
RESEARCH ARTICLE National Science Review
8: nwaa233, 2021

doi: 10.1093/nsr/nwaa233
Advance access publication 10 September 2020

INFORMATION SCIENCE

Tiny noise, big mistakes: adversarial perturbations induce
errors in brain–computer interface spellers
Xiao Zhang1, Dongrui Wu 1,∗, Lieyun Ding2,∗, Hanbin Luo2, Chin-Teng Lin3,
Tzyy-Ping Jung4,5 and Ricardo Chavarriaga6

1Ministry of Education
Key Laboratory of
Image Processing and
Intelligent Control,
School of Artificial
Intelligence and
Automation,
Huazhong University
of Science and
Technology, Wuhan
430074, China;
2School of Civil
Engineering and
Mechanics, Huazhong
University of Science
and Technology,
Wuhan 430074,
China; 3Centre of
Artificial Intelligence,
Faculty of Engineering
and Information
Technology, University
of Technology Sydney,
Sydney, NSW 2007,
Australia; 4Swartz
Center for
Computational
Neuroscience,
Institute for Neural
Computation,
University of
California San Diego,
La Jolla, CA 92093,
USA; 5Center for
Advanced
Neurological
Engineering, Institute
of Engineering in
Medicine, University
of California San
Diego, La Jolla, CA
92093, USA and
6ZHAW DataLab,
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ABSTRACT
An electroencephalogram (EEG)-based brain–computer interface (BCI) speller allows a user to input text
to a computer by thought. It is particularly useful to severely disabled individuals, e.g. amyotrophic lateral
sclerosis patients, who have no other effective means of communication with another person or a computer.
Most studies so far focused on making EEG-based BCI spellers faster and more reliable; however, few have
considered their security.This study, for the first time, shows that P300 and steady-state visual evoked
potential BCI spellers are very vulnerable, i.e. they can be severely attacked by adversarial perturbations,
which are too tiny to be noticed when added to EEG signals, but can mislead the spellers to spell anything
the attacker wants.The consequence could range frommerely user frustration to severe misdiagnosis in
clinical applications. We hope our research can attract more attention to the security of EEG-based BCI
spellers, and more broadly, EEG-based BCIs, which has received little attention before.
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INTRODUCTION
A brain–computer interface (BCI), which has been
extensively used in neuroscience, neural engineering
and clinical rehabilitation, offers a communication
pathway that allows people to interact with com-
puters using brain signals directly [1–4]. There
are many approaches to collecting signals from
the brain. Electroencephalogram (EEG), usually
measured from the scalp, may be the most popular
one due to its simplicity and low cost [5].

An EEG-based BCI speller allows a user to input
text to a computer by thought [6,7]. It enables
people with severe disabilities, e.g. amyotrophic
lateral sclerosis (ALS) patients, to communicate
with computers or other people.The twomain types
of EEG-based BCI spellers are P300 spellers [6]
and steady-state visual evoked potential (SSVEP)
spellers [7], which elicit different EEG patterns, as
illustrated in Fig. 1(a).

A P300 speller, which uses P300 evoked po-
tentials as its input signal [8], was first invented
by Farwell and Donchin in 1988 [6] and further
developed bymany others [9–12]. P300 is a positive
deflection in voltage, typically appearing around 250

to 500 ms after a rare target stimulus occurs [13].
It is an endogenous potential linked to people’s
cognitive processes, such as information processing
and decision making [14,15]. The standard oddball
paradigm is usually used to elicit P300, in which
rare target stimuli are mixed with high-probability
nontarget ones. The P300 speller considered in this
article uses a 6 × 6 character matrix, which consists
of 26 letters and 10 other symbols, as shown in
Fig. 1(b). The user stares at the character he/she
wants to input, while a row or column is rapidly
intensified sequentially. The corresponding EEG
signals are recorded and classified as a target (con-
taining P300) or nontarget (not containing P300)
for each intensification. Then, the computer iden-
tifies the character at the intersection of the target
row and the target column, which elicit the largest
P300s, as the output. For reliable performance,
each row and column may have to be intensified
multiple times, which reduces the speed of the P300
speller.

