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Advances in functional magnetic resonance imaging (fMRI) acquisition have improved
signal to noise to the point where the physiology of the subject is the dominant
noise source in resting state fMRI data (rsfMRI). Among these systemic, non-neuronal
physiological signals, respiration and to some degree cardiac fluctuations can be
removed through modeling, or in the case of newer, faster acquisitions such as
simultaneous multislice acquisition, simple spectral filtering. However, significant low
frequency physiological oscillation (∼0.01–0.15 Hz) remains in the signal. This is
problematic, as it is the precise frequency band occupied by the neuronally modulated
hemodynamic responses used to study brain connectivity, precluding its removal by
spectral filtering. The source of this signal, and its method of production and propagation
in the body, have not been conclusively determined. Here, we summarize the defining
characteristics of the systemic low frequency noise signal, and review some current
theories about the signal source and the evidence supporting them. The strength and
distribution of the systemic LFO signal make characterizing and removing it essential
for accurate quantification, especially for resting state connectivity, when no stimulation
can be compared with the signal. Widespread correlated non-neuronal signals obscure
and distort the more localized patterns of neuronal correlations between interacting
brain regions; they may even cause apparent connectivity between regions with no
neuronal interaction. Here, we discuss a simple method we have developed to parse
the global, moving, blood-borne signal from the stationary, neuronal connectivity signals,
substantially reducing the negative correlations that result from global signal regression.
Finally, we will discuss some of the uses to which the moving systemic low frequency
oscillation can be put if we consider it a “signal” carrying information, rather than simply
“noise” complicating the interpretation of resting state connectivity. Properly utilizing this
signal may offer insights into subtle hemodynamic alterations that can be used as early
indicators of circulatory dysfunction in a number of neuropsychiatric conditions, such as
prodromal stroke, moyamoya, and Alzheimer’s disease.

Keywords: low frequency oscillation, noise modeling, denoising, vascular mapping, cerebrovascular reactivity,
physiological noise, physiological noise modeling
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INTRODUCTION

Resting state functional magnetic resonance imaging (rsfMRI)
seeks to elucidate neuronal connectivity throughout the brain by
examining of fMRI signal correlations between regions during
scans when the brain is not performing any specific task (it
is “at rest”). However, the BOLD signal does not measure
neuronal activation directly. It is a composite measurement of
hemodynamic properties of blood flow, volume, and oxygenation
changes in response to neuronal activity (Buxton et al., 1998)
(i.e., neurovascular coupling). In short, increased neuronal firing
leads to an increase in regional blood flow, which brings an
oversupply of oxygenated blood (Fox and Raichle, 1986). The
increase in blood flow and oxygenation leads to an elevation
of the BOLD signal. As a result, the observable BOLD signal
(blood-related) is much slower (∼s) than neuronal firing (∼ms)
(Logothetis et al., 2001) and cannot reflect fast changes of the
field potential of neuronal firings. In mathematical terms, the
BOLD signal is the result of the convolution of the fast neuronal
signals with the slow hemodynamic functions. Therefore, the
frequencies of “neuronal” BOLD signals are generally below
0.15 Hz (Josephs and Henson, 1999).

However, neuronal activations are not the only contributors
to BOLD signals in the low frequency band. Advances in
fMRI acquisition techniques and hardware have improved signal
to noise to the point where the physiology of the subject
being studied is the dominant noise source in rsfMRI data. In
addition to neuronal BOLD, there are systemic, non-neuronal
fluctuations in brain hemodynamics due to heartbeat, respiration,
and so-called “low frequency oscillations” (LFOs). These signals
are unavoidable, and taken together can account for 20–70%
of the BOLD signal variance (see Figure 1), depending on
acquisition, and locations of the voxels (Liu, 2017). Numerous
processing strategies have been devised to mitigate them. Recent
improvements in hardware and pulse sequences (specifically
simultaneous multislice acquisition protocols) have pushed the
temporal resolution of fMRI high enough that respiration, and
to some degree cardiac fluctuations (see Figure 1) can be
removed through simple spectral filtering, or through more
advanced modeling methods when these signals are aliased
(Glover et al., 2000; Birn et al., 2006, 2008; Behzadi et al., 2007;
Chang et al., 2009, 2013). These methods are well described
elsewhere and are not the focus of this manuscript. However,
significant signal power remains in the “low frequency oscillation
band,” a loosely defined region from ∼0.01–0.15 Hz. Non-
neuronal signal in this frequency band accounts for at least
30% of the signal variance in gray matter (Frederick et al.,
2012a). This is problematic as it is the precise frequency
band occupied by the neuronally modulated hemodynamic
responses used to study brain connectivity, precluding its
removal by filtering.

