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Tissue resident memory T cells (TRM) are a critical component of the immune system,
providing the body with an immediate and highly specific response against pathogens re-
infecting peripheral tissues. More recently, however, it has been demonstrated that TRM
cells also form during autoimmunity. TRM mediated autoimmune diseases are particularly
destructive, because unlike foreign antigens, the self-antigens are never cleared,
continuously activating self-reactive TRM T cells. In this article, we will focus on how
TRMs mediate disease in autoimmune skin conditions, specifically vitiligo, psoriasis,
cutaneous lupus erythematosus, alopecia areata and frontal fibrosing alopecia.

Keywords: resident memory T cell (TRM), cutaneous lupus erythematosus (CLE), vitiligo, psoriasis, alopecia,
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INTRODUCTION

Tissue resident memory T cells (TRM) are long-lived lymphocytes that reside in tissues and develop
after a T cell-mediated immune response is initiated. Subpopulations of memory T cells can
recirculate through the blood and lymphoid organs T recirculating memory cells (TRCM), though
evidence suggests that true TRM have a reduced capacity for recirculation. Both CD4+ and CD8+
TRM have been described in skin and other tissues including the mucosa, lung, brain, GI tract and
pancreas (1–5). Because of the very different locations that TRM are found, they are an extremely
diverse population, showing specializations for their resident tissue. Mouse models reveal that
TRMs function as sentinel-alarm cells that secrete cytokines and chemokines upon encountering
their cognate antigen (6–8), with some infections such as vaccinia virus requiring TRM for optimal
viral clearance (9). There is mounting evidence that TRM work together with other effector and
memory T cell populations to provide tissue surveillance and clear infections (8, 10).

Compared to TRM in other tissues, skin TRM persist for years and express skin-specific homing
antigens, such as cutaneous lymphocyte antigen (CLA) and CCR8. In addition, certain skin
retention markers, including CD103 and CD69, are upregulated (11). Mouse models have
demonstrated that TRM require IL-15 and TGFb for their differentiation in the skin (12), and
human TRM express their receptors (3, 13). The tissue-residency program that ensues involves
downregulation of chemokine receptors involved in recirculation, including CCR7 and S1P1, as well
as upregulation of key integrins, cytokine/growth factor receptors, and signaling molecules
including CD69, CD103, CD49a, CD122 and PD-1, a pattern that is conserved in both mice and
humans (5, 14–16). Skin TRM survival is dependent upon IL-15 and fatty acid metabolism (3, 17)
(Figure 1).

In addition to anti-viral responses, TRM also develop in the context of xenobiotic and/or toxin
exposure, allergies and autoimmune diseases. For example, fixed drug eruption is thought to be
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mediated by TRM (18). Type IV hypersensitivity to poison ivy,
other contact dermatitis irritants or allergens induces TRM
development (19). Healthy skin donors exhibit autoreactive T
cell clones, which are thought to provide immune surveillance
against tumors (3, 20). However, in autoimmune skin conditions,
environmental and genetic factors precipitate inappropriate
activation of autoreactive T cells and promote onset of
autoimmunity. Further, a reduced ratio of Tregs to TRM and
T effectors and/or reduced functionality of Tregs in skin tissue
tips the balance towards development of autoimmunity (21–25),
which may become recalcitrant or relapse following treatment
cessation due to the persistence of autoreactive TRM. In this
minireview, we will focus on TRM in autoimmune skin diseases,
including discussions of how they may be targeted for durable
treatment options.
TRM IN VITILIGO