Compared with the P300 speller, an SSVEP
speller has the advantages of a high information
transfer rate (ITR), little user training and some
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Figure 1. A P300 speller and an SSVEP speller. (a) Workflow of a P300 speller (top path) and an SSVEP speller (bottom path).
For each speller, the user watches the stimulation interface, focusing on the character he/she wants to input, and EEG signals
are recorded and analyzed by the speller. The P300 speller first identifies the row and the column that elicit the largest P300,
and then outputs the character at their intersection. The SSVEP speller identifies the output character directly by matching
the user’s EEG oscillation frequency with the flickering frequency of each candidate character. (b) Stimulation interface of a
P300 speller, where the second column is intensified. (c) Stimulation interface of an SSVEP speller. The number below each
character indicates its flickering frequency (Hz).

immunity to artifacts [16–18]. When the user stares
at a visual target flickering at a specific frequency,
usually between 3.5 and 75 Hz, electrical signals
of the same frequency, as well as its corresponding
harmonics, can be observed from the EEG signals
[16]. In an SSVEP speller, the pictures of different
characters are flickering at different frequencies,
so that a classifier can directly identify the output
character from a large number of candidates by
matching their flickering frequencies with the user’s
EEG oscillation frequency. Since all characters in
an SSVEP speller are flickering simultaneously (in
contrast to sequential intensification in a P300
speller), they can have much higher ITRs. The
SSVEP speller considered in this study has 40 char-
acters (Fig. 1(c)), whose stimulation frequencies
are from 8 to 15.8 Hz with 0.2 Hz increment [19].

Machine learning is used in BCI spellers to con-
struct the classifiers to detect the brain responses to
stimuli (i.e. theP300orSSVEPpatterns).Most stud-
ies so far focused onmaking the BCI classifiers faster
and more reliable; however, few have considered
their security. It has been found in other application
domains that adversarial examples [20], which are
normal examples contaminated by deliberately de-

signed tiny perturbations, can easily fool machine
learning models. These perturbations are usually so
small that they are indistinguishable to human eyes.
Existing studies on adversarial examples focused
largely on deep learningmodels for computer vision.
For example, it was found that a picture of a panda,
after adding a weak adversarial perturbation, can be
misclassified as a gibbon by a deep learning classi-
fier [21]. Kurakin et al. [22] found that printed pho-
tos of adversarial examples can degrade the perfor-
mance of an ImageNet Inception classifier. Athalye
et al. [23] three-dimensionally printed a turtle with
an adversarial texture, which was classified as a rif-
fle from almost every viewpoint. Recently, adversar-
ial examples were also found in traditional machine-
learning models [24] and in many other application
domains, e.g. speech recognition [25], text classifica-
tion [26], malware identification [27], etc. Because
of the high risk of adversarial attacks, many defense
mechanisms have been proposed, such as defensive
distillation [28], adversarial training [21,29,30] and
so on [31–33]. However, these approaches only im-
prove empirical adversarial robustness, which is not
certified and may be broken by a stronger attack
approach [34,35]. Recently, researchers started to
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investigate provable guarantees of adversarial ro-
bustness, yet there is still a huge gap between certi-
fied robustness and empirical robustness [36–39].

This article aims to expose a critical security
concern in EEG-based BCI spellers, and more
broadly, EEG-based BCIs, which has received little
attention before. It shows for the first time that
one can generate tiny adversarial EEG perturbation
templates for target attacks for both P300 and
SSVEP spellers, i.e. mislead the classification to
any character the attacker wants, regardless of what
the user’s intended character is. The consequence
could range from merely user frustration to severe
misdiagnosis in clinical applications [40]. We
believe a new and more detailed understanding
of how adversarial EEG perturbations affect BCI
classification can inform the design of BCIs to
defend against such attacks.

There have been some studies on adversarial at-
tacks of time-series signals [25,40–42].They treated
time-series signals just like images, and then applied
essentially the same attack approaches in image
classification to generate adversarial perturbations.
As a result, they need to know the full time series
before computing the adversarial perturbations,
which means that these approaches are not causal
and hence cannot be implemented in real-world ap-
plications. For example, to attack a voice command,
previous approaches need to record the entire voice
command first, and then design the perturbation.
However, once the perturbation is obtained, the
voice command has already been sent out (e.g. to a
smartphone or Amazon Echo), so there is no chance
to add the perturbation to the voice command to
actually perform the attack.

