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Introduction
Computing similarities or distances between 2 nucleotide 
sequences is one of the basic steps in many areas of bioinformat-
ics. One of its possible applications is constructing phylogenetic 
trees that represent evolution of a group of species. For large data 
sets, such trees are often constructed by distance-based methods, 
such as Neighbor Joining,1 UPGMA,2 or SLINK.3 These meth-
ods apply variants of hierarchical clustering to a distance matrix, 
which expresses dissimilarity between each pair of species. The 
distance matrix is typically computed by comparing nucleotide 
or protein sequences, which represent individual species. It is 
therefore important to develop efficient methods that can evalu-
ate pairwise similarity or distance between pairs of sequences to 
provide data for phylogenetic tree reconstruction.4 However dif-
ferences between individual sequences acquired during evolution 
can have many forms, including substitutions of individual nu k
cleotides or amino acids, insertions or deletions of shorter 
sequences, as well as duplications and rearrangements of 
sequence parts.4,5 As a result, sequences need to be compared in 
a way that tolerates such changes.

Related Work
Sequence comparison methods in bioinformatics can be 
divided into 2 major groups: (1) alignment methods, which 
create local pairwise alignments of sequences and evaluate the 
number of substitutions in such alignments, and (2) alignment-
free methods,4,6–8 which are heuristics based mainly on statisti-
cal characteristics of data.

Established alignment-free methods include, for instance, 
Word Frequencies Method8 (WFM) that counts the number of 

occurrences for all possible sequences of fixed length (words or 
k-mers) across the genome and then compares the resulting 
frequency vectors using some similarity metrics. Based on 
WFM, Spaced Word Frequencies Method9 (SWFM) uses a dif-
ferent frequency vector computation. In this case, the word is 
not a short contiguous sequence, but a sequence of characters 
with fixed preset distances in the original genome. The word 
frequency vectors can be compared by various statistical 
approaches.10 For example, the D2  measure counts the number 
of pairs of shared word occurrences, while its variants DS

2 , D2
* , 

and D z2  are normalized to have approximately normal distri-
bution.11,12 Alternatively, the word frequency vectors can be 
enriched with chemical properties of the nucleotides and posi-
tional information within sequence.13

Another well-known group of methods searches for the 
longest common substring14 or common substring with fixed 
k  mismatches15 at each position between 2 sequences. While 
some approaches consider only lengths of such common 
matches, others inspect sequences surrounded by shared 
matches to estimate the number of substitutions between 2 
sequences. Variations of this approach are used, for example, in 
Andi16 and in Filtered Spaced Words Matches (FSWM).17

Another group of methods to be mentioned here is based on 
Locality-Sensitive Hashing (LSH). Locality-Sensitive Hashing is 
a type of hashing, which unlike general hash functions, aims to 
map similar keys to the same hash values, thus aiding in finding 
similar objects. Algorithms based on LSH18 usually compute a 
set of hashes for each sequence and search for similarities. 
Recently, approaches based on MinHash technique became 
popular,19 where each word of length k  from the input sequence 
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is hashed by some hash function and one or several words with 
the smallest hash value are used to represent the string.

The methods mentioned so far concentrate on the pres-
ence or absence of various substrings, but do not consider 
positions of such substrings in a sequence. The natural vector 
method encodes each input sequence as a vector encompass-
ing both the frequency and positional distribution of indi-
vidual nucleotides,20 amino acids21 or even k-mers.22 The 
method can be further extended to consider covariances of 
occurrence positions.23

A group of emerging alignment-free methods proposed 
recently24,25 uses spectral transforms instead of simple statisti-
cal quantities. Application of spectral transforms, mainly the 
fast Fourier transform26 (FFT), to DNA sequences is not a 
new technique. Well-established multiple-sequence alignment 
method MAFFT27 uses the Fourier transform and convolution 
principle for finding local matches. The process is applied to 
every pair of sequences, which is quite slow. Since 2014, Yin 
et  al24 have been using spectral transforms to relax strict 
dependency on positional information contained in sequences. 
Their methods compare raw signal spectra acquired from orig-
inal sequences or compute numerical characteristics out of raw 
signal spectra, referred as (Yin) Signal Moments Method25 
(YSMM). Spectra can be also computed from hydrophobicity 
profiles of protein sequences28 or further transformed by com-
puting prefix sums.29

The Yin Signal Moments Method25 is claimed to be very 
accurate, but it can produce misleading results when applied to 
sequences with varying lengths. Namely the spectral coeffi-
cients used in this method are not normalized by the input 
sequence length. According to Parseval theorem, the computed 
coefficients depend on the sum of input sequence indicators, 
and therefore without a proper normalization, its results reflect 
predominantly the input sequence length (see Figure 3 in the 
“Evaluation and Results” section).

