE) of the real vs. expected
rewards. As shown in Figure 8A, the error decreases
proportionally to the accumulation of odor hits. This is
relatively intuitive because more detections narrow down
the belief of the source location. However, more RMSE
occurs between real and expected rewards at times of high
hit rates. Furthermore, the matching behaviors have a
lower error than the mismatching behaviors. One possible
interpretation for this is that matching behaviors are more

exploitative; thus they are more similar to the greedy
infotaxis policy, whereas the mismatching behaviors are
more explorative; hence, they differ from the expected reward of
the infotaxis strategy.

We believe that being able to represent animal olfactory
behavior through a method such as infotaxis is an important
contribution to the fields of ethology and robotics because
having a representation of the decision process of animals
in terms of probabilistic beliefs and expected rewards
facilitates the algorithmic implementation of these processes
in robots. Furthermore, it allows for the refinement of
these decision processes using tools such as machine and
reinforcement learning.

6. CONCLUSION

In this study, we measured the behavior of moths using a
virtual reality system that presents accurate and reproducible
odor stimuli by using blue light and optogenetic moths. We
then took trajectories from these measurements and modeled
them as an infotaxis (Vergassola et al., 2007) strategy. We
used infotaxis-based modeling to determine if variability in the
silkmoth behavior is related to higher gains in information
regarding the probabilistic distribution of the source location.
We found that variations have a higher probability of obtaining
larger information gains than “programmed behaviors” (i.e.,
reactive, exploitative behaviors). This suggests that silkmoths
incorporate some stochasticity into their behavior to balance the
exploration and exploitation of information gains. Future studies
should be conducted to develop ways to extract decision-making
mechanisms from free-running silkmoths. In this study, we used
tethered moths walking on a treadmill, and, although such a
device imposes minimal disturbances on the moth behavior, we
believe it is necessary to study whether models from free-running
experiments will differ from those in this specific study. It would
also be useful to develop an olfactory search algorithm based on
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FIGURE 6 | (A,C) The actual rewards obtained by either matching or mismatching behavior. (B,D) The expected rewards. Blue hue indicates more entropy decrease,

that is, greater information rewards. Red hue indicates the opposite. In this figure, 1St indicates the actual entropy change, in other words, S(rt+1)− S(rt ). E[1S]

indicates the expected entropy change for all possible actions (i.e., moving from rt to r′).

FIGURE 7 | (A,C) Histograms of actual and expected rewards, respectively. (B,D) Cumulative density functions of the actual and expected rewards, respectively.
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FIGURE 8 | Root mean squared error (RMSE) between actual and expected rewards. Lower values indicate that the expected reward calculated by Equation (2)

matches the actual rewards 1S. (A) RMSE against the accumulated odor hits of the agent over time. (B) RMSE against hit rates, which are the average number of

odor hits per second.

the silkmoth exploration/exploitation mechanisms elucidated in
this paper and then implement such an algorithm on a robot to
test whether the search performance is improved compared with
either the programmed behavior or the infotaxis strategy.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Files, further inquiries can be directed
to the corresponding author/s.

AUTHOR CONTRIBUTIONS

CH-R, SF, SS, and DK contributed conception and design
of the study. SF conducted the virtual reality silk moth
experiments. CH-R performed the numerical analyses and wrote

the manuscript. TS, RK, and HS provided genetically modified
silk moths. All authors read and approved the submitted version.

FUNDING

CH-R acknowledges funding from Instituto de Innovación
y Transferencia de Tecnología (I2T2) and Consejo Nacional
de Ciencia y Tecnología (CONACYT). This work was also
partially supported by JSPS KAKENHI under Grant JP19H02104,
JP19H04930, and JP19K14943.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2021.629380/full#supplementary-material

REFERENCES

Ache, B. W., Hein, A. M., Bobkov, Y. V., and Principe, J. C. (2016). Smelling

time: a neural basis for olfactory scene analysis. Trends Neurosci. 39, 649–655.

doi: 10.1016/j.tins.2016.08.002

Baker, K. L., Dickinson, M., Findley, T. M., Gire, D. H., Louis, M., Suver, M. P.,

et al. (2018). Algorithms for olfactory search across species. J. Neurosci. 38,

9383–9389. doi: 10.1523/JNEUROSCI.1668-18.2018

Calhoun, A. J., Chalasani, S. H., and Sharpee, T. O. (2014). Maximally informative

foraging by Caenorhabditis elegans. Elife 3:e04220. doi: 10.7554/eLife.