What distinguishes the attack approaches in this
article most from previous ones is that it explicitly
considers the causality in designing the pertur-
bations. The adversarial perturbation template is
constructed directly from the training set and then
fixed. So, there is no need to know the test EEG trial
and compute the perturbation specifically for it.The
perturbation can be directly added to a test EEG
trial as soon as it starts, and hence satisfies causality
and can be implemented in practice. Thus, it calls
for an urgent need to be aware of such attacks and
defend against them.

A closely related concept is universal adversarial
perturbations [43], which can also be viewed as
adversarial perturbation templates and have been
used to attack deep learning models in image
classification. This study focuses on the security
of a traditional and most frequently used BCI
pipeline, which consists of separate feature ex-
traction and classification steps, whereas universal
adversarial perturbations are usually designed for

nontarget attacks of end-to-end deep learning
models.

To summarize, our contributions are as follows.

(i) We show, for the first time, that tiny noise can
significantly manipulate the outputs of P300
and SSVEP spellers, exposing a critical security
concern in BCIs.

(ii) Instead of deep learning models, we consider
the classical BCI pipeline consisting of feature
extraction and classification as our victim
models, which dominate practical BCI spellers.

(iii) Our generated adversarial perturbation tem-
plates satisfy the causality of time-series signals,
which was rarely paid attention to before.

RESULTS
Performance evaluation
We used two measures to evaluate the performance
of a BCI speller, the classification accuracy and the
ITR [44], which measures the typing speed of the
speller:

ITR = 1
T

[
log2 Q + R log2 R

+ (1 − R) log2
1 − R
Q − 1

]
. (1)

Here T is the average time (minutes) spent to
input a user character, Q is the number of different
characters (which was 36 in our P300 speller and
40 in the SSVEP speller) and R is the classification
accuracy.The unit of the ITR is bits/min. When the
classification accuracy is lower than a random guess,
i.e. R≤ 1/Q, the ITR is directly set to 0.

To distinguish between the character the user
wants to spell, and the character the attacker wants
to mislead to, we denote the former ‘user character’
and the latter ‘attacker character’. Accordingly,
‘user score’ and ‘user ITR’ are used to describe the
classification accuracy of user characters and the
corresponding ITR, respectively. An ‘attacker score’
is defined as the ratio that the perturbation template
leads the speller to output an attacker character, and
the corresponding ‘attacker ITR’ is calculated by
replacing R in equation (1) with the attacker score.
A higher attacker score or attacker ITR represents a
better target attack performance.

Security of the P300 speller
Data information
We used a public P300 dataset (dataset II)
introduced by Blankertz et al. [45]. It recorded
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64-channel EEG signals from two subjects (A and
B).TheEEGdatawere sampled at 240Hz, bandpass
filtered to 0.1–40 Hz, then z normalized for each
channel. There were 85 training character trials
and 100 test character trials for each subject. For
each trial, a set of 12 random intensifications (six
rows and six columns) were repeated 15 times (i.e.
each row was intensified 15 times, and each column
was also intensified 15 times). Each intensification
lasted for 100 ms, after which the character matrix
was blanked for 75 ms. So, it took (100 + 75) ×
12× 15= 31 500ms, or 31.5 s, to input a character.
The spelling speed can be improved by using fewer
repeats, e.g. 10 or 5; however, the spelling accuracy
generally decreaseswith a smaller numberof repeats.

Note that all the following experiments were
also successfully performed on a public ALS P300
dataset with eight ALS patients (see the online
supplementary material for details).

The victim model
The victim model was a Riemannian geometry-
based approach, which won the Kaggle BCI chal-
lenge (see https://www.kaggle.com/c/inria-bci-
challenge) in 2015. First, 16 xDAWN spatial filters
[46], eight for the target trials and another eight for
the nontarget trials, were designed to filter all the
trials. The template-signal covariance matrices of
the EEG epochs were projected onto the tangent
space of a Riemannian manifold [47–49], using an
affine-invariant Riemannian metric as its distance
metric. Finally, we classified the feature vectors with
a logistic regression model in the tangent space.The
details can be found in the online supplementary
material. The model was trained with class-specific
weights to accommodate class imbalance. All
operations in these blocks are differentiable, so
we reimplemented them using Tensorflow [50] to
facilitate the gradient calculation.

