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ABSTRACT: Bioorthogonal chemistry can be used for the
selective modification of biomolecules without interfering with
any other functionality present in the cell. The tetrazine
ligation is very suitable as a bioorthogonal reaction because of
its selectivity and high reaction rates with several alkenes and
alkynes. Recently, we described vinylboronic acids (VBAs) as
novel hydrophilic bioorthogonal moieties that react efficiently
with dipyridyl-s-tetrazines and used them for protein
modification in cell lysate. It is not clear, however, whether VBAs are suitable for labeling experiments in living cells because
of the possible coordination with, for example, vicinal carbohydrate diols. Here, we evaluated VBAs as bioorthogonal reactants for
labeling of proteins in living cells using an irreversible inhibitor of the proteasome and compared the reactivity to that of an
inhibitor containing norbornene, a widely used reactant for the tetrazine ligation. No large differences were observed between the
VBA and norbornene probes in a two-step labeling approach with a cell-penetrable fluorescent tetrazine, indicating that the VBA
gives little or no side reactions with diols and can be used efficiently for protein labeling in living cells.

In the last years, the development of reactions that are
unaffected by any of the molecular functionalities in a

biological system has emerged as a major field of research in
chemical biology.1−4 These bioorthogonal reactions are used
for tagging biomolecules with a high reaction rate by a two-step
approach in vitro and in vivo, without the need to attach these
tags directly onto the biomolecule. The reactants should be
nontoxic to the cellular environment and should not influence
the function of the labeled biomolecule of interest; therefore, a
small hydrophilic reactant is often preferred. One of the most
popular bioorthogonal reactions is the inverse electron-demand
Diels−Alder (iEDDA) reaction between electron-poor tetra-
zines5−8 and electron-rich or strained alkenes or alkynes, e.g.,
trans-cyclooctene,9,10 norbornene,11 or cyclopropene.12,13 Re-
cently, we reported a new nonstrained bioorthogonal reactant,
vinylboronic acid (VBA), which reacts, depending on its
substituents, with second-order rate constants (k2) up to 27
M−1 s−1 with 3,6-dipyridyl-s-tetrazines. These VBAs are 1 order
of magnitude faster than the commonly used tetrazine reactant
norbornene (Figure 1A).14 We further showed that the VBA
moiety is biocompatible with cellular components, stable in cell
lysate, and applicable for protein modification.
Over the past years, boronic acids have been used in living

cells for various applications.15 The concept that phenylboronic
acid moieties can form reversible complexes with 1,2- and 1,3-
cis-diols in aqueous environments has been exploited in the
development of chemosensors for carbohydrates (Figure 1C).16

The rate of this condensation reaction is dependent on the pKa
of the phenylboronic acid, where electron-withdrawing
substituents on the phenyl ring lower the pKa and thereby
favor binding to the diols.17,18 Despite the potential

condensation reaction with vicinal diols present in and on the
cell, many boronic acid-containing compounds have been
successfully used inside living cells such as protease inhibitors,19

sensors for reactive oxygen species,20 and reactants in
bioconjugation reactions.21−23 It is not clear, however, if or
to what extent the carbohydrate-rich cellular environment
interferes with the cellular uptake and distribution of these
boronic-acid containing compounds or with molecules
containing our bioorthogonal VBA moiety.
To investigate the uptake and bioorthogonality of the VBA

moiety in living cells, we chose a two-step labeling strategy of
the proteasome using a VBA-modified irreversible inhibitor,
followed by visualization using a dipyridyl-s-tetrazine function-
alized with a fluorophore (Figure 1B). The proteasome is a
large multisubunit proteolytic complex that is mainly
responsible for the degradation of proteins into small peptides
by the ubiquitin-proteasome pathway.24−26 The proteolytic
core contains seven distinct α and β subunits, whereas the β1,
β2, and β5 subunit are responsible for the proteolytic activities
of the proteasome. These proteolytic subunits act as N-terminal
threonine proteases, where the nucleophilic hydroxyl attacks
the peptide carbonyl causing cleavage of the peptide bond.
Recent progression in the development of inhibitors of the
proteasome or of only one of the proteolytic subunits is
extensively reviewed.27−29 The two-step labeling strategy of the
proteolytic proteasome subunits using irreversible inhibitors
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followed by a bioorthogonal reaction with a fluorescent
molecule has been previously performed using the copper-
catalyzed alkyne−azide cycloaddition,30,31 strain-promoted
alkyne−azide cycloaddition,32 the Staudinger ligation,30,33−36