04220

Celani, A., Villermaux, E., and Vergassola, M. (2014). Odor landscapes in turbulent

environments. Phys. Rev. X 4:041015. doi: 10.1103/PhysRevX.4.041015

Gatellier, L., Nagao, T., and Kanzaki, R. (2004). Serotonin modifies the

sensitivity of the male silkmoth to pheromone. J. Exp. Biol. 207, 2487–2496.

doi: 10.1242/jeb.01035

Hajieghrary, H., Hsieh, M. A., and Schwartz, I. B. (2016). Multi-agent search

for source localization in a turbulent medium. Phys. Lett. A 380, 1698–1705.

doi: 10.1016/j.physleta.2016.03.013

Kanzaki, R., Sugi, N., and Shibuya, T. (1992). Self-generated zigzag turning of

bombyxmorimales during pheromone-mediated upwindwalking (physology).

Zool. Sci. 9, 515–527.

Loudon, C., and Koehl, M. (2000). Sniffing by a silkworm moth: wing fanning

enhances air penetration through and pheromone interception by antennae.

J. Exp. Biol. 203, 2977–2990.

Mafra-Neto, A., and Cardé, R. T. (1994). Fine-scale structure of pheromone

plumes modulates upwind orientation of flying moths. Nature 369:142.

doi: 10.1038/369142a0

Minegishi, R., Takashima, A., Kurabayashi, D., and Kanzaki, R. (2012).

Construction of a brain-machine hybrid system to evaluate adaptability of an

insect. Robot. Auton. Syst. 60, 692–699. doi: 10.1016/j.robot.2011.06.012

Obara, Y. (1979). Bombyx morimating dance: an essential in locationg the female.

Appl. Entomol. Zool. 14, 130–132. doi: 10.1303/aez.14.130

Pang, R. (2018). Infotaxis Summary. Available online at: https://nbviewer.jupyter.

org/github/rkp8000/infotaxis/blob/master/test_infotaxis.ipynb

Pang, R., van Breugel, F., Dickinson, M., Riffell, J. A., and Fairhall, A. (2018).

History dependence in insect flight decisions during odor tracking. PLoS

Comput. Biol. 14:e1005969. doi: 10.1371/journal.pcbi.1005969

Frontiers in Computational Neuroscience | www.frontiersin.org 10 February 2021 | Volume 15 | Article 629380

https://www.frontiersin.org/articles/10.3389/fncom.2021.629380/full#supplementary-material
https://doi.org/10.1016/j.tins.2016.08.002
https://doi.org/10.1523/JNEUROSCI.1668-18.2018
https://doi.org/10.7554/eLife.04220
https://doi.org/10.1103/PhysRevX.4.041015
https://doi.org/10.1242/jeb.01035
https://doi.org/10.1016/j.physleta.2016.03.013
https://doi.org/10.1038/369142a0
https://doi.org/10.1016/j.robot.2011.06.012
https://doi.org/10.1303/aez.14.130
https://nbviewer.jupyter.org/github/rkp8000/infotaxis/blob/master/test_infotaxis.ipynb
https://nbviewer.jupyter.org/github/rkp8000/infotaxis/blob/master/test_infotaxis.ipynb
https://doi.org/10.1371/journal.pcbi.1005969
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Hernandez-Reyes et al. Information-Theoretic Modeling of Silkmoth

Rodríguez, J. D., Gómez-Ullate, D., and Mejía-Monasterio, C. (2017). On the

performance of blind-infotaxis under inaccurate modeling of the environment.

Eur. Phys. J. Spec. Top. 226, 2407–2420. doi: 10.1140/epjst/e2017-70067-1

Shigaki, S., Fikri, M. R., Hernandez Reyes, C., Sakurai, T., Ando, N., Kurabayashi,

D., et al. (2018a). Animal-in-the-loop system to investigate adaptive behavior.

