
https://doi.org/10.1177/1176934319849071

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Evolutionary Bioinformatics
Volume 15: 1–11
© The Author(s) 2019
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1176934319849071

Introduction
Computing similarities or distances between 2 nucleotide
sequences is one of the basic steps in many areas of bioinformat-
ics. One of its possible applications is constructing phylogenetic
trees that represent evolution of a group of species. For large data
sets, such trees are often constructed by distance-based methods,
such as Neighbor Joining,1 UPGMA,2 or SLINK.3 These meth-
ods apply variants of hierarchical clustering to a distance matrix,
which expresses dissimilarity between each pair of species. The
distance matrix is typically computed by comparing nucleotide
or protein sequences, which represent individual species. It is
therefore important to develop efficient methods that can evalu-
ate pairwise similarity or distance between pairs of sequences to
provide data for phylogenetic tree reconstruction.4 However dif-
ferences between individual sequences acquired during evolution
can have many forms, including substitutions of individual nu k
cleotides or amino acids, insertions or deletions of shorter
sequences, as well as duplications and rearrangements of
sequence parts.4,5 As a result, sequences need to be compared in
a way that tolerates such changes.

Related Work
Sequence comparison methods in bioinformatics can be
divided into 2 major groups: (1) alignment methods, which
create local pairwise alignments of sequences and evaluate the
number of substitutions in such alignments, and (2) alignment-
free methods,4,6–8 which are heuristics based mainly on statisti-
cal characteristics of data.

Established alignment-free methods include, for instance,
Word Frequencies Method8 (WFM) that counts the number of

occurrences for all possible sequences of fixed length (words or
k-mers) across the genome and then compares the resulting
frequency vectors using some similarity metrics. Based on
WFM, Spaced Word Frequencies Method9 (SWFM) uses a dif-
ferent frequency vector computation. In this case, the word is
not a short contiguous sequence, but a sequence of characters
with fixed preset distances in the original genome. The word
frequency vectors can be compared by various statistical
approaches.10 For example, the D2 measure counts the number
of pairs of shared word occurrences, while its variants DS

2 , D2
* ,

and D z2 are normalized to have approximately normal distri-
bution.11,12 Alternatively, the word frequency vectors can be
enriched with chemical properties of the nucleotides and posi-
tional information within sequence.13

Another well-known group of methods searches for the
longest common substring14 or common substring with fixed
k mismatches15 at each position between 2 sequences. While
some approaches consider only lengths of such common
matches, others inspect sequences surrounded by shared
matches to estimate the number of substitutions between 2
sequences. Variations of this approach are used, for example, in
Andi16 and in Filtered Spaced Words Matches (FSWM).17

Another group of methods to be mentioned here is based on
Locality-Sensitive Hashing (LSH). Locality-Sensitive Hashing is
a type of hashing, which unlike general hash functions, aims to
map similar keys to the same hash values, thus aiding in finding
similar objects. Algorithms based on LSH18 usually compute a
set of hashes for each sequence and search for similarities.
Recently, approaches based on MinHash technique became
popular,19 where each word of length k from the input sequence

SWSPM: A Novel Alignment-Free DNA Comparison
Method Based on Signal Processing Approaches

Tomáš Farkaš1, Jozef Sitarčík1, Broňa Brejová2 and Mária Lucká1

1Faculty of Informatics and Information Technologies, Slovak University of Technology in
Bratislava, Bratislava, Slovakia. 2Faculty of Mathematics, Physics and Informatics, Comenius
University in Bratislava, Bratislava, Slovakia.

ABSTRACT: Computing similarity between 2 nucleotide sequences is one of the fundamental problems in bioinformatics. Current methods
are based mainly on 2 major approaches: (1) sequence alignment, which is computationally expensive, and (2) faster, but less accurate,
alignment-free methods based on various statistical summaries, for example, short word counts. We propose a new distance measure based
on mathematical transforms from the domain of signal processing. To tolerate large-scale rearrangements in the sequences, the transform is
computed across sliding windows. We compare our method on several data sets with current state-of-art alignment-free methods. Our method
compares favorably in terms of accuracy and outperforms other methods in running time and memory requirements. In addition, it is massively
scalable up to dozens of processing units without the loss of performance due to communication overhead. Source files and sample data are
available at https://bitbucket.org/fiitstubioinfo/swspm/src

KeyWoRDS: DNA, alignment-free comparison, spectral transform, fast Fourier transform, distance matrix

ReCeIVeD: April 12, 2019. ACCePTeD: April 12, 2019.

TyPe: Original Research

FuNDINg: The author(s) disclosed receipt of the following financial support for the
research, authorship, and/or publication of this article: This work was partially supported
by the Scientific Grant Agency of Slovak Republic grant VEGA 1/0458/18 and the Slovak

Research and Development Agency grant APVV-16-0484.

DeClARATIoN oF CoNFlICTINg INTeReSTS: The author(s) declared no potential
conflicts of interest with respect to the research, authorship, and/or publication of this
article.

CoRReSPoNDINg AuTHoR: Mária Lucká, Faculty of Informatics and Information
Technologies, Slovak University of Technology in Bratislava, Ilkoviĉova 2, 842 16
Bratislava, Slovakia. Email: maria.lucka@stuba.sk

849071 EVB0010.1177/1176934319849071Evolutionary BioinformaticsFarkaš et al
research-article2019

https://uk.sagepub.com/en-gb/journals-permissions
https://bitbucket.org/fiitstubioinfo/swspm/src
mailto:maria.lucka@stuba.sk

2 Evolutionary Bioinformatics

is hashed by some hash function and one or several words with
the smallest hash value are used to represent the string.