Our method differs from YSMM25 in several important 
aspects. First, we use a different encoding of an input DNA 
sequence into a vector of complex numbers, as proposed by 
Cheever et al.30 As we will show, our encoding is more effi-
cient, in some cases more accurate and has attractive theoreti-
cal properties. Second, we compute the transform in sliding 
windows, rather than on the whole sequence, which allows us 
to compare sequences that underwent rearrangements. Third, 
we summarize each DNA sequence into a vector of the same 
length as the sliding window, rather than a short vector of size 
12, as in Yin method. Finally, we normalize the resulting vec-
tor by the input sequence length, which allows us to compare 
sequences of unequal lengths. Note that closely related 
sequences may differ in their lengths due to large-scale evolu-
tionary changes (deletions, duplications, transposon inser-
tions), but also due to incompleteness of one of the sequences. 
Before describing our method in more detail, we review basic 
principles of spectral transforms.

Background
Spectral transforms

A spectral transform is a transformation of an input numerical 
series of the length N  representing the time or positional 
domain into a signal spectrum— N  new numerical values in 
the frequency domain. Transformation itself discovers exact or 
approximate repeats of any size and evaluates their accuracy 
level. In the resulting frequency domain, the repeat distance is 
represented by the index in the output vector and the cumula-
tive accuracy level by the corresponding number located in the 
output vector at that index. For instance, if we are interested in 
repeats with the period of 1 / 10  of the original length, we will 
consider the 10th element in the frequency domain; its abso-
lute value will reflect the exactness of the repeats. In this man-
ner, spectral transforms can detect and represent all kinds of 
repetitive signals, from 3-periodic patterns in protein coding 
regions due to codons24 up to differences in statistical nucleo-
tide distribution among long sequence parts.

The discrete Fourier transform (DFT) is a well-known 
spectral transform defined as follows

F u f x e
x

N
i ux N( ) = ( )

=0

1
2 /

−
−∑ π  (1)

In this formula, F u( )  for u N∈ −{0, , 1}  is the uth element 
of the signal spectrum and N  is the length of the input vector 
f . The DFT power spectrum PS u( )  for u N∈ −{0, 1},  is 

then defined as

PS u Re F u Im F u
N

( ) = ( ( )) ( ( ))2 2+  (2)

The transform approximates the input signal using a series 
of sine and cosine functions with periods in interval < 0, 1>N -  
or, using another point of view, computes a convolution of series 
of sine and cosine waves with different periods and the input 
vector, resulting in a series of numerical values. Transformation 
can be efficiently computed in O N N( )log  time using the 
FFT algorithm.26

Similarly, the Walsh-Hadamard transform (WHT)31 approxi-
mates the input signal by rectangular basic functions and therefore 
can be computed by less computationally expensive addition and 
subtraction operations. A version optimized for sliding windows 
was also developed,31 which may further reduce computational 
requirements. We have investigated WHT as a faster replacement 
for FFT in our experiments, but it has a lower accuracy.

Spectral transforms in discovering motifs in 
sequences

A DNA sequence is a nonperiodic signal with some periodic 
repetitive parts.32 Because spectral transforms are intended to 
transform periodic signals, transforming nonperiodic signals 
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into signal spectra may resemble hashing one representation to 
another without understanding its internal structure. The intu-
ition is that the transform helps to find variations in the density 
of particular characters inside a sequence. Every spectral coef-
ficient reflects differences considering a period related to its 
index ( / )λ = N u . Zeroth coefficient ( )u = 0  reflects the over-
all sum of the input vector elements, lower coefficients (low u) 
consider variations with long periods, and higher coefficients 
analyze short periods.

A typical spectral transform is typically used for periodic 
signals, and therefore, a single signal spectrum is computed for 
the whole input data. Spectral coefficients are computed using 
a series of successive basis function periods; see Figure 1 show-
ing 3½ such periods of the length N / 16 . Short motifs are, 
however, typically separated by random distances, not necessar-
ily by the distance reflecting the same even period lengths. 
These random distributions can cause canceling interference 
and harm the results. If, for example, the 4 regions in Figure 1 
with densely occurring A’s were positioned with unequal gaps 
between them, which is a typical real-life scenario, the spectral 
analysis would give no significant results. Therefore, it is more 
informative to handle the sequence not as a whole, but rather 
by sliding windows. Sliding windows also help to detect simi-
larities in sequences with rearrangements, which present prob-
lems for some of the other approaches.

Method Design
In this section, we propose a novel method designed to esti-
mate similarity of DNA sequences, which is able to handle 
input data with varying characteristics, such as identity levels, 
sequence length, and the presence of rearrangements. We have 
also investigated several related spectral-based methods. Some 
of them have achieved superior accuracy on some data sets, 
however, with no general applicability. Therefore, the following 
sections are dedicated to the most robust method, Sliding win-
dow spectral projection method (SWSPM).