Adv. Robot. 32, 945–953. doi: 10.1080/01691864.2018.1511473

Shigaki, S., Haigo, S., Reyes, C. H., Sakurai, T., Kanzaki, R., Kurabayashi, D., et al.

(2019a). Analysis of the role of wind information for efficient chemical plume

tracing based on optogenetic silkworm moth behavior. Bioinspir. Biomimet.

14:046006. doi: 10.1088/1748-3190/ab1d34

Shigaki, S., Sakurai, T., Ando, N., Kurabayashi, D., and Kanzaki, R.

(2018b). Time-varying moth-inspired algorithm for chemical plume

tracing in turbulent environment. IEEE Robot. Autom. Lett. 3, 76–83.

doi: 10.1109/LRA.2017.2730361

Shigaki, S., Shiota, Y., Kurabayashi, D., and Kanzaki, R. (2019b). Modeling of

adaptive chemical plume tracing algorithm of insect using fuzzy inference. IEEE

Trans. Fuzzy Syst. 28, 72–84. doi: 10.1109/TFUZZ.2019.2915187

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction.

Cambridge, MA: MIT press.

Tabuchi, M., Sakurai, T., Mitsuno, H., Namiki, S., Minegishi, R., Shiotsuki,

T., et al. (2013). Pheromone responsiveness threshold depends on temporal

integration by antennal lobe projection neurons. Proc. Natl. Acad. Sci. U.S.A.

2013:201313707. doi: 10.1073/pnas.1313707110

Thrun, S., Burgard,W., and Fox, D. (2005). Probabilistic Robotics. Cambridge, MA:

MIT Press.

Tomioka, K., Ikeda, M., Nagao, T., and Tamotsu, S. (1993).

Involvement of serotonin in the circadian rhythm of an insect

visual system. Naturwissenschaften 80, 137–139. doi: 10.1007/BF01

131019

van Breugel, F., and Dickinson, M. H. (2014). Plume-tracking behavior of flying

drosophila emerges from a set of distinct sensory-motor reflexes. Curr. Biol. 24,

274–286. doi: 10.1016/j.cub.2013.12.023

Vergassola, M., Villermaux, E., and Shraiman, B. I. (2007). “Infotaxis” as a strategy

for searching without gradients. Nature 445:406. doi: 10.1038/nature05464

Vickers, N. J. (2005). Winging it: moth flight behavior and responses of olfactory

neurons are shaped by pheromone plume dynamics. Chem. Senses 31, 155–166.

doi: 10.1093/chemse/bjj011

Voges, N., Chaffiol, A., Lucas, P., and Martinez, D. (2014). Reactive searching

and infotaxis in odor source localization. PLoS Comput. Biol. 10:e1003861.

doi: 10.1371/journal.pcbi.1003861

Conflict of Interest: SF was employed by MHPS Ltd.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2021 Hernandez-Reyes, Fukushima, Shigaki, Kurabayashi, Sakurai,

Kanzaki and Sezutsu. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 February 2021 | Volume 15 | Article 629380

https://doi.org/10.1140/epjst/e2017-70067-1
https://doi.org/10.1080/01691864.2018.1511473
https://doi.org/10.1088/1748-3190/ab1d34
https://doi.org/10.1109/LRA.2017.2730361
https://doi.org/10.1109/TFUZZ.2019.2915187
https://doi.org/10.1073/pnas.1313707110
https://doi.org/10.1007/BF01131019
https://doi.org/10.1016/j.cub.2013.12.023
https://doi.org/10.1038/nature05464
https://doi.org/10.1093/chemse/bjj011
https://doi.org/10.1371/journal.pcbi.1003861
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Hernandez-Reyes et al. Information-Theoretic Modeling of Silkmoth

APPENDIX A: INFOTAXIS STRATEGY

Herein, we provide a more detailed explanation of the derivation
of the infotaxis formulae. We based this explanation on the work
of Pang (2018) and the original infotaxis strategy developed by
Vergassola et al. (2007). The agent’s belief in the source location
P(rsrc|Tt) can be written using Bayes’ theorem, as indicated in
Equation (A1).