The methods mentioned so far concentrate on the pres-
ence or absence of various substrings, but do not consider
positions of such substrings in a sequence. The natural vector
method encodes each input sequence as a vector encompass-
ing both the frequency and positional distribution of indi-
vidual nucleotides,20 amino acids21 or even k-mers.22 The
method can be further extended to consider covariances of
occurrence positions.23

A group of emerging alignment-free methods proposed
recently24,25 uses spectral transforms instead of simple statisti-
cal quantities. Application of spectral transforms, mainly the
fast Fourier transform26 (FFT), to DNA sequences is not a
new technique. Well-established multiple-sequence alignment
method MAFFT27 uses the Fourier transform and convolution
principle for finding local matches. The process is applied to
every pair of sequences, which is quite slow. Since 2014, Yin
et al24 have been using spectral transforms to relax strict
dependency on positional information contained in sequences.
Their methods compare raw signal spectra acquired from orig-
inal sequences or compute numerical characteristics out of raw
signal spectra, referred as (Yin) Signal Moments Method25
(YSMM). Spectra can be also computed from hydrophobicity
profiles of protein sequences28 or further transformed by com-
puting prefix sums.29

The Yin Signal Moments Method25 is claimed to be very
accurate, but it can produce misleading results when applied to
sequences with varying lengths. Namely the spectral coeffi-
cients used in this method are not normalized by the input
sequence length. According to Parseval theorem, the computed
coefficients depend on the sum of input sequence indicators,
and therefore without a proper normalization, its results reflect
predominantly the input sequence length (see Figure 3 in the
“Evaluation and Results” section).

Our method differs from YSMM25 in several important
aspects. First, we use a different encoding of an input DNA
sequence into a vector of complex numbers, as proposed by
Cheever et al.30 As we will show, our encoding is more effi-
cient, in some cases more accurate and has attractive theoreti-
cal properties. Second, we compute the transform in sliding
windows, rather than on the whole sequence, which allows us
to compare sequences that underwent rearrangements. Third,
we summarize each DNA sequence into a vector of the same
length as the sliding window, rather than a short vector of size
12, as in Yin method. Finally, we normalize the resulting vec-
tor by the input sequence length, which allows us to compare
sequences of unequal lengths. Note that closely related
sequences may differ in their lengths due to large-scale evolu-
tionary changes (deletions, duplications, transposon inser-
tions), but also due to incompleteness of one of the sequences.
Before describing our method in more detail, we review basic
principles of spectral transforms.

Background
Spectral transforms

A spectral transform is a transformation of an input numerical
series of the length N representing the time or positional
domain into a signal spectrum— N new numerical values in
the frequency domain. Transformation itself discovers exact or
approximate repeats of any size and evaluates their accuracy
level. In the resulting frequency domain, the repeat distance is
represented by the index in the output vector and the cumula-
tive accuracy level by the corresponding number located in the
output vector at that index. For instance, if we are interested in
repeats with the period of 1 / 10 of the original length, we will
consider the 10th element in the frequency domain; its abso-
lute value will reflect the exactness of the repeats. In this man-
ner, spectral transforms can detect and represent all kinds of
repetitive signals, from 3-periodic patterns in protein coding
regions due to codons24 up to differences in statistical nucleo-
tide distribution among long sequence parts.

The discrete Fourier transform (DFT) is a well-known
spectral transform defined as follows

F u f x e
x

N
i ux N() = ()

=0

1
2 /

−
−∑ π (1)

In this formula, F u() for u N∈ −{0, , 1} is the uth element
of the signal spectrum and N is the length of the input vector
f . The DFT power spectrum PS u() for u N∈ −{0, 1}, is

then defined as

PS u Re F u Im F u
N

() = (()) (())2 2+ (2)

The transform approximates the input signal using a series
of sine and cosine functions with periods in interval < 0, 1>N -
or, using another point of view, computes a convolution of series
of sine and cosine waves with different periods and the input
vector, resulting in a series of numerical values. Transformation
can be efficiently computed in O N N()log time using the
FFT algorithm.26

Similarly, the Walsh-Hadamard transform (WHT)31 approxi-
mates the input signal by rectangular basic functions and therefore
can be computed by less computationally expensive addition and
subtraction operations. A version optimized for sliding windows
was also developed,31 which may further reduce computational
requirements. We have investigated WHT as a faster replacement
for FFT in our experiments, but it has a lower accuracy.

Spectral transforms in discovering motifs in
sequences

A DNA sequence is a nonperiodic signal with some periodic
repetitive parts.32 Because spectral transforms are intended to
transform periodic signals, transforming nonperiodic signals

Farkaš et al 3

into signal spectra may resemble hashing one representation to
another without understanding its internal structure. The intu-
ition is that the transform helps to find variations in the density
of particular characters inside a sequence. Every spectral coef-
ficient reflects differences considering a period related to its
index (/)λ = N u . Zeroth coefficient ()u = 0 reflects the over-
all sum of the input vector elements, lower coefficients (low u)
consider variations with long periods, and higher coefficients
analyze short periods.

A typical spectral transform is typically used for periodic
signals, and therefore, a single signal spectrum is computed for
the whole input data. Spectral coefficients are computed using
a series of successive basis function periods; see Figure 1 show-
ing 3½ such periods of the length N / 16 . Short motifs are,
however, typically separated by random distances, not necessar-
ily by the distance reflecting the same even period lengths.
These random distributions can cause canceling interference
and harm the results. If, for example, the 4 regions in Figure 1
with densely occurring A’s were positioned with unequal gaps
between them, which is a typical real-life scenario, the spectral
analysis would give no significant results. Therefore, it is more
informative to handle the sequence not as a whole, but rather
by sliding windows. Sliding windows also help to detect simi-
larities in sequences with rearrangements, which present prob-
lems for some of the other approaches.

Method Design
In this section, we propose a novel method designed to esti-
mate similarity of DNA sequences, which is able to handle
input data with varying characteristics, such as identity levels,
sequence length, and the presence of rearrangements. We have
also investigated several related spectral-based methods. Some
of them have achieved superior accuracy on some data sets,
however, with no general applicability. Therefore, the following
sections are dedicated to the most robust method, Sliding win-
dow spectral projection method (SWSPM).

Linear-time architecture as a key to performance
gains

Let us consider comparing sequences of n species, each
sequence having length at most m . Our method works also
when each species is represented by a set of sequences, corre-
sponding to different genes or chromosomes; value m will
then be the upper bound on the combined size of all sequences
for one species. The size of the input is thus O nm() and the

output distance matrix has size O n()2 . Ideally, we would like to
have a method with running time linear in the combined size
of the input and output, that is, running in O nm n()2+ time.