To get the label (target or nontarget) of an
intensification, an epoch between 0–600 ms from
the beginning of the intensification was extracted
and fed into the victim model to calculate the target
probability. Because each row and column was
intensified multiple times, voting was performed for
each trial to get the target row and target column,
and hence the target character.

Baseline performance
The first part of Table 1 shows the baseline perfor-
mance of the clean EEG data (without adding any
perturbations). As the number of intensification re-
peats increased, the user score increased, indicating
that the classification accuracy of the user characters
increased. Meanwhile, the user ITR decreased, Ta
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(c)

(b)(a)

Figure 2. P300 speller attack results. (a) Attacker scores of manipulating the P300 speller to misclassify the 100 test character trials into a specific
attacker character. The P300 speller used 15 intensification repeats for each character. (b) EEG trials before and after adversarial perturbations, which
are almost completely overlapping (the SPRs are shown in Table 1), and the difference (magnified ten times) between the adversarial trial and the
benign trial. The nonzero part of the difference is the adversarial perturbation template, which is added to a benign EEG trial according to the attacker
character. The adversarial perturbation led the P300 speller to misclassify letter Y intoN. (c) The left column shows the average of 100× 15× 2= 3000
target trials (containing P300) and an average of 100× 15× 10= 15 000 nontarget trials (not containing P300) in channel Cz for benign and adversarial
trials; the middle column shows the spectrogram of the difference between the average target trial and the average nontarget trial in channel Cz for
benign and adversarial trials; the right column shows the topoplot of the difference between the average target trial and the average nontarget trial
for benign and adversarial trials. Panels (b) and (c) present the visualization of the adversarial perturbations for subject A.

because the time needed to input each character
significantly increased.

The second part of Table 1 shows the baseline
performance when we added Gaussian noise to the
raw EEG data, averaged over 10 runs. The Gaussian
noise perturbations were preprocessed in the same
way as the adversarial perturbations, by replacing
the perturbation ( P̃ in equation (6)) with standard
Gaussian noise, so that they had the same energy.
We use a signal-to-perturbation ratio (SPR) to
quantify the magnitude of the perturbation, which
is also presented in the second part of Table 1.
Gaussian noise perturbations had almost no impact
on the user score and the user ITR at all, not to
mention forcing the P300 speller to output a specific
attacker character. These results suggest that more
sophisticated adversarial perturbations are needed
to attack the P300 speller.

Performance under adversarial attacks
We added the adversarial perturbation template
to the test EEG trials to validate whether it was
effective in misleading the P300 speller. In Fig. 2(a)
we show the attacker scores of the 36 characters.
The attacker can manipulate the P300 speller to
spell whatever character he/she wants, regardless of
what the user’s intended character is, with a higher
than 90% average success rate.

The third part of Table 1 shows the average
user scores and ITRs with different numbers of
intensification repeats. The user scores and ITRs
were close to zero, suggesting that the user almost
cannot correctly input the character he/she wanted.

The fourth part of Table 1 shows the average
attacker scores and ITRs with different numbers of
intensification repeats. The attacker score increased
with the number of intensification repeats, because
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more repeats increased the number of times that the
attacker can inject the perturbation into the benign
EEG trial.

To better quantify the magnitude of the per-
turbations, we also calculated two SPRs. The
adversarial perturbation template was only added
at some specific periods of the EEG trial, as shown
in Fig. 2(b); therefore, we defined a ‘period SPR’ to
measure the SPR of the perturbed period, and also a
‘trial SPR’ tomeasure the SPR of the entire trial.The
last part of Table 1 shows these SPRs. They were
higher than 20 dB, suggesting that the adversarial
perturbation template may be undetectable when
added to benign EEG trials.

Visualization of the adversarial perturbations
In addition to high attack performance, another
requirement in adversarial attacks is that the pertur-
bations shouldnot bedetected easily. InFig. 2(b)we
show a typical EEG trial before and after the adver-
sarial perturbation on subject A. For clarity, we only
show channels F3, F4, Cz, P3 and P4, which evenly
distribute on the scalp. One can barely distinguish
the adversarial EEG trial from the original EEG trial.