Vitiligo is characterized by distinct patchy white spots present on
patients’ skin, which are caused by CD8+ T cells inappropriately
targeting melanocytes for destruction. Many studies have
implicated both genetic and environmental factors are
important in the pathogenesis of vitiligo (26). Familial
clustering of vitiligo suggested that there was a genetic
component before genetic studies were available. Alkhateeb
et al. reported in 2003 that approximately 20% of people with
vitiligo reported at least one affected first-degree relative (27).
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Since then, genome-wide association studies (GWAS) have
identified multiple genes associated with a higher risk for
developing vitiligo, including genes involved in both innate
and adaptive immunity (28, 29). It is now recognized that
melanocytes in vitiligo patients have a reduced ability to
manage cellular stress, making them more vulnerable to
environmental stressors such as UV radiation and certain
chemicals (30, 31). Cytokines and danger associated molecules
released in response to states of high stress in the skin attract and
activate immune cells (32–34). In addition, the IFNg-CXCR3
pathway has been determined to be critical to the migration of
autoreactive CD8+ T cells in vitiligo in mice and humans, and
correlates with disease progression and severity (35–39). While
treatments are available for vitiligo patients, the white spots
rapidly reappear in the same location if therapy is stopped,
demonstrating that memory persists in the skin even after
treatment. For example, JAK/STAT signaling is recognized as a
key mediator in many of the effector functions of TRM cells,
including the production of cytokines and inflammation
inducers. JAK inhibitors interrupt the IFNg signaling pathway
and cause skin repigmentation; however, depigmentation recurs
when treatment is stopped (40). Azzolino et al. recently reported
that established TRM numbers in skin in a mouse model of
vitiligo are not affected by Jak inhibitors, thus providing an
explanation for why JAKi do not provide durable treatment
responses (41).

T cells in vitiligo patients react to melanocyte self-antigens
including gp100/Pmel-17, melan-A/MART-1, tyrosinase and
A B

FIGURE 1 | Comparing and contrasting tissue resident memory and effector memory T cell phenotypes in skin. (A) Tissue resident memory (TRM, left, blue) cells
downregulate S1P1 and CCR7, which are used for recirculation in the blood and lymph, when they take up residency in skin. TRMs use CD69, which was previously
thought to be a marker of recently activated T cells, to block the expression of S1P1 on the cell surface and prevent exit from the tissue. CD103 is an integrin family
member that is involved in skin and mucosal homing. It is not required for skin retention, but is expressed at a much higher rate in TRM cells in the epidermis
compared to T cells in the dermis. CD49a has recently been used to distinguish the CD8+CD103+CD49a+ TRM T cells involved in mediating disease in vitiligo from
the CD8+CD103+CD49a- TRM cells involved in psoriasis. TRM cells survive long-term in the nutrient-poor conditions of the skin by metabolizing free fatty acids.
Increased expression of FABP4 and FABP5, fatty-acid binding proteins, allows TRM cells to take up larger amounts of exogenous free fatty acids for energy. IL-15 is
required for TRM differentiation in skin, and TRM bear the CD122 and CD132 receptor chains. Keratinocytes can present IL-15 to TRM in trans on the CD215
receptor chain. TRM cells increase expression of PD1, which has a known inhibitory role in immune activation, and is important in maintaining immune homeostasis.
Reduced expression of PD-1 in TRMs is associated with inappropriate chronic inflammation. CD69, which was historically thought to be a T cell activation marker, is
stably expressed on Trm. (B) T effector memory (TEM, right, green) cells can also express varying levels of PD-1, making this marker useful more for determining
exhaustion and/or chronic inflammation rather than tissue residence. TEM seem to rely more on CD127/IL-7 as a survival factor, which is in contrast to the IL-15
dependency of TRM. More often, they express CD49d than CD49a, though CD49a may also be used as a marker of degranulation. CD49d can interact
intracellularly with CD44 to promote signaling, though CD44 is often present on both TRM and TEM and is used as a marker of “antigen experienced” T cells.
CD45RO has historically been used to identify TEM in blood, and this short isoform of CD45 plays a role in T cell activation and signaling though a variety of
pathways including JAK/STAT and Src. The transcription factors BLMP1 and ID2 promote expression of TEM-associated markers. Created with BioRender.com.
May 2021 | Volume 12 | Article 652191