Computing a full dynamic programming alignment for
each pair of sequences results in O n m()2 2 running time, and
even some alignment-free methods perform a separate analysis
for each pair of species, resulting in O n m()2 time. Methods
achieving O nm n()2+ running time typically project DNA
sequence of each species into numerical vectors of a fixed size
and then compare such vectors for each pair of sequences. We
will refer to such approach as Sequence projection architecture.
For example, WFMs8 produce a vector of length 4k for k typi-
cally ranging between 4 and 8. Yin Signal Moments method25
uses just 12 representative numbers for each input sequence.
Our method uses a longer, but still fixed-sized, vector. In this
case, the time-consuming sequence analysis is performed only
once per each entity.

Sliding window spectral projection method

Sliding Window Spectral Projection Method (SWSPM) is a
transformation of a nucleotide sequence to a representative
numerical vector of a reduced dimensionality. We start by an
algorithm outline and explain individual steps in more detail in
the following.

•• Input:
•• The DNA sequence S m A C G T m[0 : 1] { , , , }− ∈

-	 Length wl of the sliding window
-	 Step ws defining the number of positions the sliding

window is shifted in each iteration

•• Output: Vector PSres of length wl containing spectral
projection of sequence S

•• Algorithm:
Step 1: Vector PSres of length wl with zeroes
Step 2: Repeat steps 3 to 5 for each window Wi of

length wl given by sequence S and step size
ws

Step 3: The alphabetical window Wi into its numeri-
cal representation num Wi()

Step 4: FFT, compute spectral transform Fi and
power spectrum PSi of the numerical vector
num Wi() as defined by formulas (1) and (2).

Step 5: PSres by adding PSi
 PS w PS w

PS w
res l res l

i l

[0 : 1] : [0 : 1]
[0 : 1]

− = −
+ −

Step 6: all iterations, each element of the resulting
vector PSres is divided by the number of
windows nw , and zeroth component
PSres [0] is discarded to obtain the resulting
spectral projection of the input sequence S
of length wl -1 .

Figure 1. Visualization of a single spectral coefficient calculation from a

signal sequence. In this case, the spectral coefficient for the period of 16

characters ((/))F N 16 will have significant nonzero value as positive

basis function parts are convolved with nonzero signal parts.

4 Evolutionary Bioinformatics

We now explain the nontrivial steps of the algorithm in
more detail.

Window creation (Step 2). Given a sequence S m[0 : 1]- of
length m , window length wl , and step size ws , the sequence
is divided into n m w ww l s= 1 + − () / windows. For
i nw∈ −{0, 1}, , the ith window Wi is a subsequence
S i w i w ws s l[, 1]⋅ ⋅ + − . Instead of step size ws , we will later
specify overlap relative to the windows length, defined as
o w ws l= 1 /- .

Numerical representation (Step 3). Spectral transforms can be
computed from vectors containing real or complex numbers;
therefore, a conversion from alphabetical sequence to a numer-
ical vector is needed. Yin et al use Binary Sequence Indicators
(BSI), creating C sequences, where C is the alphabet size of
the input sequence (for DNA, C = 4). Sequence for character
x contains a positive integer on the positions where x occurs
in the original sequence and zero elsewhere. The vectors are
processed separately, implying C -times higher running time.

Cheever et al30 represent each nucleotide by a different com-
plex root of unity, and we use the same method and we denote it
as RU . In particular, we use the following mapping:
(, , ,) (1, 1, ,)A C G T i i→ − − . According to our experiments, per-
mutations of this mapping give similar results. Character N , rep-
resenting an unknown nucleotide, is mapped to value 0. This
representation creates a single vector of length m , possibly saving
time compared with 4 vectors of BSI. In our experiments, this
representation also gave more accurate results than BSI.

Spectral transform (Step 4). Each window is processed sepa-
rately by the selected spectral transform. The method is
designed so that it works with any spectral transform; however,
FFT proposed by Yin et al has performed better than both
WHT and Wavelet transform with various wavelet functions.

Final processing (Steps 5 and 6). Vectors containing power spec-
tra, one per window, are summed to a single resulting vector of
length wl , where wl is the length of a sliding window and
therefore also the length of spectral transform’s result. Zeroth
component PSres [0] reflects the overall sum of the elements in
the input sequence, which may dominate, causing a false dis-
similarity. This PSres [0] component is therefore not used and
so the resulting vector has length wl -1 .

To avoid problems caused by different sequence lengths, the
output vectors are normalized by the number of windows pro-
cessed: PS w PS w nres l res l w[1 : 1] := [1 : 1] /- - .

Pairwise comparison. To produce the final distance matrix, we
compare each 2 resulting vectors (spectral projections) using
one of the generic distance functions.8 Our implementation
allows both Euclidean and Cosine distances, which have almost
identical accuracy. Our preliminary experiments with other
distance functions reduced the accuracy.

Figure 2 shows the outline of the SWSPM process, exclud-
ing the pairwise comparison step. For better readability, the
sliding windows are displayed without overlaps. In practice,
better results are achieved using overlaps up to 87.5% of the
window length.

Theoretical properties of SWSPM

In the next section, we will demonstrate the performance of
our method on both simulated and real data. Here, we make
some theoretical observations on our method.

The sliding window approach uses the sum of transforms
computed over shorter windows. If the sequence undergoes
large-scale rearrangements, most windows will only change
their position in the sequence and thus will contribute equally
to the sum. As a result, the distance can stay low. Nonetheless,
the difference can be detected, thanks to windows containing
rearrangement breakpoints.

Another important property of our method is that the dis-
tance of a sequence and its reverse complement is zero, thanks
to our root of unity encoding. This is desirable, because the
orientation of sequences in a dataset can be arbitrary, and
longer sequences often harbor inversions of parts of the
sequence.

In particular, for a single window, different sequences always
have different DFT transforms, because the DFT transform is
invertable. However, the same is not true for the power spec-
trum, which uses the magnitude of each component of the
DFT. For example, if we start with sequence S , and mutually
substitute nucleotides A and C in the whole sequence and also
nucleotides G and T, the RU encoding yields a vector multi-
plied by −1 compared with the encoding of S . However, the
power spectrum of the original and modified sequence will be
the same. This may seem as a flaw, because such sequences
would obtain distance zero, but such pairs of sequences are
highly unlikely to occur in real data.