A traditional way to visualize the P300 signal
is to take the average of multiple P300 trials. We
also took this approach to check if there was a
noticeable difference between the average target (or
nontarget) trials, before and after perturbation. In
Fig. 2(c) we show the results from the Cz channel.
One can hardly observe any differences. In Fig. 2(c)
we also show the spectrograms and topoplots of
the difference between the average target EEG trial
and the average nontarget EEG trial. The original
and adversarial spectrograms (or topoplots) show
very similar energy distributions and are hardly
distinguishable by human eyes.

Security of the SSVEP speller
Data information
The dataset was first introduced by Wang et al. [19]
as a benchmark dataset for SSVEP-based BCIs. The
64-channel signals were recorded from 35 subjects
using an extended 10–20 system. During the exper-
iments, the subjects were facing a monitor, in which
a 5 × 8 character matrix was flickering. Different
flickering frequencies were assigned to the 40 char-
acters, respectively, ranging from 8 to 15.8 Hz with
0.2 Hz increment, as shown in Fig. 1(c). Six blocks
of EEG signals were recorded from each subject,
each with 40 trials, corresponding to the 40 target
characters. Each trial was downsampled to 250 Hz
and lasted 6 s, including 0.5 s before stimulus onset,
5 s for stimulation and 0.5 s after stimulus offset.

Chen et al. [51] showed that an SSVEP at the
stimulation frequency and its harmonics usually
starts to be evokedwith a delay around 130–140ms;
hence, we extracted EEG signals between [0.13,
1.38] s after the stimulus onset as the input to the
victim model. Nine channels over the occipital and
parietal areas (Pz, POz, PO3, PO4, PO5, PO6,
Oz, O1 and O2) were chosen. The signals were
bandpass filtered to 7–90 Hz with a fourth-order
Butterworth filter.

The victim model
Extracting the frequency information of SSVEPs
is an essential step in recognizing the stimulation
frequency, and hence the user character. A natural
solution is to utilize a fast Fourier transform to
estimate the spectrum, so that the energy peaks can
be matched to the stimulation frequency; however,
canonical correlation analysis (CCA) was recently
shown to be more promising in identifying the
stimulation frequency [51,52]. Thus, CCA-based
frequency recognition was used in the victimmodel.

CCA is a statistical approach that can be used to
extract the underlying correlation between twomul-
tichannel time series [53]. Its main idea is to find a
linear combination of channels for each time series,
so that their correlation is maximized.When applied
to SSVEP spellers, CCA is utilized to calculate the
maximum correlation between the input EEG sig-
nals and a standard reference signal, which consists
of the sinusoidal signal of a stimulation frequency
and its (Nq − 1) harmonics (Nq = 5 in our case).

Mathematically, let X ∈ R
Ne×Ns denote an EEG

trial with Ne channels and Ns samples, and let Yf be
a standard reference signal of stimulation frequency
f. The (c, n)th entry of Yf is

Y f (c , n) =
⎧⎨
⎩
sin

(
(c + 1)π f

f s
n
)

, c is odd,

cos
(
cπ f

f s
n
)

, c is even,

(2)

where fs is the sampling rate, 1 ≤ c ≤ 2Nq and
1 ≤ n ≤ Ns. To calculate the maximum correlation
coefficient ρ(X, Yf), X and Yf are first z normalized,
and then ρ(X, Yf) is computed as the square root of
the largest eigenvalue of matrix

S(X, Y f ) = (
X XT)−1 XY T

f
(
Y f Y T

f
)−1 Y f XT ,

(3)

i.e.

ρ(X, Y f ) =
√

λmax
(
S(X, Y f )

)
. (4)
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More detailed derivations can be found in the online
supplementary material.

Let F = { f i }Ki=1 be the set of K candidate stim-
ulation frequencies (K = 40 in our case). Then, the
SSVEP speller outputs the character corresponding
to the following stimulation frequency:

f ∗ = argmax
f ∈F

ρ(X, Y f ). (5)

Baseline performance
Among the 35 subjects, eight with the best baseline
performances (shown in the first part of Table 2)
were used in our experiments (the baseline perfor-
mances of all 35 subjects can be found in Fig. 2 of
the online supplementary material).