https://BioRender.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ryan et al. TRM in Skin Autoimmunity
tyrosinase-related proteins 1 & 2 (42–47). Recent studies have
characterized melanocyte-specific CD8+ TRMs from patients
with active and stable vitiligo using blister biopsies and punch
biopsies (3, 4, 48). Approximately 80% of the melanocyte-specific
CD8+ T cells express TRM markers, including CD69 single
positive cells (which may be actively differentiating, or
recirculating cells) and CD69/CD103 double positive cells (3).
CD49a, a marker that distinguishes a subset of CD8+ CD103+ T
cells with the cytotoxic potential to produce IFNg, is expressed
in half of epidermal and less than a quarter of dermal CD8+
CD103+ T cells in patients with vitiligo. Comparatively, in
healthy skin, it is expressed by one third of epidermal and less
than 5% of dermal CD8+ CD103+ T cells (4). In all patients with
vitiligo, these cells were enriched in the skin; moreover, in
patients with active disease, there was a significant increase in
the number of T cells as compared to those with stable disease
(36), particularly CD69+ (3). Boniface et al. found co-expression
of CXCR3 on CD69+CD103+ melanocyte-specific T cells in
vitiligo skin at a higher frequency than psoriasis or healthy
skin (48). CD8+ TRM are also present in depigmenting lesions
in post-melanoma-immunotherapy-associated vitiligo (49).

We examined factors required for maintenance of these
autoreactive TRM in the skin during vitiligo, with the hope of
identifying new durable treatments targeting autoreactive TRM.
Based on Mackay et al, which demonstrated TRM require IL-15
for their differentiation, we tested whether blocking this cytokine
pathway could deplete TRM. Treating mice with anti-CD122
antibodies, which block IL-15 signaling and thus TRM
proliferation and survival, provided long-lasting repigmentation
(8) (Figure 2A). Other labs have mapped additional roles IL-15
plays in vitiligo. Chen et al. demonstrated that oxidative stress can
result in increased IL-15 transpresentation on CD215 by
keratinocytes (34). Jacquemin et al. demonstrated that IL-15 can
induce NKG2D expression on effector memory CD8+ T cells (57),
which, based on our FTY720 blockade data demonstrating that
TRM are not sufficient for maintaining depigmentation in mice
(8), supports a role for effector memory T cells as the melanocyte
killers. IL-15 blocking antibodies are now being explored as a
potential durable therapy for vitiligo patients (NCT04338581;
Table S1).
TRM IN CUTANEOUS LUPUS
ERYTHEMATOSUS

Cutaneous lupus erythematosus (CLE) is a spectrum of
autoimmune skin diseases encompassing several clinical
subtypes, all of which are characterized by interface dermatitis,
or inflammation at the dermal-epidermal junction (58). The
most well-known manifestation of CLE is the characteristic
erythematous malar rash, which is associated with systemic
lupus erythematosus (SLE). Other CLE subtypes can present
without any systemic involvement, with different entities
conferring different levels of risk of developing SLE. Genetic
factors and environmental stressors both contribute to the
etiology of CLE (Figure 2B).
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TheT cell specificities inCLE skin are largely unknown, but SLE
studies identified T cells reactive to nucleosomes/histones (59),
which can induce anti-dsDNA antibody production (60). A recent
study characterized antigen specificities of T cells in the kidney in
lupus nephritis patients, and found that they recognize SmD1,
RNP70, histone, Ro, La, and nuclear antigen (52, 61). A population
ofCD8+CD103+ tissue-residentmemoryT cellswas identifiedand
correlated positively with disease severity in patients (53).
Interestingly, tofacitinib, a JAK3>1>>2 inhibitor, was effective in
preventing disease progression in mouse models of lupus nephritis
and suppressed the development of CD8+ TRM cells. Thus, the
microenvironment that the TRM cells create in lupus nephritis
appears to be crucial for disease progression.

Many studies have shown aberrant T cell signaling contributes
to the pathogenesis of CLE (62), including expression of cytotoxic
markers characteristic ofT cell function (63, 64).However, it is only
recently that TRM cells have been linked to disease progression: In
the skin, increased TRM were found in CLE patients refractory to
antimalarials (65). JAK/STAT inhibitors have also demonstrated
efficacy in treating CLE: In a case study of a patient with chilblain
lupus, a subtype of CLE, the JAK 1/2-kinase inhibitor ruxolitinib
provided a rapid response. When ruxolitinib was discontinued, the
skin lesions re-appeared, but upon re-starting the drug they
resolved completely (66). Thus, similar to vitiligo studies, TRM in
CLE are not affected permanently by Jak inhibitors, and disease
recurs once treatment is stopped. Examination of skin biopsies
taken from the patient revealed that ruxolitinib inhibited the
production of CLE-typical chemokines, specifically CXCL10,
supporting the idea that TRM cytokine production and
downstream signaling drives recruitment of recirculating
cytotoxic cells to the skin, as was demonstrated in vitiligo mouse
models described above. Another study identified IL-17+ cells by
immunohistochemistry (67); a trial assessing IL-17 blockade for
discoid lupus erythematosus is recruiting (Table S1).
TRM IN PSORIASIS