P(rsrc|Tt) =
P(Tt|rsrc)P(rsrc)

P(Tt)
∝ P(Tt|rsrc)P(rsrc) (A1)

where P(Tt|rsrc) is the likelihood of the source position and P(rsrc)
is the prior distribution of the source. Infotaxis assumes that odor
hits andmisses are independent of one another and the likelihood
of the source position takes the following form:

P(Tt|rsrc) =
∏

t

P(h(rt)|rsrc) (A2)

where h(rt) is 1 if the agent detects an odor hit at time t and 0 if
it detects a miss. The infotaxis strategy considers that the number
of hits follows a Poisson distribution; hence, the probability of a
hit or miss becomes the following:

P(h(rt) = 0|rsrc) = exp[−R(rt|rsrc)1t] (A3)

P(h(rt) > 0|rsrc) = 1− P(h(rt) = 0|rsrc) (A4)

where R(rt|rsrc)1t is the mean rate of hits the agent expects
at rt , during a time period of 1t, given a source position rsrc.
The Supplementary Material of the original paper on infotaxis
indicate that the hit rate is derived from the advection-diffusion
equation of a turbulent plume and define it as follows:

R (r|rsrc) =
E

ln
(

λ
α

) e
(xsrc−x)V

2D K0

(

|r− rsrc|

λ

)

(A5)

λ =

√

Dτ

1+ V2τ/(4D)
(A6)

where E is the emission rate of odor particles, which have an
effective diffusivity D and, a finite lifetime τ , and are advected
by a wind with mean velocity V that blows in the positive x-
direction. K0 is the modified Bessel function of order zero, and

α is the radius of a round-shaped agent. In our calculations of

the information entropy of the silkmoth we used the following

parameters into Equation A6: α=10 mm, E=1, τ=6.3 s, D=0.012,

andV=0.1m/s tomatch the wind speed in themoth experiments.

The range of possible values for the source location was a 1730×
770 lattice; i.e. the size of each cell was 0.26 mm. For Equation A4
we set 1t to 50 ms; which is the same as the sampling period of
the treadmill described in section 3.1. At each time step, the belief

of the source position distribution P(Tt|rsrc) can be recursively
updated as follows:

P(rsrc|Tt+1) = P(h(rt+1)|rsrc)P(rsrc|Tt) (A7)

At each time step, the agent considers five possible actions:
moving forward, backward, left, right, or waiting. For each
possible action, it calculates the probability p∗ that the action will
result in finding the source:

p∗ =
∑

rsrc

P(rsrc|Tt)P(|r
′ − rsrc| ≈ 0) (A8)

Consequently, the probability of not finding the source is 1− p∗.
If the source is found, then the entropy of the belief will become
zero, that is, 1S∗=(0 − St)=−St . To balance the exploration and
exploitation, the agent also considers the case in which it does
not find the source after taking an action. In such case, it would
sample from the environment either a miss with a probability pm
or a hit with a probability ph=1−pm. The probability of sampling
a miss is the average of the miss probability over the range of
possible source locations:

pm =
∑

rsrc

Pm(rsrc|Tt) =
∑

rsrc

P(h(r′) = 0|rsrc)P(rsrc|Tt) (A9)

where r′ is the future position of the agent after taking an action.
The agent also estimates how its source position belief, as well as
its entropy, would change after moving. The change in entropy
after sampling a miss or a hit at r′ would be the following:

1Sm = −
∑

rsrc

Pm(rsrc|Tt) ln
(

Pm(rsrc|Tt)
)

− St (A10)

1Sh = −
∑

rsrc

Ph(rsrc|Tt) ln
(

Ph(rsrc|Tt)
)

− St (A11)

Overall, the agent calculates the expected change of entropy by
moving from rt to r

′ as follows:

E[1S(rt 7→ r′)] = p∗(0−St)+(1−p∗)(pm1Sm+ph1Sh) (A12)

where the terms on the left and right sides of the sum are the
change in entropy if the source is found or not found at r′,
respectively. Finally, the agent chooses the action a with the
largest expected decrease in entropy (see Figure 3D) as:

a = argminr′
(

E[1S(rt 7→ r′)]
)

(A13)

After making a move, the agent encounters either a miss or a hit
from the odor plume and updates the probability distribution of
the source location. The agent then repeats the navigation policy
process iteratively until it finds the source.
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