The strength and distribution of the systemic LFO signal
make characterizing and removing it essential for accurate
quantification of neuronal connectivity. Moreover, these signals
might not be “noise” after all. Understanding their origins
and characteristics will help to develop novel methods to
assess brain physiology which could greatly compliment the
functional findings.

CHARACTERISTICS OF LOW
FREQUENCY OSCILLATIONS

LFOs in BOLD fMRI have been found and studied extensively,
but as noted above, there are numerous potential explanations for
this signal, and even some variation in what in particular should
be considered a “low frequency oscillation.” For the remainder
of this paper, we will apply two criteria to our discussions of
LFOs; the frequency band of the signal, and whether the signal
is stationary, or moves with the blood.

Frequency Content
The first criterion is simply a definition. LFOs are signals that
occur in the brain (and in some cases throughout the body)
that have frequencies between ∼0.009 and 0.2 Hz. The exact
endpoints of this band are extremely variable in the literature.
Biswal’s original paper on resting state connectivity used 0.01–
0.1 Hz (Biswal et al., 1995), but later papers expanded this range;
for the purpose of this discussion, we will use the range of 0.01–
0.15. 0.15 Hz has a particular significance as the top of the range,
as this is the highest expected frequency in neuronally generated
hemodynamic signals (based on the shape of the canonical
hemodynamic response function) (Josephs and Henson, 1999),
so this defines the frequency range where spectral filtering cannot
be used to remove non-neuronal signal. The frequency content of
a typical BOLD signal is shown in Figure 1.

Dynamic Versus Stationary Noise Signals
The second defining characteristic of LFOs is less commonly
considered. Our research into low frequency physiological noise
in fMRI has established that a significant fraction of the low
frequency variance in fMRI data can be modeled quite effectively
as a single low frequency signal with varying delay times across
the brain. Moreover, the pattern of relative delay times in
different regions of the brain is consistent with the delays
that would be expected if the signal were moving through
the brain with blood as it flowed through the vasculature.
We refer to this dynamic signal as “systemic low frequency
oscillations” (sLFOs) (Tong et al., 2015). The realization that
a significant fraction of the low frequency “noise” in fMRI
appears to be moving has important implications for how to
identify, remove, or even utilize this signal (Tong and Frederick,
2010, 2012, 2014b; Tong et al., 2011b,c, 2013, 2014, 2017, 2018;
Frederick et al., 2012b).

Temporal Pattern – sLFOs Propagate on
a Hemodynamic Timescale
Our research on sLFOs strongly suggest that the underlying
oscillations propagate on hemodynamic, physiological, rather
than on neuronal, timescales, taking several seconds to
fully transit the brain rather than milliseconds. Circulatory
measurements of the traversal of a Tc99 tracer through the
brain vasculature (from the carotid, to the internal brain arteries,
through the parenchyma, to the superior sagittal sinus) showed
that the transit time of blood from the anterior and middle
cerebral arteries to the superior sagittal sinus takes ∼6.7 s in
healthy middle-aged controls (Crandell et al., 1973), timing
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consistent with results found by other imaging methods. For
example, using echo contrast-enhanced ultrasound, delays of
7.5 ± 1.8 s from the carotids to the jugulars were found
in 64 healthy subjects (Schreiber et al., 2002). Similar, but
smaller delays (4.9–6.4 s) were found in other ultrasound studies
(Schreiber et al., 2005). Direct evidence can also be found in
digital subtraction angiography (DSA), where an x-ray contrast
bolus was injected directly into the ICA and followed as it passed
through the brain (Monti et al., 2015; Jann et al., 2016).

Spatial Pattern – sLFOs Travel Along the
Vasculature
The patterns of the delays of the sLFO signal clearly suggest
that this signal is related to blood flow, evolving in a pattern
that reflects the vasculature – the sLFO signal appears first in
the center of the brain, propagates out through the parenchyma,
and ends up in the superior sagittal sinus, with a range of
delays of ∼6.5 s (Tong and Frederick, 2010), a pattern we have
seen consistently in many subsequent studies over several years
(Tong et al., 2011a,b,c, 2013, 2014, 2015; Frederick et al., 2012a;
Tong and Frederick, 2012, 2014a). In our most recent studies we
have directly confirmed the association between the sLFO delay
pattern and blood flow, first by performing sLFO analysis and
time resolved dynamic susceptibility imaging in the same scan
session (Tong et al., 2017), and more recently by following the
sLFO signal all the way from the internal carotid arteries through
the draining veins (Tong et al., 2018).