Psoriasis is a chronic and relapsing inflammatory skin disease
mediated by T cells. As in other autoimmune skin diseases, the
relapsing nature of psoriasis suggested the presence of immune
memory in the skin. Using a humanized mouse model of
psoriasis, transplantation of unaffected skin from a patient with
psoriasis was grafted onto mice deficient in type I and type II
interferons and the recombination activating gene 2, (IFNG-/-
IFNAR-/- RAG2-/-) and the skin graft spontaneously developed
psoriasis. Thus, the immune cells already resident in the grafted
skin were sufficient for inducing disease (68). Moreover, E-
selectin inhibitors are not efficacious in preventing psoriasis,
further supporting that nonmigratory immune cells can mediate
disease (69). However, the question of whether TRM are
sufficient, or whether they also require TRCM, has not yet
definitively been addressed, because the resident immune cells
in skin graft experiments may have given rise to TRCM, and
there may be redundant pathways in addition to E-selectin that
mediate skin recruitment in psoriasis.
May 2021 | Volume 12 | Article 652191
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Cheuk et al. demonstrated that the marker CD49a identifies
two distinct populations of CD8+ CD103+ TRM cells. While
vitiligo disease is driven by CD49a+ TRM cells producing IFNg,
CD49a- TRM cells in psoriasis mediate disease through the
production of interleukin-17 (IL-17) (4, 70), (Figure 2C). The
identification of CD49a- IL-17+ T cells as critical mediators of
disease fits with the previous success of anti-IL-17 drugs that
mediate successful amelioration of disease (UptoDate). The FDA
Frontiers in Immunology | www.frontiersin.org 4
has approved several monoclonal antibodies to IL-17 for the
treatment of psoriasis: tildrakizumab, guselkumab, risankizumab,
secukinumab, ixekizumab, and brodalamub (Table S1). Scientists
have also developed drugs to target IL-23, a cytokine produced by
myeloid dendritic cells to activate IL-17-producing CD49a- TRM
cells as well as non-TRM IL-17-producing cells (71). Nevertheless,
IL-17 blockade may require long-term administration, as it is
blocking a molecule made by the TRM rather than targeting TRM
B