In the more relevant case, when one sequence is the reverse
complement of another one, we also get the same power spec-
trum. Reverse complement as an operation consists of reversing
the order of bases and then substituting symbols A T⇔ ,
C G⇔ . It is a well-known property of the DFT,33 that if the
input signal is reordered into reversed order, the power

Figure 2. Sliding window spectral projection process illustrated by 3

nonoverlapping windows W W Wn0 1, , leading to 3 signal spectra

PS PS PSn0 1, , summed to a single PSres .

Farkaš et al 5

spectrum also has reversed order (except for the component
PS(0)). Substitution of the symbols A T⇔ , C G⇔ in our
encoding causes that input complex numbers a ib+ are changed
into - -b ai . This has the effect of reversing the order of the
spectrum (except for the component PS(0)) and also exchang-
ing the imaginary components and real components while
inverting the signs of numbers. However, this does not influ-
ence the spectrum because the individual components are
squared and then summed. The combination of these 2 opera-
tions results in the same spectrum and in the original order. This
is a great advantage of our encoding in comparison to the BSI
encoding, where each type of nucleotide is encoded by a sepa-
rate sequence.

Computational complexity of our method

Let n be the number of species and m the sequence length
per species. The spectral projection is computed once for each
sequence by sliding a window with a defined length wl and
step size ws . The running time of this step is
O mw w ws l s(() /)log per species. Considering the window size
to be a constant, the projection is computed in O m() time per
species and O nm() overall.

The actual distance matrix computation requires
O w Ol() = (1) time per pair of species or O n()2 overall. These
pairwise comparisons do not consider actual DNA sequences,
but rather short numerical vectors which are compared using
generic distance functions. Therefore, the O n()2 part does not
dominate the running time in a situation with m n>> .

Evaluation and Results
The proposed algorithm has been tested and compared with
several existing solutions. These include the following:

•• WFM8

•• SWFM9

•• FSWM17

•• YSMM25

•• Kr14

•• Andi16

SWSPM was implemented in Java within ELKI frame-
work.34 For Kr and Andi, we have used published implementa-
tions. All other methods were reimplemented in the ELKI
framework for fairer comparison of running times. Where
original published implementations were available, we have
verified that our implementation yields the same results. Trees
were computed based on the distance matrices using the
SLINK algorithm.3 Unless noted otherwise, in most tests, we
use SWSPM with window size w ll seq= (2048, / 8)min and
overlap o = 87.5% . For WFM, we used word length equal to 6
and computed Euclidean distance between frequency vectors.
For SWFM, we used filter word 1100000110000011, unless
noted otherwise. These parameters had the best overall perfor-
mance in initial tests on a subset of data.

Evaluation metrics

We have evaluated the accuracy using 3 metrics described in
this section.

Distance matrix difference. Distance matrix difference metric
compares a reference distance matrix further referred as
Mdist ref, with a distance matrix Mdist res, given by a method
being tested. Because the alignment-free methods typically do
not compute a standardized measure, such as the number of
substitutions per position, the magnitude of the values in

Figure 3. Phylogenetic tree constructed by YSMM on a modified Mammals dataset with a shortened human sequence added. YSMM indicates (Yin)

signal moments method.

6 Evolutionary Bioinformatics

output matrices varies from method to method. To overcome
this problem, all matrices have been standardized to the equal
mean and standard deviation (z-index). The final error score
for a method is then computed as the absolute scalar difference
of the distance matrix provided by a method being tested and
the reference distance matrix:

error M Mdistmx
i

n

j

n

i j
dist res

i j
dist ref= | |,

=1 =1
,

,
,

,∑∑ −

where n is the number of species.

Robinson and Foulds distance. Our next goal is to evaluate simi-
larity between the reference phylogenetic tree and the one pro-
duced by a clustering algorithm based on the distance matrix
computed using the proposed spectral transform approaches.
As distance matrices are often used to create phylogenetic trees,
it is important to measure the influence of the matrix on the
tree reconstruction. The first of 2 tree-based metrics is the
Robinson and Foulds distance as described by its original
authors;35 here denoted as errorR F- . To calculate errorR F- , we
used a treedist from PHYLIP package.36

Tree traversal length metric. The Robinson and Foulds distance
does not reflect branch lengths of the tree, only the topology of
the tree. Our approach is therefore to compute a new pairwise
matrix , based on tree traversal of the reference tree; similarly
M trav res, is based on the tree provided by the tested method.
Each element Mi j

trav
, in one of these matrices corresponds to

the length of the unique path connecting leaf nodes represent-
ing species i and j . The length of the path is computed as the
sum of branch length provided by the phylogeny reconstruc-
tion program. However, when the branch length information is
not available for the reference tree, we set all branch lengths to
1, that is, for each pair of species (,)i j , we compute the num-
ber of edges on the path connecting them. Similar to the Dis-
tance matrix difference, the branch lengths in trees vary
depending on the original distance matrix scale. Therefore,
both M trav ref, and M trav res, are treated by z-index standardi-
zation. The final error score is again the absolute scalar differ-
ence of the matrices

error M Mtree
i

n

j

n

i j
tree res

i j
tree ref= | |

=1 =1
,

,
,

,∑∑ − .

Results on simulated data

Exploration of parameter settings. We have used INDELible
software37 to generate 10 inputs, each consisting of a phylogeny
with 10 species with sequences of length 10 kB. The sequences
were generated under the Hasegawa-Kishino-Yano (HKY)
model of substitutions with κ = 2 and 60% GC content, with-
out indels. The tree depth was set to 0.05. We have used the

correct tree from the simulation as the reference tree. Individ-
ual error metrics were recorded for each input and then aver-
aged over all inputs. Table 1 shows the results for different
parameter settings of our method and also of other methods.
For WFM, we have used word lengths 4, 6, and 8, denoted in
Table 1 by WFMa, WFMb, and WFMc, respectively. For
SWFM, we used words 1001001001, 1100000110000011, and
11000001100000110000011, denoted by SWFMa, SWFMb,
and SWFMc, respectively. The settings for our method are
denoted by SWSPMa-RU (BSI), SWSPMb-RU(BSI),
SWSPMc-RU(BSI), and SWSPMd-RU(BSI), where RU or
BSI denotes nucleotide encoding and letters a d- denote set-
ting for window size wl (set to 1024, 2048, 2048, and 4096,
respectively) and for step size ws (set to 256, 256, 512, and
1024, respectively).