Linear-time architecture as a key to performance 
gains

Let us consider comparing sequences of n  species, each 
sequence having length at most m . Our method works also 
when each species is represented by a set of sequences, corre-
sponding to different genes or chromosomes; value m  will 
then be the upper bound on the combined size of all sequences 
for one species. The size of the input is thus O nm( )  and the 

output distance matrix has size O n( )2 . Ideally, we would like to 
have a method with running time linear in the combined size 
of the input and output, that is, running in O nm n( )2+  time.

Computing a full dynamic programming alignment for 
each pair of sequences results in O n m( )2 2  running time, and 
even some alignment-free methods perform a separate analysis 
for each pair of species, resulting in O n m( )2  time. Methods 
achieving O nm n( )2+  running time typically project DNA 
sequence of each species into numerical vectors of a fixed size 
and then compare such vectors for each pair of sequences. We 
will refer to such approach as Sequence projection architecture. 
For example, WFMs8 produce a vector of length 4k  for k  typi-
cally ranging between 4 and 8. Yin Signal Moments method25 
uses just 12 representative numbers for each input sequence. 
Our method uses a longer, but still fixed-sized, vector. In this 
case, the time-consuming sequence analysis is performed only 
once per each entity.

Sliding window spectral projection method

Sliding Window Spectral Projection Method (SWSPM) is a 
transformation of a nucleotide sequence to a representative 
numerical vector of a reduced dimensionality. We start by an 
algorithm outline and explain individual steps in more detail in 
the following.

•• Input:
•• The DNA sequence S m A C G T m[0 : 1] { , , , }− ∈

-	 Length wl  of the sliding window
-	 Step ws defining the number of positions the sliding 

window is shifted in each iteration

•• Output: Vector PSres  of length wl  containing spectral 
projection of sequence S

•• Algorithm:
Step 1: Vector PSres  of length wl  with zeroes
Step 2:  Repeat steps 3 to 5 for each window Wi  of 

length wl  given by sequence S  and step size 
ws

Step 3:  The alphabetical window Wi  into its numeri-
cal representation num Wi( )

Step 4:  FFT, compute spectral transform Fi  and 
power spectrum PSi  of the numerical vector 
num Wi( )  as defined by formulas (1) and (2).

Step 5:  PSres  by adding PSi  
 PS w PS w

PS w
res l res l

i l

[0 : 1] : [0 : 1]
[0 : 1]

− = −
+ −

Step 6:  all iterations, each element of the resulting 
vector PSres  is divided by the number of 
windows nw , and zeroth component 
PSres [0]  is discarded to obtain the resulting 
spectral projection of the input sequence S  
of length wl -1 .

Figure 1. Visualization of a single spectral coefficient calculation from a 

signal sequence. In this case, the spectral coefficient for the period of 16 

characters ( ( / ))F N 16  will have significant nonzero value as positive 

basis function parts are convolved with nonzero signal parts.
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We now explain the nontrivial steps of the algorithm in 
more detail.

Window creation (Step 2). Given a sequence S m[0 : 1]-  of 
length m , window length wl , and step size ws , the sequence 
is divided into n m w ww l s= 1 + − ( ) /  windows. For 
i nw∈ −{0, 1}, , the ith window Wi  is a subsequence 
S i w i w ws s l[ , 1]⋅ ⋅ + − . Instead of step size ws , we will later 
specify overlap relative to the windows length, defined as 
o w ws l= 1 /- .

Numerical representation (Step 3). Spectral transforms can be 
computed from vectors containing real or complex numbers; 
therefore, a conversion from alphabetical sequence to a numer-
ical vector is needed. Yin et  al use Binary Sequence Indicators 
(BSI), creating C  sequences, where C  is the alphabet size of 
the input sequence (for DNA, C = 4 ). Sequence for character 
x  contains a positive integer on the positions where x  occurs 
in the original sequence and zero elsewhere. The vectors are 
processed separately, implying C -times higher running time.

Cheever et al30 represent each nucleotide by a different com-
plex root of unity, and we use the same method and we denote it 
as RU . In particular, we use the following mapping: 
( , , , ) (1, 1, , )A C G T i i→ − − . According to our experiments, per-
mutations of this mapping give similar results. Character N , rep-
resenting an unknown nucleotide, is mapped to value 0. This 
representation creates a single vector of length m , possibly saving 
time compared with 4 vectors of BSI. In our experiments, this 
representation also gave more accurate results than BSI.

Spectral transform (Step 4). Each window is processed sepa-
rately by the selected spectral transform. The method is 
designed so that it works with any spectral transform; however, 
FFT proposed by Yin et  al has performed better than both 
WHT and Wavelet transform with various wavelet functions.

Final processing (Steps 5 and 6). Vectors containing power spec-
tra, one per window, are summed to a single resulting vector of 
length wl , where wl  is the length of a sliding window and 
therefore also the length of spectral transform’s result. Zeroth 
component PSres [0]  reflects the overall sum of the elements in 
the input sequence, which may dominate, causing a false dis-
similarity. This PSres [0]  component is therefore not used and 
so the resulting vector has length wl -1 .