and the tetrazine ligation30 and thereby serves as a well-
established model system for our studies.
The (6-aminohexanoyl)3-(leucinyl)3-vinyl-(methyl)-sulfone

(Ahx3L3VS) moiety is found to give strong inhibition of the
proteasome, without being selective for any of the three
catalytic subunits.37 The three leucines are recognized by the
proteasome and the vinylsulfone moiety reacts covalently and
irreversibly with the γ-hydroxyl of the N-terminal threonine of
the catalytic proteasome subunits. The long linker of the
scaffold is built up by aminohexanoic acids that are beneficial
for efficient binding to the proteasome37 and were thought to
be an advantage for the two-step labeling of the proteasome as
the bioorthogonal moiety could be placed far away from the
active site. Here, we describe the synthesis and application of
proteasome inhibitor VBA-Ahx3L3VS 7, containing a protected
vinylboronic acid moiety that hydrolyzes quickly in aqueous
solution to the free boronic acid.14 We compared this
compound to Nor-Ahx3L3VS 8, which contains the commonly
used bioorthogonal norbornene moiety.
The proteasome inhibitors were synthesized using modified

literature procedures as depicted in Scheme 1 (SI −
experimental section). In short, Boc-Leu-OH 1 was first
reduced to its corresponding aldehyde 3 via Weinreb amide
2. A stabilized Wittig reaction gave trans-VS 4 containing a
small amount of cis-VS that was removed using column
chromatography. Next, a double round of Boc-deprotection
and coupling of Boc-Leu-OH yielded Boc-L3VS 5. Finally, Boc-

Figure 1. (A) Reported tetrazine ligation with vinylboronic acids and
norbornene;14 k2 values were determined in 5% MeOH in PBS. (B)
Two step protein labeling protocol. Addition of an irreversible protein
inhibitor containing a VBA is followed by cycloaddition with a
dipyridyl-s-tetrazine containing a fluorophore. (C) Equilibria of
carbohydrate diols with a boronic acid.

Scheme 1. Synthesis of Proteasome Inhibitors 7−9a

a(i) N,O-dimethyl hydroxylamine, NMM, EDC, CH2Cl2, 5 h, 95%. (ii) LiAlH4, Et2O, 0 °C, 15 min, 81%. (iii) Diethyl(methylsulfonylmethyl)-
phosphonate, NaH, THF, 0 °C, 1 h, 35%. (iv) (a) 4 M HCl in dioxane, CH2Cl2, 2 h, (b) Boc-Leu-OH, EDC, HOBt, Et3N, CH2Cl2, o/n, 94%. (v)
Same as iv, yielding 5 in 98%. (vi) (a) 4 M HCl in dioxane, CH2Cl2, 2 h, (b) Fmoc-Ahx3-OH, EDC, HOBt, Et3N, CH2Cl2, o/n, 54%. (vii) (a)
piperidine, DMF, 15 min. (b) VBA-NHS 12, DIPEA, DMF, 1 h, yielding 7 in 73%. (viii) same as vii, only (b) with norbornene-NHS, yielding endo/
exo-8 in 94%. (ix) (a) DBU, DMF, 7 min, (b) BODIPY-FL NHS ester, HOBt, DIPEA, DMF, 1.5 h, yielding 9 in 44%. (x) Ethyl chloroacetate,
K2CO3, DMF, 16 h, 98%. (xi) Trimethylsilylacetylene, CuI, PdCl2(PPh3)3, DIPEA, toluene, 30 °C, 24 h, 99%. (xii) (a) LiOH, THF/H2O 1:1, 2 h,
(b) N-hydroxysuccinimide, EDC, DMF, 16 h, 88%. (xiii) Pinacolborane, Ru(CO)ClH(PPh3)3, toluene, 50 °C, 16 h, 74%.
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deprotection and then coupling of Fmoc-Ahx3-OH, yielded
Fmoc-protected Ahx3L3VS 6.
Next, we prepared the NHS ester of VBA and norbornene to

