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Environmental and genetic influences cause individuals of a species to differ

in size. As they do so, organ size and shape are scaled to available resources

whilst maintaining function. The scaling of entire organs has been investi-

gated extensively but scaling within organs remains poorly understood.

By making use of the structure of the insect compound eye, we show that

different regions of an organ can respond differentially to changes in body

size. Wood ant (Formica rufa) compound eyes contain facets of different

diameters in different regions. When the animal body size changes, lens

diameters from different regions can increase or decrease in size either at

the same rate (a ‘grade’ shift) or at different rates (a ‘slope’ shift). These

options are not mutually exclusive, and we demonstrate that both types of

scaling apply to different regions of the same eye. This demonstrates that

different regions within a single organ can use different rules to govern

their scaling, responding differently to their developmental environment.

Thus, the control of scaling is more nuanced than previously appreciated,

diverse responses occurring even among homologous cells within a single

organ. Such fine control provides a rich substrate for the diversification of

organ morphology.
1. Introduction
In natural environments, adults from a single species can vary enormously in

body size owing to a combination of genetic and environmental factors.

Organ size changes to accompany changes in body size, a process known as

allometric scaling [1,2]. Theories of organ scaling [2,3] have focused on entire

organs and how their relative proportions change with whole body size, largely

ignoring changes in the size and number of cells within organs (but see [4]).

Here, we investigate scaling within an organ, the compound eye of an insect.

Organ scaling has been studied in numerous taxa but particularly in holo-

metabolous insects [5–9] because the organs of adults of these insects develop

during pupation from cellular monolayers, called imaginal discs [10,11]. Insect

compound eyes provide an opportunity to explore scaling within an organ

because the facet array provides a read-out at cellular-level resolution of rela-

tive investment in individual facets [4,12]. During development individual

retinal cells arise from an ommatidial progenitor [13,14] and do not contribute

to adjacent ommatidia as they differentiate [15]. Therefore, facet scaling

provides some information about resource allocation at the cellular level

within an imaginal disc during development.

We studied the scaling of wood ant (Formica rufa L.) worker compound

eyes. The area of their compound eyes as well as the numbers of facets and

their diameters increase with body size, though they do so with negative

allometry. We found substantial heterogeneity in scaling of facet diameter
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Figure 1. Regional differences exist in the diameters of facets from compound eyes of wood ant workers. (a) A heat-map of the diameter of each facet from a single wood ant
worker compound eye, 382 facets in total. (b) As in (a) but for an eye from a larger worker, 815 facets in total. A, P, V, D: anterior, posterior, ventral, dorsal.
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between different regions of the compound eye, demon-

strating hitherto unknown control of scaling of structures

within organs.
2. Material and methods
(a) Animals
Formica rufa (Hymenoptera: Formicidae) colonies were collected

from Ashdown Forest, Sussex, UK (N 51 4.680, E 0 1.800)

between June 2013 and August 2014, and maintained indoors

at 218C under a 12 L : 12 D cycle.

(b) Specimen preparation
Individual ants were restrained and transparent nail varnish (Rimmel

London, UK) was applied to both compound eyes to create a cast.

Once dried, the casts were removed, flattened and mounted onto

12.5 mm specimen stubs (Agar Scientific, UK). The rear left femur

of each ant was used as a proxy for the size of the ant [16]. Specimens

were imaged using a scanning electron microscope (S420 Stereoscan,

LEO Electron Microscopy Ltd., Germany).

(c) Measurements
Nine facet diameters from four separate eye regions were selected

at random and measured from 66 ants (2376 facets in total) from

three colonies. The diameters of every facet from a representative

small and large ant were measured to produce eye ‘heatmaps’.

Diameters were measured from scanning electron micrographs

using ImageJ v. 1.48 [17].

(d) Statistics
Statistics were calculated using R v. 3.1.2. [18]. Facet diameter

scaling was investigated with linear mixed effect models by

using the lme function from the ‘nlme’ package [19]. Custom

contrast matrices were used to make post hoc multiple pair-wise
comparisons (t-tests) of linear mixed effect models with the

estimable function from the ‘gmodels’ package [20].
3. Results
We measured the facet diameters of the eyes of small and large

workers (figure 1), creating maps of facet diameters [21]. These

maps revealed differences in facet diameters between the

large and the small workers, as well as regions of the eye in

which facets differed systematically in diameter. In the eye

of the larger worker, the largest facets are found mainly in the

anterior–dorsal region, whereas in the smaller worker

eye, the largest facets are restricted to the anterior–dorsal and

ventral–posterior regions (figure 1). To quantify differences in

facet diameter between regions and across a range of worker

body sizes, we measured facet diameters from four regions

(anterior, posterior, ventral and dorsal) of the compound eye.