To avoid problems caused by different sequence lengths, the 
output vectors are normalized by the number of windows pro-
cessed: PS w PS w nres l res l w[1 : 1] := [1 : 1] /- - .

Pairwise comparison. To produce the final distance matrix, we 
compare each 2 resulting vectors (spectral projections) using 
one of the generic distance functions.8 Our implementation 
allows both Euclidean and Cosine distances, which have almost 
identical accuracy. Our preliminary experiments with other 
distance functions reduced the accuracy.

Figure 2 shows the outline of the SWSPM process, exclud-
ing the pairwise comparison step. For better readability, the 
sliding windows are displayed without overlaps. In practice, 
better results are achieved using overlaps up to 87.5%  of the 
window length.

Theoretical properties of SWSPM

In the next section, we will demonstrate the performance of 
our method on both simulated and real data. Here, we make 
some theoretical observations on our method.

The sliding window approach uses the sum of transforms 
computed over shorter windows. If the sequence undergoes 
large-scale rearrangements, most windows will only change 
their position in the sequence and thus will contribute equally 
to the sum. As a result, the distance can stay low. Nonetheless, 
the difference can be detected, thanks to windows containing 
rearrangement breakpoints.

Another important property of our method is that the dis-
tance of a sequence and its reverse complement is zero, thanks 
to our root of unity encoding. This is desirable, because the 
orientation of sequences in a dataset can be arbitrary, and 
longer sequences often harbor inversions of parts of the 
sequence.

In particular, for a single window, different sequences always 
have different DFT transforms, because the DFT transform is 
invertable. However, the same is not true for the power spec-
trum, which uses the magnitude of each component of the 
DFT. For example, if we start with sequence S , and mutually 
substitute nucleotides A and C in the whole sequence and also 
nucleotides G and T, the RU encoding yields a vector multi-
plied by −1 compared with the encoding of S . However, the 
power spectrum of the original and modified sequence will be 
the same. This may seem as a flaw, because such sequences 
would obtain distance zero, but such pairs of sequences are 
highly unlikely to occur in real data.

In the more relevant case, when one sequence is the reverse 
complement of another one, we also get the same power spec-
trum. Reverse complement as an operation consists of reversing 
the order of bases and then substituting symbols A T⇔ , 
C G⇔ . It is a well-known property of the DFT,33 that if the 
input signal is reordered into reversed order, the power 

Figure 2. Sliding window spectral projection process illustrated by 3 

nonoverlapping windows W W Wn0 1, ,  leading to 3 signal spectra 

PS PS PSn0 1, ,  summed to a single PSres .
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spectrum also has reversed order (except for the component 
PS(0) ). Substitution of the symbols A T⇔ , C G⇔  in our 
encoding causes that input complex numbers a ib+  are changed 
into - -b ai . This has the effect of reversing the order of the 
spectrum (except for the component PS(0) ) and also exchang-
ing the imaginary components and real components while 
inverting the signs of numbers. However, this does not influ-
ence the spectrum because the individual components are 
squared and then summed. The combination of these 2 opera-
tions results in the same spectrum and in the original order. This 
is a great advantage of our encoding in comparison to the BSI 
encoding, where each type of nucleotide is encoded by a sepa-
rate sequence.

Computational complexity of our method

Let n  be the number of species and m  the sequence length 
per species. The spectral projection is computed once for each 
sequence by sliding a window with a defined length wl  and 
step size ws . The running time of this step is 
O mw w ws l s( ( ) / )log  per species. Considering the window size 
to be a constant, the projection is computed in O m( )  time per 
species and O nm( )  overall.

The actual distance matrix computation requires 
O w Ol( ) = (1)  time per pair of species or O n( )2  overall. These 
pairwise comparisons do not consider actual DNA sequences, 
but rather short numerical vectors which are compared using 
generic distance functions. Therefore, the O n( )2  part does not 
dominate the running time in a situation with m n>> .

Evaluation and Results
The proposed algorithm has been tested and compared with 
several existing solutions. These include the following:

•• WFM8

•• SWFM9

•• FSWM17

•• YSMM25

•• Kr14

•• Andi16

SWSPM was implemented in Java within ELKI frame-
work.34 For Kr and Andi, we have used published implementa-
tions. All other methods were reimplemented in the ELKI 
framework for fairer comparison of running times. Where 
original published implementations were available, we have 
verified that our implementation yields the same results. Trees 
were computed based on the distance matrices using the 
SLINK algorithm.3 Unless noted otherwise, in most tests, we 
use SWSPM with window size w ll seq= (2048, / 8)min  and 
overlap o = 87.5% . For WFM, we used word length equal to 6 
and computed Euclidean distance between frequency vectors. 
For SWFM, we used filter word 1100000110000011, unless 
noted otherwise. These parameters had the best overall perfor-
mance in initial tests on a subset of data.

Evaluation metrics

We have evaluated the accuracy using 3 metrics described in 
this section.