By comparing SWSPMa-RU, SWSPMc-RU, and
SWSPMd-RU, we see that for these particular inputs, increas-
ing of wl parameter while not changing the o parameter

Table 1. The measured error values on an artificial dataset for different
parameter settings.

METhOD METRIc

errordistmx errortree errorR F-

WFMa 16.66 16.26 0.4

WFMb 13.87 13.29 0.6

WFMc 13.80 13.26 0.4

SWFMa 16.46 17.06 1.4

SWFMb 13.15 12.54 0.8

SWFMc 13.65 13.09 0.4

FSWM 12.97 11.81 0.6

YSMM 18.87 18.74 1.6

SWSPMa-RU 12.61 11.97 0.8

SWSPMa-BSI 15.22 14.37 0.8

SWSPMb-RU 12.09 12.04 0.8

SWSPMb-BSI 14.42 13.84 0.6

SWSPMc-RU 12.06 12.16 0.6

SWSPMc-BSI 14.17 13.53 0.4

SWSPMd-RU 11.97 12.00 0.8

SWSPMd-BSI 14.53 13.72 1

Andi 12.85 11.78 0.6

KR 13.62 12.62 0.8

Lower values are better.
Abbreviations: BSI, binary sequence indicator; FSWM, filtered spaced word
matches; SWFM, spaced word frequencies method; SWSPM, sliding window
spectral projection method; WFM, word frequencies method; YSMM, (Yin) signal
moment method.
The best results in each column are highligted in boldface.

Farkaš et al 7

achieves better results. However, increasing of o parameter
while not changing wl parameter does not result in a signifi-
cant difference (compare SWSPMb-RU and SWSPMc-RU).
However, these trends are not present in all datasets.

Table 1 also shows that our method with RU nucleotide
encoding achieved lower errordistmx and errortree in each param-
eter setting than BSI nucleotide encoding. In errorR F- meas-
ure, RU had a better or equal results than BSI in all settings
except one (SWSPMc-BSI). In comparison with other meth-
ods, our method achieved very good results, having the smallest
errordistmx overall and also the third smallest errortree followed
by Andi and FSWM. Our method achieved relatively small
errorR F- comparable to Andi, FSWM or Kr, whereas the run-
ning time of our method was several times smaller, as we note
further in the following.

Influence of dataset properties. We have also investigated the
accuracy of our method on datasets generated by varying set-
tings in the INDELible software. We ran our method with
default settings as described previously (window size
w ll seq= (2048, / 8)min and overlap o = 87.5%). We compared
our method to SWFM b .

Table 2 shows results on 8 datasets, each consisting of 10
inputs. The first part of the dataset name denotes the overall tree
depth, with slow using 0.02, medium 0.05, and fast 0.1. Indels is
a dataset with tree depth 0.05 and insertion and deletion rate set
to 10% of the substitution rate. The second part of the dataset
name denotes the length of the ancestral sequence, 10 kB or
1 MB. Results are averaged over 10 inputs in each dataset.

On datasets without indels, the results of our method are very
similar to SWFM. On datasets with slow mutation rates, our
method has a slightly higher errordistmx than SWFM, but on
datasets with medium and fast mutation rates, it achieves lower
errordistmx , except on 1 MB dataset with medium mutation rate

where the errordistmx is a bit worse. Results of errorR F- on these
datasets are a bit lower for our method overall; however, this
error measure can vary depending on the algorithm used to con-
struct the tree. On datasets containing deletions and insertions,
our method with default parameter setting achieved worse
results for both errordistmx and errorR F- than SWFM.

Overall, our method has performed well on the artificial
datasets, although these are in some sense most difficult for our
method, because the simulation starts from a random ancestral
sequence, and as a result, does not contain nonrandom patterns
and periodicities typical for real biological sequence. Therefore,
even if our results on datasets with indels were not as good as
for SWFM, we will see that on real datasets, which include
indels, our method usually performs better.

Running time and memory. We have measured the running
time and memory of various methods on artificial inputs con-
sisting of sequences of length 1 MB with substitution fre-
quency varying between 0.04 and 0.3 without indels and
rearrangements. Tables 3 and 4 show the results for the num-
ber of species n varying from 10 to 50. The experiments con-
firm that the running time of methods based on the sequence
projection architecture grows linearly with n . These include
WFM, SWFM, YSMM, and our proposed SWSPM. How-
ever, the methods performing pairwise sequence comparison,
such as FSWM, proved to run in O n m()2 time. Only WFM
was consistently running faster than our method, but its accu-
racy is usually worse.

Some of the tested methods cannot run in parallel. To pro-
vide a fair comparison, each method was tested in a forced
single-core mode. Our SWSPM is based on the sequence pro-
jection architecture and therefore is scalable up to n cores,
where n is the number of input sequences. Each input sequence
can be handled independently of other sequences with no com-
munication overhead, and so, the method is suitable for giga-
byte-large datasets and massively parallel systems.

Results on real data

Mammalian mitochondrial genomes. This dataset contains
mitochondrial genomes of 31 mammals, and it was obtained
from the supplementary materials of the work by Hoang et al.25
To meaningfully compare results with the YSMM, which is
sensitive to sequence length, we have truncated all input
sequences to the same length of 16 000 bp. The reference results
were obtained by conventional alignment methods. In particu-
lar, we have constructed a multiple-sequence alignment using
the MUSCLE algorithm38 hosted as a Web service at the
European Molecular Biology Laboratory (https://www.ebi
.ac.uk/Tools/msa/muscle/) and then we have applied distmat
from EMBOSS package to create a distance matrix based on
the number of substitutions in the multiple-sequence align-
ment. The reference tree was constructed from this matrix by

Table 2. The measured error values on several artificial datasets.