Comparisons among eye regions showed that, for a given

body size, facets differed in absolute diameter between regions

within an individual ant. Facet diameters were, however,

larger across all regions of the larger worker eyes than in those

of smaller workers. The intercept of the posterior region was sig-

nificantly higher than that of the anterior region (t65,188¼ 2.69,

p ¼ 0.008). The dorsal region had a significantly lower intercept

than either the posterior (t65,188¼ 3.28, p¼ 0.001) or ventral eye

regions (t65,188 ¼ 2.05, p ¼ 0.04). There were no differences in

the intercepts of the remaining regions (t65,188 , 1.47, p . 0.1).

Thus, as workers increase in size, the facets of some regions

increase in diameter at the same rate, producing grade shifts in

their allometric scaling relationships (figure 2).

Comparison among eye regions also revealed significant

differences in the slope of the scaling relationship, the rate at

which facet diameter increased with increasing body size.

The facet diameters in the anterior (t65,188 ¼ 3.36, p ¼ 0.001)

and dorsal regions of the eye (t65,188 ¼ 2.65, p ¼ 0.009)
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Figure 2. The diameters of facets from different eye regions scale differentially.
The graphs show the scaling of facets from the anterior, posterior, dorsal or
ventral regions of the compound eye for workers from three wood ant nests.
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increased with body size at a faster rate than those from the

ventral eye region. There were no slope differences between

the remaining regions (t65,188 , 1.81, p . 0.07). Thus, as

workers increase in size, facets in the anterior–dorsal region

increase in diameter at a greater rate than the rest of the eye.
4. Discussion
Comparison of facet diameters among different regions of the

wood ant compound eye shows that they scale heteroge-

neously. In some regions, large facets increase in diameter

at the same rate as other absolutely smaller facets in other

regions, indicative of grade shifts. This implies that facets in

these regions are of equal importance, and that additional

resources associated with increased body size are allocated

proportionately. Some regions differ in slope of their scaling

relationships, showing that available resources are dispropor-

tionately allocated within the developing eye imaginal disc,

larger individuals investing more in the anterior and dorsal

regions of the compound eye than the ventral region.

(a) Proximate mechanisms
We propose that individual cells within an imaginal disc use

nutrients to different extents. Growth and nutrition are linked

by insulin production [22,23]. Cells may show regional differ-

ences in their expression of insulin receptors, so that when

exposed to the same increased levels of insulin-like peptides

those that express more insulin receptors will grow at a faster

rate. This mechanism is analogous to that proposed to account

for the differential growth of imaginal discs underlying
exaggerated traits and could provide the basis for the evolution

of organ shape changes [3]. One putative mechanism is that

adjusting the number of insulin and ecdysone receptors in

different parts of an imaginal disc could alter the shape of an

entire organ. Such changes could, for example, contribute to

the evolution of the horns of adult males from different species

of Onthophagus, which differ in the number of prongs and their

shape [24].

(b) Functional implications
Increases in facet diameter improve sensitivity by improving

photon capture [25]. Thus, differences in facet diameter

within the wood ant compound eye are presumably a conse-

quence of needing regions of high sensitivity and resolution

with limited resources and space available. Such specialized

regions are common in compound eyes and are typically

associated with specific aspects of behaviour where high

performance is required, such as mate or prey detection

[25]. However, previous studies have not considered that par-

ticular regions of the compound eye may differ from one

another in terms of their scaling [26].

Slope shifts indicate differential investment in particular

regions depending on body size. Such differential investment

may be related to task differentiation; despite lacking distinct

morphological castes, larger ants forage further from the

nest than smaller ants [27], which may necessitate greater

investment in vision. However, rhabdom structure and inter-

ommatidial angles are needed to determine the impact of

these differences in scaling upon wood ant vision.

More generally, increased investment in specific regions

of the compound eye or other sensory structures may

confer an advantage on larger individuals of a particular

species in specific tasks, especially when such regions are

linked to the detection of mates or prey. This raises the possi-

bility that eye regions such as the love spot of male houseflies

[28] may also show scaling indicative of greater investment in

larger individuals. This would produce exaggerated sensory

structures analogous to the exaggerated morphological

traits more typically associated with sexual selection, such

as Onthophagus beetle horns [24]. However, the lattice struc-

ture of the compound eye may constrain investment in such

regions, preventing them from showing the extreme positive

allometry of beetle horns.
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