Distance matrix difference. Distance matrix difference metric 
compares a reference distance matrix further referred as 
Mdist ref,  with a distance matrix Mdist res,  given by a method 
being tested. Because the alignment-free methods typically do 
not compute a standardized measure, such as the number of 
substitutions per position, the magnitude of the values in 

Figure 3. Phylogenetic tree constructed by YSMM on a modified Mammals dataset with a shortened human sequence added. YSMM indicates (Yin) 

signal moments method.
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output matrices varies from method to method. To overcome 
this problem, all matrices have been standardized to the equal 
mean and standard deviation (z-index). The final error score 
for a method is then computed as the absolute scalar difference 
of the distance matrix provided by a method being tested and 
the reference distance matrix:

error M Mdistmx
i

n

j

n

i j
dist res

i j
dist ref= | |,

=1 =1
,

,
,

,∑∑ −

where n  is the number of species.

Robinson and Foulds distance. Our next goal is to evaluate simi-
larity between the reference phylogenetic tree and the one pro-
duced by a clustering algorithm based on the distance matrix 
computed using the proposed spectral transform approaches. 
As distance matrices are often used to create phylogenetic trees, 
it is important to measure the influence of the matrix on the 
tree reconstruction. The first of 2 tree-based metrics is the 
Robinson and Foulds distance as described by its original 
authors;35 here denoted as errorR F- . To calculate errorR F- , we 
used a treedist from PHYLIP package.36

Tree traversal length metric. The Robinson and Foulds distance 
does not reflect branch lengths of the tree, only the topology of 
the tree. Our approach is therefore to compute a new pairwise 
matrix , based on tree traversal of the reference tree; similarly 
M trav res,  is based on the tree provided by the tested method. 
Each element Mi j

trav
,  in one of these matrices corresponds to 

the length of the unique path connecting leaf nodes represent-
ing species i  and j . The length of the path is computed as the 
sum of branch length provided by the phylogeny reconstruc-
tion program. However, when the branch length information is 
not available for the reference tree, we set all branch lengths to 
1, that is, for each pair of species ( , )i j , we compute the num-
ber of edges on the path connecting them. Similar to the Dis-
tance matrix difference, the branch lengths in trees vary 
depending on the original distance matrix scale. Therefore, 
both M trav ref,  and M trav res,  are treated by z-index standardi-
zation. The final error score is again the absolute scalar differ-
ence of the matrices

error M Mtree
i

n

j

n

i j
tree res

i j
tree ref= | |

=1 =1
,

,
,

,∑∑ − .

Results on simulated data

Exploration of parameter settings. We have used INDELible 
software37 to generate 10 inputs, each consisting of a phylogeny 
with 10 species with sequences of length 10 kB. The sequences 
were generated under the Hasegawa-Kishino-Yano (HKY) 
model of substitutions with κ = 2  and 60% GC content, with-
out indels. The tree depth was set to 0.05. We have used the 

correct tree from the simulation as the reference tree. Individ-
ual error metrics were recorded for each input and then aver-
aged over all inputs. Table 1 shows the results for different 
parameter settings of our method and also of other methods. 
For WFM, we have used word lengths 4, 6, and 8, denoted in 
Table 1 by WFMa, WFMb, and WFMc, respectively. For 
SWFM, we used words 1001001001, 1100000110000011, and 
11000001100000110000011, denoted by SWFMa, SWFMb, 
and SWFMc, respectively. The settings for our method are 
denoted by SWSPMa-RU (BSI), SWSPMb-RU(BSI), 
SWSPMc-RU(BSI), and SWSPMd-RU(BSI), where RU or 
BSI denotes nucleotide encoding and letters a d-  denote set-
ting for window size wl  (set to 1024, 2048, 2048, and 4096, 
respectively) and for step size ws  (set to 256, 256, 512, and 
1024, respectively).

By comparing SWSPMa-RU, SWSPMc-RU, and 
SWSPMd-RU, we see that for these particular inputs, increas-
ing of wl  parameter while not changing the o  parameter 

Table 1. The measured error values on an artificial dataset for different 
parameter settings.

METhOD METRIc

errordistmx errortree errorR F-

WFMa 16.66 16.26 0.4

WFMb 13.87 13.29 0.6

WFMc 13.80 13.26 0.4

SWFMa 16.46 17.06 1.4

SWFMb 13.15 12.54 0.8

SWFMc 13.65 13.09 0.4

FSWM 12.97 11.81 0.6

YSMM 18.87 18.74 1.6

SWSPMa-RU 12.61 11.97 0.8

SWSPMa-BSI 15.22 14.37 0.8

SWSPMb-RU 12.09 12.04 0.8

SWSPMb-BSI 14.42 13.84 0.6

SWSPMc-RU 12.06 12.16 0.6

SWSPMc-BSI 14.17 13.53 0.4

SWSPMd-RU 11.97 12.00 0.8

SWSPMd-BSI 14.53 13.72 1

Andi 12.85 11.78 0.6

KR 13.62 12.62 0.8

Lower values are better.
Abbreviations: BSI, binary sequence indicator; FSWM, filtered spaced word 
matches; SWFM, spaced word frequencies method; SWSPM, sliding window 
spectral projection method; WFM, word frequencies method; YSMM, (Yin) signal 
moment method.
The best results in each column are highligted in boldface.
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achieves better results. However, increasing of o  parameter 
while not changing wl  parameter does not result in a signifi-
cant difference (compare SWSPMb-RU and SWSPMc-RU). 
However, these trends are not present in all datasets.