DATASET errordistmx errorR F-

SWSPM SWFM SWSPM SWFM

Fast 10 kB 18.86 19.33 0 0.4

Medium 10 kB 12.06 13.15 0.6 0.8

Slow 10 kB 33.35 32.77 1.4 1

Fast 1 MB 14.52 16.08 1 1

Medium 1 MB 14.75 14.62 0.6 0.4

Slow 1 MB 16.69 16.44 0 0.4

Indels 10 kB 37.68 20.80 2.6 0.2

Indels 1 MB 36.78 14.10 2 0.4

Lower values are better.
Abbreviations: SWFM, spaced word frequencies method; SWSPM, sliding
window spectral projection method.

https://www.ebi.ac.uk/Tools/msa/muscle/
https://www.ebi.ac.uk/Tools/msa/muscle/

8 Evolutionary Bioinformatics

the S-LINK method. The results, shown in Table 5, demon-
strate very low error rates of the SWSPM method.

Figures 3 and 4 show phylogenetic trees based on the results
of YSMM and SWSPM methods on a modified Mammals
dataset, which was enriched by a shortened 13 kbp long human
sequence. Note that other tests and accuracy comparisons on this
dataset do not use this shorter human sequence. The trees clearly
show the effect of missing sequence length normalization in
YSMM. The YSMM tree in Figure 3 differs from the tree from
the original paper25 because in our set, the genomes were trun-
cated to common length of 16 kbp, whereas in the original pub-
lication, uneven lengths of sequences helped to arrange the
species into the expected structure. The shortened human
sequence is clustered together with the longer human sequence
in SWSPM tree (Figure 4), but not in the YSMM tree.

Fungal mitochondrial and nuclear genomes. We have consid-
ered 2 datasets consisting of sequences from fungal genomes.
The first dataset contains DNA sequences of 7 genes (namely
ATP6, ATP8, ATP9, COB, COX1, COX2, and COX3) from
mitochondrial genomes of 10 fungal species. The species
were selected from a wider dataset used in the work of Val-
ach et al39 to be as dissimilar as possible. In particular, we
have used Aspergillus niger, Candida zemplinina, Yarrowia
lipolytica, Candida subhashii, Candida albicans, Candida neer-
landica, Candida frijolesensis, Candida parapsilosis, Saccharo-
myces pastorianus, and Saccharomyces cerevisiae. The reference
phylogenetic tree was built by PhyML40 under the JTT
model from protein sequences of these species, as described
by Valach et al.39

The second dataset again uses a subset of species from
Valach phylogenetic tree,39 but each species was represented by
its full nuclear genome of the length 14 to 13 Mbp. Sequences
were obtained from the National Center for Biotechnology
Information (NCBI) database (https://www.ncbi.nlm.nih.
gov/). We have used Aspergillus niger, Debaryomyces hansenii,
Candida maltosa, Candida albicans, Candida dubliniensis,
Candida sojae, Candida tropicalis, Candida parapsilosis,
Saccharomyces pastorianus, and Saccharomyces cerevisiae. On this
dataset, we have decreased the overlap parameter to -125% .
For the tree traversal metric, we have replaced all branch
lengths by 1, because the reference tree is based on mitochon-
drial genes, which may evolve at a different rate.

As is shown in Tables 6 and 7 and Figure 5, our method
again performs very well on these datasets. Note that these 2
datasets differ widely: while the mitochondrial data set con-
tains only short relatively well-conserved protein-coding
sequences, the nuclear dataset contains full-length genomes
with a wide variety of evolutionary changes including large-
scale rearrangements. Figure 5 shows the phylogenetic tree
constructed on the nuclear dataset. This tree almost perfectly

Table 3. Time (s) of compared methods to process datasets of various
sizes.

METhOD ThE nUMBER OF SPEcIES n

 10 20 30 40 50

WFM 0.7 0.8 1.2 1.7 1.9

SWFM 1.3 2.8 4.2 5.6 7.0

FSWM 9.4 27.0 56.7 95.1 149.7

YSMM 25.8 52.5 80.5 109.4 136.4

Andi 10.3 27.7 57.6 91.5 131.1

Kr 13.2 31.3 53.4 78.1 110.9

SWSPM 1.9 2.4 3.2 4.2 5.2

Abbreviations: FSWM, filtered spaced words matches; SWFM, spaced word
frequencies method; SWSPM, sliding window spectral projection method; WFM,
word frequencies method; YSMM, (Yin) signal moments method.

Table 4. Memory requirements (MB) of compared methods to process
datasets of various sizes.

METhOD ThE nUMBER OF SPEcIES n

10 20 30 40 50

WFMa <100 <100 <100 <100 <100

SWFMa <100 <100 <100 <100 <100

FSWM 191 353 525 697 869

YSMMa <100 <100 <100 <100 <100

Andi 130 191 201 210 220

Kr 211 421 630 841 1051

SWSPMa <100 <100 <100 110 128

Abbreviations: FSWM, filtered spaced words matches; SWFM, spaced word
frequencies method; SWSPM, sliding window spectral projection method; WFM,
word frequencies method; YSMM, (Yin) signal moments method.
aImplementation runs under JVM. Actual memory usage can be lower.

Table 5. The measured error values on Mammals dataset.

METRIc

 errordistmx errortree errorR F-

Method WFM 584.95 949.25 18

SWFM 613.11 970.92 18

FSWM 246.57 806.27 14

YSMM 351.28 822.19 30

Andi 251.88 801.76 16

Kr 197.48 756.88 14

SWSPM 205.54 734.40 14

Lower values are better.
Abbreviation: FSWM, filtered spaced words matches; SWFM, spaced word
frequencies method; SWSPM, sliding window spectral projection method; WFM,
word frequencies method; YSMM, (Yin) signal moments method.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/

Farkaš et al 9

matches the published tree obtained by traditional alignment-
based methods, with the exception of one species.

Bacterial genomes. This dataset was previously used by
Domazet-Lošo and Haubold14 from where we also get the ref-
erence phylogenetic tree. Input sequences were obtained from
the NCBI database. Table 8 shows that our method achieves
results similar to WFM, SWFM, and better than YSMM.
Compared to our method, FSWM and Andi achieved higher
accuracy; however, their running time is much higher than our
method. Also note that Kr could not be run on our machine due
to some input error, so we could not calculate exact errortree ;
however, we got errorR F- from their paper.14

HIV genomes. This dataset consists of 825 HIV strains from
Wu et al41 and it was also used by Domazet-Lošo and
Haubold14 For our method. we used default parameter settings
(window size w ll seq= (2048, / 8)min and overlap o = 87.5%).
However, we have found that on this dataset, characterized by
a high number of relatively short sequences, it is better to use a
different tree construction method, namely hierarchical clus-
tering based on Ward42 linkage and Manhattan distance. The

Figure 4. Phylogenetic tree constructed by SWSPM on a modified Mammals dataset with a shortened human sequence added. SWSPM indicates sliding

window spectral projection method.