Origin – sLFOs Seem to Originate
Outside the Brain
The sLFO BOLD signal identified from the carotids preceded
the signal found in any voxel of the brain. Indeed, the same
sLFO signal can be found throughout the body (measured in
the periphery using NIRS) (Frederick and Tong, 2010; Tong and
Frederick, 2010; Li et al., 2018). The delays in the periphery are
symmetric across the midline of the body, and the arrival time of
the sLFO signal found in the fingers and toes precede the arrival
in many brain voxels (Tong et al., 2012). While it is possible that
some process in the brain is the ultimate source of this moving
signal, there is no evidence whatsoever in the fMRI data that this
is the case – to the contrary the implication is that the signal does
not originate in the brain.

Summary
From the growing body of evidence from our group and
others we can summarize that the sLFO BOLD signal: (1) is a
spontaneous physiological oscillation, (2) travels with the blood,
and (3) has an extracerebral origin. Given the large amount of
LFO signal variance that is clearly attributable to the moving
component (at least 30% of the low frequency signal variance in
gray matter, Frederick et al., 2012a), we believe this constitutes the
majority of the physiological LFO signal power. In addition, these
qualities provide the key to isolating the signal from the neuronal
signals of interest.

In contrast, there may also be non-neuronal LFOs which do
not propagate. However, because of the difficulty in separating
these signals from putative neuronal signals, they are far harder

to characterize. Certain mechanisms (detailed below) such as the
Mayer wave, are thought to be synchronous throughout the body,
and therefore stationary. Isolating the contribution of stationary
LFOs to the resting state signal would require as yet undeveloped
processing strategies, which is why we will discuss these possible
sources, however we will focus primarily on the dynamic portion
of the signal during the remainder of the paper.

POTENTIAL CAUSES OF THE LOW
FREQUENCY OSCILLATION

The source of LFO signal, and its mechanism of production and
propagation in the body, have not been conclusively determined –
LFOs have been variously attributed to alterations in sympathetic
nervous system tone, partial pressure of carbon dioxide (paCO2)
fluctuations modulated by respiration, blood pressure regulation,
low frequency neuronal “waves,” and even gastric motility. It may
in fact be a combination of multiple, independent signals with
distinct sources. We will review these current theories about the
signal source and the evidence supporting them. This section is
summarized in Table 1.

Variations in Heart Rate and Respiratory
Volumes
One major potential source of LFOs comes from variations of
the heart rate and respiration. For example respiration volume
per time (RVT) (Birn et al., 2006) and respiration variation
(convolved with the respiratory response function, Birn et al.,
2008; Chang et al., 2009) are two methods to model fluctuations
from CO2 concentration. In specific, the former model describes
the depth of the respiration, whereas the latter reflects the
variation in respiration. Previously, these methods have been
shown to explain additive variation in data with longer TRs
between 9 and 11% (Birn et al., 2006, 2008; Chang et al., 2009)
in the voxels affected. From the same group a model taking the
variation in heart rate into account was developed (Chang et al.,
2009), explaining 3% more variance in the affected voxels. The
underlying mechanism of this change is still not well understood,
but was proposed to relate to neuronal activity linked with
changes in levels of arousal (Chang et al., 2009). These models
typically incorporate a delay of several seconds to best match the
modeled noise waveforms with the fMRI data, suggesting that
these signals are in the moving category (although the standard
implementations of these methods do not account for regional
delays within the brain).

Carbon Dioxide
Carbon dioxide changes are closely related to the previous topic,
and they partially share the same mechanism, namely induced
changes in cerebral blood flow and volume due to CO2 induced
vasodilation. However, here we discuss the direct effects of paCO2
by comparing BOLD fMRI to measured fluctuations in the partial
pressure of end-tidal carbon dioxide, especially in the lower range
of the LF band, namely 0–0.05 Hz (Wise et al., 2004; Sassaroli
et al., 2012), rather than the indirect estimation of this effect from
the respiratory and/or cardiac waveforms.
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TABLE 1 | Summary of the common explanations for low frequency physiological noise.

Source Description Properties Cerebral origin? Causes sLFO?

Mayer wave Mayer waves are spontaneous
LFOs at around 0.1 Hz.

Highly synchronous within the
brain – it seems unlikely that it
would appear to move.

Yes? Not likely

Vasomotion Vasomotion is a spontaneous
oscillation (0.01∼0.3 Hz) in the
vascular tone, which is independent
of respiration, pulsation and
neuronal activity.