Table 1 also shows that our method with RU nucleotide 
encoding achieved lower errordistmx  and errortree  in each param-
eter setting than BSI nucleotide encoding. In errorR F-  meas-
ure, RU had a better or equal results than BSI in all settings 
except one (SWSPMc-BSI). In comparison with other meth-
ods, our method achieved very good results, having the smallest 
errordistmx  overall and also the third smallest errortree  followed 
by Andi and FSWM. Our method achieved relatively small 
errorR F-  comparable to Andi, FSWM or Kr, whereas the run-
ning time of our method was several times smaller, as we note 
further in the following.

Influence of dataset properties. We have also investigated the 
accuracy of our method on datasets generated by varying set-
tings in the INDELible software. We ran our method with 
default settings as described previously (window size 
w ll seq= (2048, / 8)min  and overlap o = 87.5% ). We compared 
our method to SWFM b .

Table 2 shows results on 8 datasets, each consisting of 10 
inputs. The first part of the dataset name denotes the overall tree 
depth, with slow using 0.02, medium 0.05, and fast 0.1. Indels is 
a dataset with tree depth 0.05 and insertion and deletion rate set 
to 10% of the substitution rate. The second part of the dataset 
name denotes the length of the ancestral sequence, 10 kB or 
1 MB. Results are averaged over 10 inputs in each dataset.

On datasets without indels, the results of our method are very 
similar to SWFM. On datasets with slow mutation rates, our 
method has a slightly higher errordistmx  than SWFM, but on 
datasets with medium and fast mutation rates, it achieves lower 
errordistmx , except on 1 MB dataset with medium mutation rate 

where the errordistmx  is a bit worse. Results of errorR F-  on these 
datasets are a bit lower for our method overall; however, this 
error measure can vary depending on the algorithm used to con-
struct the tree. On datasets containing deletions and insertions, 
our method with default parameter setting achieved worse 
results for both errordistmx  and errorR F-  than SWFM.

Overall, our method has performed well on the artificial 
datasets, although these are in some sense most difficult for our 
method, because the simulation starts from a random ancestral 
sequence, and as a result, does not contain nonrandom patterns 
and periodicities typical for real biological sequence. Therefore, 
even if our results on datasets with indels were not as good as 
for SWFM, we will see that on real datasets, which include 
indels, our method usually performs better.

Running time and memory. We have measured the running 
time and memory of various methods on artificial inputs con-
sisting of sequences of length 1 MB with substitution fre-
quency varying between 0.04 and 0.3 without indels and 
rearrangements. Tables 3 and 4 show the results for the num-
ber of species n  varying from 10 to 50. The experiments con-
firm that the running time of methods based on the sequence 
projection architecture grows linearly with n . These include 
WFM, SWFM, YSMM, and our proposed SWSPM. How-
ever, the methods performing pairwise sequence comparison, 
such as FSWM, proved to run in O n m( )2  time. Only WFM 
was consistently running faster than our method, but its accu-
racy is usually worse.

Some of the tested methods cannot run in parallel. To pro-
vide a fair comparison, each method was tested in a forced 
single-core mode. Our SWSPM is based on the sequence pro-
jection architecture and therefore is scalable up to n  cores, 
where n  is the number of input sequences. Each input sequence 
can be handled independently of other sequences with no com-
munication overhead, and so, the method is suitable for giga-
byte-large datasets and massively parallel systems.

Results on real data

Mammalian mitochondrial genomes. This dataset contains 
mitochondrial genomes of 31 mammals, and it was obtained 
from the supplementary materials of the work by Hoang et al.25 
To meaningfully compare results with the YSMM, which is 
sensitive to sequence length, we have truncated all input 
sequences to the same length of 16 000 bp. The reference results 
were obtained by conventional alignment methods. In particu-
lar, we have constructed a multiple-sequence alignment using 
the MUSCLE algorithm38 hosted as a Web service at the 
European Molecular Biology Laboratory (https://www.ebi 
.ac.uk/Tools/msa/muscle/) and then we have applied distmat 
from EMBOSS package to create a distance matrix based on 
the number of substitutions in the multiple-sequence align-
ment. The reference tree was constructed from this matrix by 

Table 2. The measured error values on several artificial datasets.