Because SSVEPs are highly susceptible to peri-
odic noise, we evaluated the robustness of the victim
model to Gaussian noise and sinusoidal noise of a
random single frequency chosen from 40 stimula-
tion frequencies, and a random phase chosen from
−π/2 to π/2. We also considered compound sinu-
soidal noise that can be regarded as the summation
of single sinusoidal noise of different frequencies,
random amplitudes and random phases. The SPRs
were all set to 25 dB, so that the energy of the Gaus-
sian noise and single/compound (S/C) periodic
noise was comparable to that of the adversarial per-
turbation templates. The ‘Gaussian noise’ and ‘S/C
periodic noise’ panels of Table 2 show the results on
these noisy data, averaged over 10 runs, respectively.
The victim model was almost completely immune
to the Gaussian noise. The single periodic noise
degraded the model performance more than the
Gaussian noise or compound periodic noise.

Performance under adversarial attacks
Wegenerated 40 adversarial perturbation templates,
each forcing the SSVEP speller to output a specific
character. In Fig. 3(a) we show their attacker scores.
For six of the eight subjects, their output character
can be manipulated to any character the attacker
wanted, at 70%–100% success rate. Interestingly,
due to individual differences, subjects 3 and 25
showed some resistance to adversarial perturbation
templates.

The fifth and sixth parts of Table 2 show the av-
eraged user and attacker performances, respectively.
The adversarial perturbation templates were very ef-
fective on most subjects (except subjects 3 and 25),
reducingboth theuser scores and theuser ITRs to al-
most zero, i.e. the user almost cannot correctly input
any character he/she wanted. The attacker scores
for five subjects were close to one, i.e. the attacker
was able to force the SSVEP speller to output any Ta
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(c)

(b) (d)

(a)

Figure 3. SSVEP speller attack results. (a) Attacker scores of manipulating the SSVEP speller to misclassify the 5 × 40 =
200 test character trials into a specific attacker frequency (character). (b) The left column shows the EEG trials before and
after adversarial perturbations, for subject 26; the right column shows the difference (adversarial perturbation) between the
adversarial EEG trial and the benign EEG trial for subject 26, magnified by ten times to make them visible. The adversarial
perturbation led the SSVEP speller to misclassify the letter Y intoN. (c) Detailed signal analysis for channel POz of subject 26.
The clean signal was the average of all six trials of 8 Hz stimulation frequency, and the adversarial trial was the average
of the same trials with δ13Hz added. Standard 8 and 13 Hz sinusoidal signals are shown as references. The green dash–dot
lines mark the 8 Hz periodicity. (d) Normalized spectra of SSVEPs for 40 stimulation frequencies, averaged over all the chosen
channels and all 40 subjects.

character he/she wanted. The SPRs were all around
25 dB, comparable to the SPRs for random noise.

Visualization of the adversarial perturbations
In this subsection we show the characteristics of the
adversarial perturbation templates, and verify their
imperceptibility to some widely used approaches
for evaluating the quality of SSVEPs.

In Fig. 3(b) we show the EEG signals before
and after adversarial perturbations, along with the
magnified difference. The SSVEP speller misclassi-
fied the user character, which was supposed to be Y
(8.6 Hz), intoN (13.2 Hz). Human eyes can barely

recognize the difference between the benign and
the adversarial EEG trials. After being magnified
by 10 times, the perturbation looks periodical,
which can modify the user frequency to the attacker
frequency.

We compared the clean and adversarial EEG
signals with standard sinusoidal signals in Fig. 3(c),
using subject 26 as an example. We took the average
of the clean temporal waveforms of 8 Hz SSVEPs
from channel POz, and did the same for their ad-
versarial signals with δ13Hz added (which forced the
SSVEP speller to output the character of 13Hz stim-
ulation frequency). We chose channel POz because
the adversarial perturbation on this channel had one
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of the largest amplitudes, as shown in Fig. 3(b). In
Fig. 3(c) we show that both clean and adversarial
EEG signals were synchronized with the standard
8 Hz sinusoidal signal, indicated by the green dash–
dot lines. Comparing the 13 Hz sinusoidal signal
with the magnified difference, the synchronization
can also be observed, suggesting that the adversarial
perturbation template introduced a frequency
component matching the attacker character, which
was imperceptible to human eyes but powerful
enough to mislead the SSVEP speller.