ensure efficient coupling to scaffold 6, after deprotection of the
Fmoc. For VBA-NHS 12, we used the alkoxy-substituted
phenylvinylboronic acid, as we previously found that this
electron rich VBA gave the highest reaction rate with dipyridyl-
s-tetrazine.14 First, etherification of 4-iodophenol using ethyl
chloroacetate followed by a Sonagashira coupling yielded TMS-
protected alkyne 10 in excellent yield. Deprotection of the
TMS group and coupling of the acid with N-hydroxysuccini-
mide yielded alkyne-NHS 11. Final hydroboration of the alkyne
with pinacolborane yielded NHS-boronic ester 12. Norbor-
nene-NHS was prepared in one step from its corresponding
alcohol in good yield. The VBA-NHS 12 and the norbornene-
NHS were finally coupled to the free amine of Fmoc-
deprotected 6, yielding VBA-Ahx3L3VS 7 and Nor-Ahx3L3VS
8 in good yields. In addition, the fluorescent BODIPY-
Ahx3L3VS 9 was prepared by direct coupling of the
commercially available BODIPY-FL NHS ester to deprotected
6.
Having VBA-Ahx3L3VS 7 and Nor-Ahx3L3VS 8 in hand, we

initially evaluated the selectivity and potency of the inhibitors in
cell lysate (Figure 2A,B). First, we established that a
concentration of 0.3 μM of BODIPY-Ahx3L3VS 9 was essential
for visualization of all proteasome subunits in cell lysate (Figure
S1). Then, compounds 7 or 8 were incubated for 1 h at various
concentrations in the protein lysate, after which BODIPY 9 was
added to label all residual unbound proteasomal subunits
(Figure 2B). Using this setup, we observed that low micromolar
concentrations of inhibitor 7 and 8 were essential for full
inhibition of all subunits. In addition, we observed a slight
selectivity of VBA 7 for β5 compared to the other subunits,
whereas norbornene 8 was more selective for β2 as well as β5.
We continued to evaluate the inhibition of the proteasome

with the Ahx3L3VS probes 7 and 8 in living cells. Here,
performing a similar competition experiment as above, a 100×
higher concentration of both 7 and 8 was essential to inhibit
the proteasome subunits completely. Despite the moderate cell
permeability of the probes this indicates that, similarly to the
norbornene handle, the VBA moiety did not hamper
membrane permeability of the inhibitor (Figure 2C). Elevated
concentrations for complete proteasome inhibition and the
observed reduced labeling of the β1 subunit in living cells was
also observed with BODIPY 9 (Figure S2) and reported
previously using a different Ahx3L3VS probe.37 Aside,
significant cell death was visible when norbornene 8 was used
at concentrations >100 μM, while VBA 7 did not show any
toxicity up to 1 mM concentration.
Next, we investigated whether we could visualize the

proteasome subunits with a two-step labeling strategy using
VBA 7 or norbornene 8 followed by the tetrazine ligation with
dipyridyl-s-tetrazine 13, containing a BODIPY-FL fluorophore,
in cell lysate as well as in living cells (Figure 3A). After
inhibition of the subunits using VBA 7 and norbornene 8 in cell
lysate at concentrations that showed full subunit inhibition as
established above (3 μM), about 3 μM of tetrazine 13 was
necessary to give a complete reaction (Figure S3). In living
cells, after inhibition of the proteasome with 300 μM VBA 7
and 100 μM norbornene 8, a comparable concentration of 10
μM tetrazine 13 was necessary to visualize the subunits (Figure
3B and C). To our delight, similar labeling intensities of the
proteasome subunits were observed using the probes VBA 7