DATASET errordistmx errorR F-

SWSPM SWFM SWSPM SWFM

Fast 10 kB 18.86 19.33 0 0.4

Medium 10 kB 12.06 13.15 0.6 0.8

Slow 10 kB 33.35 32.77 1.4 1

Fast 1 MB 14.52 16.08 1 1

Medium 1 MB 14.75 14.62 0.6 0.4

Slow 1 MB 16.69 16.44 0 0.4

Indels 10 kB 37.68 20.80 2.6 0.2

Indels 1 MB 36.78 14.10 2 0.4

Lower values are better.
Abbreviations: SWFM, spaced word frequencies method; SWSPM, sliding 
window spectral projection method.

https://www.ebi.ac.uk/Tools/msa/muscle/
https://www.ebi.ac.uk/Tools/msa/muscle/
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the S-LINK method. The results, shown in Table 5, demon-
strate very low error rates of the SWSPM method.

Figures 3 and 4 show phylogenetic trees based on the results 
of YSMM and SWSPM methods on a modified Mammals 
dataset, which was enriched by a shortened 13 kbp long human 
sequence. Note that other tests and accuracy comparisons on this 
dataset do not use this shorter human sequence. The trees clearly 
show the effect of missing sequence length normalization in 
YSMM. The YSMM tree in Figure 3 differs from the tree from 
the original paper25 because in our set, the genomes were trun-
cated to common length of 16 kbp, whereas in the original pub-
lication, uneven lengths of sequences helped to arrange the 
species into the expected structure. The shortened human 
sequence is clustered together with the longer human sequence 
in SWSPM tree (Figure 4), but not in the YSMM tree.

Fungal mitochondrial and nuclear genomes. We have consid-
ered 2 datasets consisting of sequences from fungal genomes. 
The first dataset contains DNA sequences of 7 genes (namely 
ATP6, ATP8, ATP9, COB, COX1, COX2, and COX3) from 
mitochondrial genomes of 10 fungal species. The species 
were selected from a wider dataset used in the work of Val-
ach et  al39 to be as dissimilar as possible. In particular, we 
have used Aspergillus niger, Candida zemplinina, Yarrowia 
lipolytica, Candida subhashii, Candida albicans, Candida neer-
landica, Candida frijolesensis, Candida parapsilosis, Saccharo-
myces pastorianus, and Saccharomyces cerevisiae. The reference 
phylogenetic tree was built by PhyML40 under the JTT 
model from protein sequences of these species, as described 
by Valach et al.39

The second dataset again uses a subset of species from 
Valach phylogenetic tree,39 but each species was represented by 
its full nuclear genome of the length 14 to 13 Mbp. Sequences 
were obtained from the National Center for Biotechnology 
Information (NCBI) database (https://www.ncbi.nlm.nih.
gov/). We have used Aspergillus niger, Debaryomyces hansenii, 
Candida maltosa, Candida albicans, Candida dubliniensis, 
Candida sojae, Candida tropicalis, Candida parapsilosis, 
Saccharomyces pastorianus, and Saccharomyces cerevisiae. On this 
dataset, we have decreased the overlap parameter to -125% . 
For the tree traversal metric, we have replaced all branch 
lengths by 1, because the reference tree is based on mitochon-
drial genes, which may evolve at a different rate.

As is shown in Tables 6 and 7 and Figure 5, our method 
again performs very well on these datasets. Note that these 2 
datasets differ widely: while the mitochondrial data set con-
tains only short relatively well-conserved protein-coding 
sequences, the nuclear dataset contains full-length genomes 
with a wide variety of evolutionary changes including large-
scale rearrangements. Figure 5 shows the phylogenetic tree 
constructed on the nuclear dataset. This tree almost perfectly 

Table 3. Time (s) of compared methods to process datasets of various 
sizes.

METhOD ThE nUMBER OF SPEcIES n

 10 20 30 40 50

WFM 0.7 0.8 1.2 1.7 1.9

SWFM 1.3 2.8 4.2 5.6 7.0

FSWM 9.4 27.0 56.7 95.1 149.7

YSMM 25.8 52.5 80.5 109.4 136.4

Andi 10.3 27.7 57.6 91.5 131.1

Kr 13.2 31.3 53.4 78.1 110.9

SWSPM 1.9 2.4 3.2 4.2 5.2

Abbreviations: FSWM, filtered spaced words matches; SWFM, spaced word 
frequencies method; SWSPM, sliding window spectral projection method; WFM, 
word frequencies method; YSMM, (Yin) signal moments method.

Table 4. Memory requirements (MB) of compared methods to process 
datasets of various sizes.

METhOD ThE nUMBER OF SPEcIES n

10 20 30 40 50

WFMa <100 <100 <100 <100 <100

SWFMa <100 <100 <100 <100 <100

FSWM 191 353 525 697 869

YSMMa <100 <100 <100 <100 <100

Andi 130 191 201 210 220

Kr 211 421 630 841 1051

SWSPMa <100 <100 <100 110 128

Abbreviations: FSWM, filtered spaced words matches; SWFM, spaced word 
frequencies method; SWSPM, sliding window spectral projection method; WFM, 
word frequencies method; YSMM, (Yin) signal moments method.
aImplementation runs under JVM. Actual memory usage can be lower.