Table 6. The measured error values on the fungal mitochondrial genes.

METRIc

 errordistmx errortree errorR F-

Method WFM n/a 114.61 8

SWFM n/a 109.98 6

FSWM n/a 113.59 8

YSMM n/a 144.99 12

Andi n/a 143.31 14

Kr n/a 142.55 8

SWSPM n/a 88.73 2

Lower values are better.
Abbreviations: FSWM, filtered spaced words matches; SWFM, spaced word
frequencies method; SWSPM, sliding window spectral projection method; WFM,
word frequencies method; YSMM, (Yin) signal moments method.

Table 7. The measured error values on nuclear fungal genomes.

METRIc

 errordistmx errortree errorR F-

Method WFM n/a 108 10

SWFM n/a 134 10

FSWM n/a 98 2

YSMM n/a 170 14

Andi n/a 190 14

Kr n/a 160 10

SWSPM n/a 92 4

Lower values are better.
Abbreviations: FSWM, filtered spaced words matches; SWFM, spaced word
frequencies method; SWSPM, sliding window spectral projection method; WFM,
word frequencies method; YSMM, (Yin) signal moments method.

Figure 5. Phylogenetic tree constructed by SWSPM on dataset of

nuclear fungal genomes. A single badly placed species is underlined.

SWSPM indicates sliding window spectral projection method.

10 Evolutionary Bioinformatics

resulting phylogenetic tree is shown in Figure 6. Strains from
each HIV subtype were clustered together, except for subtype
A, which was split into 2 groups.

Drosophila genomes. This dataset contains 12 different genomes
of Drosophila.43 Dataset was obtained from the download sec-
tion of The UCSC Genome Browser (https://genome.ucsc.edu/
index.html). The reference phylogenetic tree was taken from
Haubold et al.44 All contigs from one species were concatenated
into one sequence and unknown bases were deleted. Due to high
memory requirements and restricted memory of our testing
machine (16 GB RAM), FSWM, YSMM, and Kr could not be
run. Thus, the results of this dataset emphasize low memory
requirements of our method. We could run Andi on this dataset

only with usage of parameter -l , which sacrifices speed for
lower memory requirements resulting in much longer running
time than that of our method and WFM. Lowest errortree was
achieved by WFM, whereas our method with our default param-
eter settings was better than Andi; however, Andi achieved lower
errorR F- (Table 9).

Conclusions
We propose a novel method for evaluation of pairwise similar-
ity of DNA sequences. The method is based on spectral trans-
forms and proves viability of this concept by outperforming
current state-of-art alignment-free methods in most scenarios,
as shown in our experiments.

In the process of designing this method, we had considered
numerous variants involving spectral transform type, DNA
sequence representation type, window lengths, and overlap as
well as completely different windowing schemes. The final
combination performs well on a variety of data sets and takes
into account various domain-specific data properties, such as
varying sequence lengths and genome rearrangements.

Author Contributions
ML and TF have conceived the study and designed the algo-
rithms. BB have provided her biological knowledge and experi-
ence in designing experiments. TF and JS have implemented
the software and conducted the experiments. All authors have
participated in manuscript preparation and design of experi-
ments. All authors read and approved the final manuscript.

REfEREnCEs
 1. Saitou N, Nei M. The neighbor-joining method: a new method for reconstruct-

ing phylogenetic trees. Mol Biol Evol. 1987;4:406–425.
 2. Gronau I, Moran S. Optimal implementations of Upgma and other common

clustering algorithms. Inf Process Lett. 2007;104:205–210.
 3. Sibson R. SLINK: an optimally efficient algorithm for the single-link cluster

method. Comput J. 1973;16:30–34.

Table 8. The measured error values on the bacterial dataset.

METhOD METRIc

errordistmx errortree errorR F-

WFM n/a 108.13 10

SWFM n/a 110.67 10

FSWM n/a 83.70 0

YSMM n/a 111.95 14

Andi n/a 64.47 0

Kr n/a — 2

SWSPM n/a 128.22 10

Lower values are better.
Abbreviations: FSWM, filtered spaced words matches; SWFM, spaced word
frequencies method; SWSPM, sliding window spectral projection method; WFM,
word frequencies method; YSMM, (Yin) signal moments method.

Figure 6. Phylogenetic tree constructed by SWSPM on 825 hIV

genomes. SWSPM indicates sliding window spectral projection method.

Table 9. The measured error values on the Drosophila dataset.

METhOD METRIc

errordistmx errortree errorR F-

WFM n/a 76.49 12

SWFM n/a 77.96 10

FSWM n/a — —

YMMM n/a — —

Andi n/a 101.01 10

Kr n/a — —

SWSPM n/a 100.4 14

Lower values are better.
Abbreviations: FSWM, filtered spaced words matches; SWFM, spaced word
frequencies method; SWSPM, sliding window spectral projection method; WFM,
word frequencies method; YSMM, (Yin) signal moments method.

https://genome.ucsc.edu/index.html
https://genome.ucsc.edu/index.html

Farkaš et al 11

 4. Haubold B. Alignment-free phylogenetics and population genetics. Brief Bioin-
form. 2014;15:407–418.

 5. Borrayo E, Mendizabal-Ruiz EG, Velez-Perez H, Romo-Vazquez R, Mendiza-
bal AP, Morales JA. Genomic signal processing methods for computation of
alignment-free distances from DNA sequences. PLoS ONE. 2014;9:e110954.

 6. Zielezinski A, Vinga S, Almeida J, Karlowski WM. Alignment-free sequence
comparison: benefits, applications, and tools. Genome Biol. 2017;18:186.