and norbornene 8 in lysate and in living cells, as evidenced by
SDS-PAGE gel.
In addition, we evaluated the stability of the VBA and

norbornene handles in living cells and the efficiency of the
tetrazine ligation by monitoring the protein labeling over the
course of time. After inhibition of the proteasome with VBA 7
and norbornene 8 (300 μM and 100 μM, respectively), the cells
were lysed and the subsequent tetrazine ligation was performed
with tetrazine 13 for various amounts of time. Complete
labeling of the subunits was observed within 2−5 min,
indicating that both functionalities were intact and the reaction
was very efficient (Figure S4).
Finally, we used the same two-step labeling protocol to

visualize the proteasome in living HeLa cells by confocal
microscopy (Figure 3B and D). Again, similar intensities were
observed using VBA 7 or norbornene 8 followed by addition of
3 μM of tetrazine-BODIPY 13, indicating successful labeling of
the proteasome. For comparison, the labeling pattern of
BODIPY 9 was measured, which was similar to that observed
for 7 and 8, indicating that the VBA, norbornene, and BODIPY
labels did not significantly influence the cellular distribution of
the inhibitors (Figure S5). Performing the ligation with a higher
concentration of tetrazine 13 using the same microscopy
settings resulted in higher labeling intensities; however, in this

Figure 2. (A) Schematic figure of the competition assay of VBA 7 or
norbornene 8 using BODIPY 9 in cell lysate and living HeLa cells. (B)
SDS-PAGE analysis of the competition assay in cell lysate (10 μL of 1
mg/mL), which was first incubated with 7 or 8 (indicated
concentration) for 1 h at 37 °C and next with 9 (0.3 μM) for 1 h
at 37 °C. (C) Competition assay in living HeLa cells, which were first
incubated with 7 or 8 (indicated concentration) for 3 h at 37 °C,
whereupon the cells were lysed and the lysate (10 μL of 1 mg/mL)
was incubated with 9 (0.3 μM) for 1 h at 37 °C. In-gel fluorescence
(top) was measured at 488 nm followed by colloidal staining (bottom)
as a loading control of the protein lysates.
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case also an increased background signal was observed (Figure
S6).
In summary, we evaluated the use of the vinylboronic acid

functionality for bioorthogonal labeling with tetrazines in living
cells. The synthesized proteasome inhibitor containing a
vinylboronic acid was successfully used for the two-step
labeling of the proteasome in cell lysate and in living cells
without showing diminished labeling efficiency with a dipyridyl-
s-tetrazine compared to the proteasome inhibitor functionalized
with a norbornene moiety. We have to emphasize that the
potential condensation of the VBAs to vicinal diols would not
be visible on SDS-PAGE gel or on confocal microscopy, as the
boronic acid is released after the tetrazine ligation. However, if
significant condensation would occur, a higher concentration of
VBA 7 would be essential to fully inhibit the proteasome
subunits. Our results show that three times more VBA 7
compared to norbornene 8 was needed for complete inhibition
of all subunits in vitro as well as in living cells, indicating that
the vinylboronic acid handle does not significantly hamper
cellular uptake of the probes into the cell.
The number of bioorthogonal reactions that are suitable for

labeling inside living cells is limited, because of the requirement
of toxic reagents (e.g., copper(I)-catalyzed alkyne−azide
cycloaddition) or possible side reactions of the reactants (e.g.,
the thiol−ene or thiol−yne side reactions of free intracellular
cysteines with strained alkenes or alkynes). We have shown that
the tetrazine ligation with vinylboronic acid is little or not
affected by possible side reactions that can occur in the cell with
biomolecules such as carbohydrates, making the reaction a
valuable addition to the bioorthogonal toolbox.
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