C D

A

FIGURE 2 | Evidence of TRM in autoimmune skin disease. (A) TRM in vitiligo. Melanocyte-specific TRM are present in vitiligo lesional skin. These cells express
CD49a, CD69, CD103, and CD122 and produce IFNg and chemokines upon encountering cognate antigen, such as gp100/Pmel-17, melan-A/MART-1, tyrosinase
and/or tyrosinase-related proteins 1 & 2 presented on HLA-A2. Antigen-presenting cells (APCs) and keratinocytes also play a role in vitiligo immunopathogenesis, as
they release cytokines in response to a myriad of stimuli and stressors. APCs produce IL-15 and trans-present it on CD215 to T cells, which bear the CD122 and
CD132 chains of the IL-15 receptor. In vitiligo, our data support that TRM act as sentinel/alarm cells to induce recall responses against melanocytes. Blocking
CD122 deprives the TRM of the IL-15 survival signal, thereby inhibiting their function and/or reducing their numbers to provide a durable treatment. A clinical trial is
currently enrolling to test the potential of a commercially available anti-IL-15 antibody for vitiligo (NCT04338581). (B) TRM cells in CLE. Triggers such as UV radiation,
infection, hormones, drugs and chemicals create an apoptotic and inflammatory environment (50). In lupus-prone individuals, antigen-presenting cells (APCs) migrate
to the site of injury and ingest the cell debris and possible autoantigens. When the APCs present the autoantigens to self-reactive T cells and B cells, the
autoimmune response is initiated, and disease occurs (51). Specifically, CD103+ TRM cells in the skin are positively correlated to disease severity and recurrence in
patients. While TRM and T cell antigen specificities in lupus nephritis were recently described (52, 53), specificities of skin autoreactive T cells are unknown. A trial
blocking anti-IL-17 antibody for DLE is recruiting (NCT03866317). (C) TRM cells in Psoriasis. CD69+ CD103+ TRM are present in psoriasis lesions. The production
of cytokines such as IL-17a, IL-22, and Bcl-3 by these TRM cells lead to aberrant keratinocyte proliferation and differentiation. A recent study described melanocyte-
specific T cells in psoriasis patients, though other specificities are unknown (54). Many trials for IL-17 family cytokine blockade, including IL-12/23, are ongoing.
(D) TRM cells in Alopecia Areata (AA) and Cicatricial Alopecia (CA). NKG2D+ CD8+ T cells begin the disease process, breaching the immune privileged hair follicle
through the activation of T cells and dendritic cells. Though the exact role of TRM cells in the pathogenesis of AA and FFA is unknown, it is clear that the production
of IFNg, CXCL9, and CXCL10 by T cells in the hair follicle is crucial in the development in disease. While clonal expansions of CD8 T cells have been detected with
TCR sequencing (55), the antigen specificities of TRM in alopecias are still largely unknown (56). Trials for NK cell receptor and IL-2/9/15 inhibition are planned
(NCT03532958 and NCT04740970). Created with BioRender.com.
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themselves. In a clinical study of ten patients with psoriasis
receiving secukinumab for 24 weeks, Fujiyama et al.
demonstrated that while there was a significant decrease in CD8+
CD103+ cells in lesional skin, there was only a slight decrease
in CD8+ CD103+ CD49- cells, suggesting that TRM cells are
preserved (72).

While CD8+ CD103+ TRM cells make up the majority of the T
cell infiltrate in psoriatic lesions, CD4+ TRM cells are also present
in low numbers in the epidermis and dermis (73). Like CD8+
TRM, CD4+ TRM are identified by the marker CD69+. However,
unlike CD8+ TRM, CD4+ TRM cells show variability in the
expression of CD103, and the majority of CD4+ TRM do not
express it. CD4+ TRM were further distinguished from CD8+
TRM cells by Cheuk et al, who demonstrated that epidermal CD4+
TRM cells in resolved psoriatic lesions produced IL-22 while
CD8+ T cells mainly produced IL-17A. IL-22 is a pro-
inflammatory cytokine that promotes the expression of multiple
chemokines in the skin (74). In addition, through the STAT3
pathway, IL-22 promotes the proliferation and decreases the
differentiation of keratinocytes, a hallmark of psoriatic skin (75).
Using immunohistochemistry, Tohyama et al. reported that the
production of IL-17A by CD8+ TRM cells and IL-22 by CD4+
TRM cells correlated with Bcl-3 production, IL-22-induced gene
expression, and expression of other genes associated with psoriasis
in lesional skin as compared to healthy control skin. By targeting
Bcl-3, both CD4+ and CD8+ TRM disease pathways in psoriasis
could be interrupted (76). It is now understood that expression of
Bcl-3 promotes CD4+ T cell survival and is necessary for the
proper development of Th1, Th2, and Th17 cells (77). While Bcl-3
inhibitors have been extensively studied as potential therapeutics in
cancer, their role as a therapeutic in psoriasis or other skin diseases
has not yet been explored.