In Fig. 3(d) we show the spectrum analysis of
SSVEPs for 40 stimulation frequencies.We averaged
the spectra of the benign EEG signals of the same
stimulation frequency from all the subjects and all
chosen channels, so that background activities can
be suppressed. The first row of Fig. 3(d), for benign
trials, clearly shows that the visual stimulus, flicker-
ing at a stimulation frequency, can evoke SSVEPs of
the same frequency and its harmonics. The second
row of Fig. 3(d) shows the same property of adver-
sarial trials, whose attacker character was randomly
chosen and fixed for each stimulation frequency.We
cannot observe noticeable differences between the
two rows in Fig. 3(d), demonstrating the challenge
in detecting the adversarial perturbation templates.

CONCLUSION AND DISCUSSION
In this article we have shown that one can gen-
erate adversarial EEG perturbation templates for
target attacks for both P300 and SSVEP spellers,
i.e. deliberately designed tiny perturbations can
manipulate an EEG-based BCI speller to output
anything the attacker wants with high success rate,
demonstrating the vulnerability of BCI spellers. We
should emphasize that the attack framework used
here is not specific to the victim models used in this
article. They may also be utilized to attack many
other classifiers in BCIs with little modification.

Limitations
The current approaches have two limitations:
(a) they require some subject-/model-specific
EEG trials to construct the adversarial perturbation
template; and (b) they need to know the exact
timing of the stimulus to achieve the best attack
performance. The adversarial attacks could be more
dangerous if these limitations are not resolved.

The first limitation may be alleviated by utilizing
the transferability of adversarial examples, which
was one of the most dangerous properties of adver-
sarial examples. It was first discovered by Szegedy
et al. [20] in 2014 and further investigated by many

others [24,54–56]. The transferability means that
adversarial examples generated from one model can
also be used to attack another model, which may
have a completely different architecture and/or be
trained from a different dataset. Thus, it may be
possible to construct the adversarial perturbation
template from some existing subjects/models and
then apply it to a new subject/model. In the online
supplementary material we present experimental
results on both cross-subject and cross-model trans-
ferability of the generated adversarial perturbations.

The second limitation is that the attacker needs
to know the precise time synchronization between
adversarial perturbation templates and EEG signals.
To study how the synchronization time delay affects
the attack performance, we show the relationship
between the user/attacker scores and the time delay
in adding the perturbation template (see Fig. 3
of the online supplementary material). It can be
observed that the SSVEP perturbation template was
fairly robust to the time delay whereas the P300
adversarial template was sensitive to the synchro-
nization. For the P300 speller, when the time delay
increased, the user score increased rapidly while
the attacker score decreased rapidly, suggesting
that hiding the time synchronization information
may help defend against adversarial attacks in the
P300 spellers. However, attacks insensitive to the
synchronization may also be possible. For example,
the idea of ‘adversarial patch’ [57], which is a tiny
picture patch that can mislead the classifier when
added anywhere to a large picture to be classified,
may be used to increase the robustness to the
synchronization time delay.Thus, defending against
the attackers may not be an easy task.

Closed-loop BCI application
considerations
In a typical closed-loop BCI speller, the user could
receive real-time feedback of his/her chosen char-
acter from the screen. If the adversarial perturbation
constantly misleads the speller and returns wrong
characters that do not match the user’s intentional
input, the user would most likely stop using the
speller. The consequence may not seem serious
for a user that has other means of communication;
however, for patients with severe impairments that
rely on BCI spellers as their sole mean of communi-
cation, e.g. ALS patients, either the attacker changes
the meaning of their sentences and they cannot do
anything at all, or the patients stop responding, mis-
leading doctors/researchers into thinking they are
not able to communicate at all. Both consequences
can significantly impact the patients.
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Although this article focused on adversarial
attacks of P300 and SSVEP spellers, P300 and
SSVEP are also widely used in neuroergonomics
and assessment of cognitive states, e.g. diagnosis
of disorder of consciousness patients [58]. The
proposed approach can be used to attack these BCI
systems with little modification.The adversarial per-
turbation could also be a serious concern if the BCI
system is used in other scenarios, such as automatic
driving, wheelchair control or exoskeleton control,
where the feedback could be too late and the cost
of one step mistake could be fatal. Moreover, the
attacker may only start the attack in some critical
conditions. The user is completely unprepared, and
the consequences could be more disastrous.