 7. Schwende I, Pham TD. Pattern recognition and probabilistic measures in align-
ment-free sequence analysis. Brief Bioinform. 2014;15:354–368.

 8. Vinga S, Almeida J. Alignment-free sequence comparison-a review. Bioinformat-
ics. 2003;19:513–523.

 9. Leimeister CA, Boden M, Horwege S, Lindner S, Morgenstern B. Fast align-
ment-free sequence comparison using spaced-word frequencies. Bioinformatics.
2014;30:1991–1999.

 10. Song K, Ren J, Reinert G, Deng M, Waterman MS, Sun F. New developments
of alignment-free sequence comparison: measures, statistics and next-generation
sequencing. Brief Bioinform. 2013;15:343–353.

 11. Reinert G, Chew D, Sun F, Waterman MS. Alignment-free sequence compari-
son (I): statistics and power. J Comput Biol. 2009;16:1615–1634.

 12. Kantorovitz MR, Robinson GE, Sinha S. A statistical method for alignment-
free comparison of regulatory sequences. Bioinformatics. 2007;23:i249–255.

 13. Bao J, Yuan R, Bao Z. An improved alignment-free model for DNA sequence
similarity metric. BMC Bioinformatics. 2014;15:321.

 14. Domazet-Lošo M, Haubold B. Efficient estimation of pairwise distances
between genomes. Bioinformatics. 2009;25:3221–3227.

 15. Leimeister CA, Morgenstern B. KMACS: the k-mismatch average common
substring approach to alignment-free sequence comparison. Bioinformatics.
2014;30:2000–2008.

 16. Haubold B, Klotzl F, Pfaffelhuber P. Andi: fast and accurate estimation of evolution-
ary distances between closely related genomes. Bioinformatics. 2015;31:1169–1175.

 17. Leimeister CA, Sohrabi-Jahromi S, Morgenstern B. Fast and accurate phylogeny
reconstruction using filtered spaced-word matches. Bioinformatics. 2017:971–979.

 18. Buhler J. Efficient large-scale sequence comparison by locality-sensitive hashing.
Bioinformatics. 2001;17:419–428.

 19. Ondov BD, Treangen TJ, Melsted P, et al. Mash: fast genome and metagenome
distance estimation using MinHash. Genome Biol. 2016;17:132.

 20. Yu C, Hernandez T, Zheng H, et al. Real time classification of viruses in 12
dimensions. PLoS ONE. 2013;8:e64328.

 21. Li Y, Tian K, Yin C, He RL, Yau SST. Virus classification in 60-dimensional
protein space. Mol Phylogenet Evol. 2016;99:53–62.

 22. Zhang YY, Wen J, Yau SST. Phylogenetic analysis of protein sequences based on
a novel k-mer natural vector method [published online ahead of print September
5, 2018]. Genomics. doi:10.1016/j.ygeno.2018.08.010.

 23. Zhao X, Tian K, He RL, Yau SST. Convex hull principle for classification and
phylogeny of eukaryotic proteins [published online ahead of print December 5,
2018]. Genomics. doi:10.1016/j.ygeno.2018.11.033.

 24. Yin C, Chen Y, Yau SST. A measure of DNA sequence similarity by Fourier
transform with applications on hierarchical clustering. J Theor Biol.
2014;359:18–28.

 25. Hoang T, Yin C, Zheng H, Yu C, Lucy He R, Yau SS. A new method to clus-
ter DNA sequences using Fourier power spectrum. J Theor Biol. 2015;372:
135–145.

 26. Cooley JW, Tukey JW. An algorithm for the machine calculation of complex
Fourier series. Math Comput. 1965;19:297–301.

 27. Katoh K, Toh H. Recent developments in the MAFFT multiple sequence align-
ment program. Brief Bioinform. 2008;9:286–298.

 28. Yin C, Yau SST. A coevolution analysis for identifying protein-protein interac-
tions by Fourier transform. PLoS ONE. 2017;12:e0174862.

 29. Dong R, Zhu Z, Yin C, He RL, Yau SST. A new method to cluster genomes
based on cumulative Fourier power spectrum. Gene. 2018;673:239–250.

 30. Cheever EA, Overton GC, Searls DB. Fast Fourier transform-based correlation
of DNA sequences using complex plane encoding. Comput Appl Biosci.
1991;7:143–154.

 31. Ouyang W, Cham WK. Fast algorithm for Walsh Hadamard transform on slid-
ing windows. IEEE Trans Pattern Anal Mach Intell. 2010;32:165–171.

 32. Yin Changchuan . Identification of repeats in DNA sequences using nucleotide
distribution uniformity. J Theor Biol. 2017;412:138–145.

 33. Wong WM. Discrete Fourier Analysis. Basel, Switzerland: Springer; 2011.
 34. Schubert E, Koos A, Emrich T, Züfle A, Schmid KA, Zimek A. A framework

for clustering uncertain data. Proc VLDB Endow. 2015;8:1976–1979.
 35. Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci.

1981;53:131–147.
 36. Felsenstein J. PHYLIP—phylogeny inference package (Version 3.2). Cladistics.

1989;5:164–166.
 37. Fletcher W, Yang Z. INDELible: a flexible simulator of biological sequence evo-

lution. Mol Biol Evol. 2009;26:1879–1888.
 38. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time

and space complexity. BMC Bioinform. 2004;5:113.
 39. Valach M, Farkas Z, Fricova D, et al. Evolution of linear chromosomes and

multipartite genomes in yeast mitochondria. Nucleic Acids Res. 2011;39:
4202–4219.

 40. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large
phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704.

 41. Wu X, Cai Z, Wan XF, Hoang T, Goebel R, Lin G. Nucleotide composition
string selection in HIV-1 subtyping using whole genomes. Bioinformatics.
2007;23:1744–1752.

 42. Ward JH Jr. Hierarchical grouping to optimize an objective function. J Am Stat
Assoc. 1963;58:236–244.

 43. Clark AG, Eisen MB, Smith DR, et al. Evolution of genes and genomes on the
Drosophila phylogeny. Nature. 2007;450:203–218.

 44. Haubold B, Pfaffelhuber P, Domazet-Loso M, Wiehe T. Estimating mutation
distances from unaligned genomes. J Comput Biol. 2009;16:1487–1500.