Although blocking the psoriatic microenvironment produced
by TRM cells has proven effective in treating disease, scientists are
also looking at how to directly target TRMcells. Pan et al. examined
the metabolic pathways of mouse CD8+ TRM cells in order to
elucidate how TRM cells survive in the nutrient-poor conditions of
the skin. Inbothmousemodels and skinbiopsies frompatientswith
psoriatic lesions, it was found that TRMT cells required exogenous
free fatty acids to survive in the skin. This characteristic is unique to
TRM T cells and could be a potential target for treatment for skin
diseases mediated by TRM T cells (17).
TRM IN ALOPECIA AREATA AND
CICATRICIAL ALOPECIA

The hair follicle has long been recognized as an immune privileged
site, as it protects the hair from potential autoreactive immune
attacks through a system of complex regulation and suppression of
the immune system. When this system breaks down, hair loss can
result (78–80). Alopecia areata (AA) and cicatricial alopecia (CA)
are common, inflammatory hair loss conditions. While CA is
scarring and has a distinct clinical presentation of hair loss along
the frontotemporal hairline and eyebrows,AA can present variably,
ranging from a single patch of hair loss to total body hair loss and is
Frontiers in Immunology | www.frontiersin.org 5
non-scarring (56, 81). A combination of genetics and
environmental triggers have been implicated in the pathogenesis
of both alopecias.

CA is a diverse group of scarring hair loss encompassing several
clinical variants including frontal fibrosing alopecia (FFA), lichen
planopilaris (LPP) and central centrifugal cicatricial alopecia
(CCCA). FFA and LPP most commonly occur in postmenopausal
Caucasian women, however there have been a few cases in younger
women (82). Autoimmune thyroid disease is the most common
comorbid autoimmune disorder with FFA and LPP. In contrast,
CCCA almost exclusively occurs in AfricanAmerican women (83),
and Type 2 diabetes is the most common comorbidity.

AA affects people of all different ages, sexes, and ethnic
backgrounds (84). To date, the immunopathogenesis of AA is
the most well-characterized of the alopecias: AA is driven by
CD8+ T cells and natural killer (NK) cells as evidenced by both
mouse models and studies of ex vivo human tissues (80).
NKG2D+ cells are central to pathogenesis (85), as NKG2D
activates both CD8+ T cells and NK cells to promote
destruction of the hair follicle. A clinical trial targeting NK cell
lectin-like-receptor subfamily K is currently enrolling (Table S1).

While anagen hair follicle epithelium is the target of CD8+ T
cells in AA, FFA is mediated by destruction of stem cells in the
hair follicle (86). Targets in CCCA have not been well-
characterized, and future studies of alopecia in patients with
skin of color are warranted to understand nuances in
immunopathogenesis and potential novel treatment options.

DelDucaet al. recentlydetermined that lesional skin fromAAand
FFA patients has significantlymore CD8+ cytotoxic T cells, CD11c+
dendritic cells, and CD103+ CD69+ TRM cells when compared to
nonlesional skin (87). In particular, FFA was shown to have a
significant upregulation of the IFNg/CXCL9/CXCL10 pathway and
the JAK-STAT pathway (88), (Figure 2D). In a recent case series,
Yang et al. reported significant clinical improvement as measured
using LPPAI scoring in a patient treated with the JAK inhibitor
(JAKi) tofacitinib. This patient had previously failed monthly
intralesional triamcinolone, topical steroids, doxycycline, and
hydroxychloroquine (89). Similarly, AA patients have successfully
been treatedwith JAKi (90–94).However, it is important tonote that,
like vitiligo, alopecia recurs upon cessation of JAKi (40). The known
recurrence of AA and FFA, the confirmed upregulation of CD103+
CD69+ TRM cells, and the reported clinical significance of JAKi
support the crucial role of TRM cells in disease pathogenesis (50). A
new clinical trial for a selective and simultaneous inhibitor of
cytokines IL-2, IL-9, and IL-15 is enrolling for alopecia, which may
have an impact on TRM (Table S1).
CONCLUSION

The complex roles of TRM cells in autoimmune skin diseases are
just beginning to be understood. However, it is clear that TRM
play significant roles in disease reactivation and flares, and must
be targeted if we hope to achieve long-lasting and durable
treatment options for patients. The tremendous strides in the
last ten years in understanding the pathophysiology and
May 2021 | Volume 12 | Article 652191
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treatment of autoimmune skin disease is incredibly exciting,
emphasizing not only how much we still have to learn about
these diseases, but also the enormous impact it will have on
patient survival and quality of life.
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