Finally, we need to emphasize again that the
goal of this study is not to damage EEG-based
BCIs. Instead, we aim to demonstrate that serious
adversarial attacks to EEG-based BCIs are possible,
and hence expose a critical security concern, which
has received little attention before. Our future
research will develop strategies to defend against
such attacks. Meanwhile, we hope our study can
attract more researchers’ attention to the security of
EEG-based BCIs.

METHODS
Attack the P300 speller
The main idea to construct the adversarial pertur-
bation template was to find a universal perturbation
that leads the P300 classifier to classify nontarget
epochs into target epochs. We calculated the gradi-
ents of the loss with respect to the input nontarget
EEGepochs and then summed themas the universal
perturbation, assuming the decision boundary is
linear. Though the victim model includes nonlin-
ear operations, the attack approach still worked
surprisingly well.

Let X be an EEG trial, y be its label (0 for the
nontarget and 1 for the target), f be the victimmodel
that gives the label probability for each input X,
J(X, y, f) be the loss function (cross-entropy loss
in our case), and DNT be the dataset containing
all nontarget epochs in the training set. Then, the
overall direction can be computed as

P̃ =
∑

(X,y)∈DNT

∇X J (X, 1 − y , f )
‖∇X J (X, 1 − y , f )‖F

. (6)

After obtaining P̃ , we filtered it by a fourth-order
Butterworth bandpass filter of [0.1, 15] Hz, ex-
tracted the first 350 ms signal, and then normalized
it in each channel so that the L2 norm is 1. Denote
the result as P̂ . Then, the adversarial perturbation P

was computed as

P = ε · P̂ , (7)

where ε is a constant controlling the energy of the
perturbation (ε = 0.5 in our experiments).

To mislead the P300 speller, one only needs to
tamper with some specific signal periods according
to the onset of the target stimuli. Because in a
practical P300 speller the same row or column is
never intensified successively, the perturbation
template can last more than one intensification
period. In our experiments, the template lasted
2 × 175 = 350 ms, i.e. two intensification periods.
In Fig. 4 we illustrate the attack procedure of
changing the output from character 7 to characterZ.

Attack the SSVEP speller
There are two difficulties in attacking the victim
model of the SSVEP speller. First, the victim model
is not fixed, as the parameters of the CCA vary in
different EEG trials. Second, unlike the P300 speller
whose base victim model only needs to classify the
input into two classes, there are many more classes
in the SSVEP speller.Thesemake adversarial attacks
of the SSVEP speller much more challenging.

The remedy was to generate the adversarial
perturbation template δ f̂ ∈ R

Ne×Ns , which can lead
the SSVEP speller to output the attacker character of
stimulation frequency f̂ . For each user, we used the
first blockD = {Xi }Ni=1 to craft δ f̂ , and the remain-
ing five blocks to evaluate its attack performance.

According to the victim model, δ f̂ should be
able to maximize ρ(X + δ f̂ , Y f̂ ) in equation (4),
such that

argmax
f ∈F

ρ(X + δ f̂ , Y f ) = f̂ . (8)

To simplify the optimization and ensure the
integrity of the adversarial template during signal
filtering, we show in the online supplementary
material that the problem can be converted to

min
r f̂

−
∑
X∈D

tr(S(X + filt(r f̂ ), Y f̂ ))

+ α · ‖filt(r f̂ )‖F , (9)

where S(X, Y) is defined in equation (3), filt(·)
means retaining only the 7–90 Hz effective sig-
nal frequency components and α · ‖filt(r f̂ )‖F
penalizes the energy of the perturbation.

Gradient descent was used to update r f̂ , and
then δ f̂ = filt(r f̂ ). The iteration stopped when the
SPR was lower than a threshold, which was set to
25 dB in our experiments.
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Figure 4. Illustration of the attack procedure in the P300 protocol. The attacker character is Z, whereas the user character
is 7. For the benign EEG trial, the P300 speller can correctly identify that P300 is elicited by the intensifications of the last
row and the third column. To mislead the P300 speller, an adversarial perturbation template is added during the periods of
0–350 and 700–1050 ms, so that the fifth row and the second column are believed to elicit P300 with the highest probability.
The added adversarial perturbation templates do not influence the results of the second and the last stimuli, because their
corresponding periods are out of synchronization with the templates. As a result, the P300 speller misclassifies the perturbed
trial to attacker character Z.
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