Table 5. The measured error values on Mammals dataset.

METRIc

 errordistmx errortree errorR F-

Method WFM 584.95 949.25 18

SWFM 613.11 970.92 18

FSWM 246.57 806.27 14

YSMM 351.28 822.19 30

Andi 251.88 801.76 16

Kr 197.48 756.88 14

SWSPM 205.54 734.40 14

Lower values are better.
Abbreviation: FSWM, filtered spaced words matches; SWFM, spaced word 
frequencies method; SWSPM, sliding window spectral projection method; WFM, 
word frequencies method; YSMM, (Yin) signal moments method.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/


Farkaš et al 9

matches the published tree obtained by traditional alignment-
based methods, with the exception of one species.

Bacterial genomes. This dataset was previously used by 
Domazet-Lošo and Haubold14 from where we also get the ref-
erence phylogenetic tree. Input sequences were obtained from 
the NCBI database. Table 8 shows that our method achieves 
results similar to WFM, SWFM, and better than YSMM. 
Compared to our method, FSWM and Andi achieved higher 
accuracy; however, their running time is much higher than our 
method. Also note that Kr could not be run on our machine due 
to some input error, so we could not calculate exact errortree ; 
however, we got errorR F-  from their paper.14

HIV genomes. This dataset consists of 825 HIV strains from 
Wu et  al41 and it was also used by Domazet-Lošo and 
Haubold14 For our method. we used default parameter settings 
(window size w ll seq= (2048, / 8)min  and overlap o = 87.5% ). 
However, we have found that on this dataset, characterized by 
a high number of relatively short sequences, it is better to use a 
different tree construction method, namely hierarchical clus-
tering based on Ward42 linkage and Manhattan distance. The 

Figure 4. Phylogenetic tree constructed by SWSPM on a modified Mammals dataset with a shortened human sequence added. SWSPM indicates sliding 

window spectral projection method.

Table 6. The measured error values on the fungal mitochondrial genes.

METRIc

 errordistmx errortree errorR F-

Method WFM n/a 114.61 8

SWFM n/a 109.98 6

FSWM n/a 113.59 8

YSMM n/a 144.99 12

Andi n/a 143.31 14

Kr n/a 142.55 8

SWSPM n/a 88.73 2

Lower values are better.
Abbreviations: FSWM, filtered spaced words matches; SWFM, spaced word 
frequencies method; SWSPM, sliding window spectral projection method; WFM, 
word frequencies method; YSMM, (Yin) signal moments method.

Table 7. The measured error values on nuclear fungal genomes.

METRIc

 errordistmx errortree errorR F-

Method WFM n/a 108 10

SWFM n/a 134 10

FSWM n/a 98 2

YSMM n/a 170 14

Andi n/a 190 14

Kr n/a 160 10

SWSPM n/a 92 4

Lower values are better.
Abbreviations: FSWM, filtered spaced words matches; SWFM, spaced word 
frequencies method; SWSPM, sliding window spectral projection method; WFM, 
word frequencies method; YSMM, (Yin) signal moments method.

Figure 5. Phylogenetic tree constructed by SWSPM on dataset of 

nuclear fungal genomes. A single badly placed species is underlined. 

SWSPM indicates sliding window spectral projection method.
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resulting phylogenetic tree is shown in Figure 6. Strains from 
each HIV subtype were clustered together, except for subtype 
A, which was split into 2 groups.

Drosophila genomes. This dataset contains 12 different genomes 
of Drosophila.43 Dataset was obtained from the download sec-
tion of The UCSC Genome Browser (https://genome.ucsc.edu/
index.html). The reference phylogenetic tree was taken from 
Haubold et al.44 All contigs from one species were concatenated 
into one sequence and unknown bases were deleted. Due to high 
memory requirements and restricted memory of our testing 
machine (16 GB RAM), FSWM, YSMM, and Kr could not be 
run. Thus, the results of this dataset emphasize low memory 
requirements of our method. We could run Andi on this dataset 

only with usage of parameter -l , which sacrifices speed for 
lower memory requirements resulting in much longer running 
time than that of our method and WFM. Lowest errortree  was 
achieved by WFM, whereas our method with our default param-
eter settings was better than Andi; however, Andi achieved lower 
errorR F-  (Table 9).

Conclusions
We propose a novel method for evaluation of pairwise similar-
ity of DNA sequences. The method is based on spectral trans-
forms and proves viability of this concept by outperforming 
current state-of-art alignment-free methods in most scenarios, 
as shown in our experiments.

In the process of designing this method, we had considered 
numerous variants involving spectral transform type, DNA 
sequence representation type, window lengths, and overlap as 
well as completely different windowing schemes. The final 
combination performs well on a variety of data sets and takes 
into account various domain-specific data properties, such as 
varying sequence lengths and genome rearrangements.
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