The induced vascular variations
could propagate with the blood,
resulting in a mix of stationary and
moving signal.

Unclear Possible

CO2 Carbon dioxide is a potent vassal
dilator. It can travel with the blood
and induce changes in cerebral
blood flow and volume.

Clearly a moving signal – the CO2

travels in the blood.
No Possible

Variations in heart rate
and respiratory volumes

The variations of the heart rate and
respiration, including the depth of
the respiration, are in the low
frequency range.

Depth of respiration and heart rate
variation can alter blood volume
(through CO2 and pressure
changes), and the effects should
move with the blood.

No Possible

Gastric oscillations The electrogastrogram signal (i.e.,
synchronized gut motions at
∼0.05 Hz) significant correlates
with BOLD fMRI data with time
delays.

May be controlled neuronally, but
the effects seem to originate in the
gut and move with blood.

Mostly no Possible

Aliased signals of
cardiac and respiration

Aliased signals of cardiac and
respiration due to long TR are in the
low frequency range.

These signals are in the right
frequency range and can travel with
blood, but are not highly correlated
with the sLFO signal when tested
by fMRI data with very short TR or
fNIRS.

No Not likely

FIGURE 1 | Power spectrum (left) and time domain data (right) presented in different spectral bands, from a voxel in a resting state data (TR = 0.4 s) of one
participant. Three distinct spectral ranges corresponding to different physiological processes were marked. The spectral area captured by various TR values is also
depicted on the power spectrum. The right hand panel shows a BOLD timecourse from a resting state fMRI scan (TR = 0.4 s) without filtration (A, in red) and its
band-passed versions in panel (B) 0.01–0.2 Hz; (C) 0.3–0.4 Hz; and (D) 0.8–1.0 Hz (in blue) (Figure adapted from Tong and Frederick, 2014a).

Wise et al. (2004) found that paCO2 levels measured with end
tidal CO2 in the 0–0.05 Hz band were significantly correlated
with both increased middle cerebral artery blood velocity and
increased BOLD fMRI signal in gray and white matter. This is
attributed to the vasodilatory effect of CO2 – increased CO2

leads to increased arterial diameter and blood volume. As a
consequence, this signal can be clearly placed in the group of
sLFOs that move with the blood. Wise found up to 28% of the low
frequency signal variance in the BOLD signal was attributable to
the paCO2. This is likely the lower limit, because while the peak
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correlation delays between the BOLD and paCO2 timecourses
were between 3 and 13 s, only a single delay of 6.3 s was used
for all voxels, which would reduce the apparent correlation.

Mayer Waves
Mayer waves are spontaneous LFOs at around 0.1 Hz (Julien,
2006) and are associated with variations in mean arterial pressure,
and have been associated with a sympathetic autoregulation
mechanism (Tsuji et al., 2000), in particular below 0.1 Hz
(Obrig et al., 2000; van Beek et al., 2008; Sassaroli et al., 2012).
These studies connected mean arterial blood pressure to cerebral
intravascular oxygenation when monitoring cerebral circulation
and blood flow with NIRS. However, a characteristic of Mayer
waves is their largely synchronous nature within the brain
(Sassaroli et al., 2012), differing from the sLFOs, which have
differing delays across the brain (Tong and Frederick, 2010;
Tong et al., 2011b). We would therefore classify Mayer waves as
stationary LFO signals.

Vasomotion From Oscillations in the
Vascular Tone
Vasomotion is a spontaneous oscillation (0.01∼0.3 Hz) in the
vascular tone, which is independent of respiration, pulsation
and neuronal activity (Hundley et al., 1988; Mayhew et al.,
1996; Rivadulla et al., 2011). These oscillations of the lumen
diameter modify blood flow in a corresponding fashion resulting
in periodic oscillations in the blood flow (Aalkjær et al., 2011).
Another LF signal is attributed to vasomotion, referring to
the oscillations in the vascular tone, thought to be generated
movement within the vessel walls (Zhang et al., 1998; Aalkjær
et al., 2011; Sassaroli et al., 2012; Müller and Österreich, 2014).
These changes are highly localized and have been linked to
oscillatory intracellular calcium (Aalkjær et al., 2011). This
would give the signals a local, stationary nature, however the
vascular variations induced would then propagate with the blood,
resulting in a mix of stationary and moving signal.

Aliased Signals of Cardiac and
Respiration
Because fMRI is usually not sampled fast enough to resolve
cardiac or respiratory waveforms, some fraction of the energy in
these signals will be aliased to the low frequency band. In order to
determine the significance of this component of the signal, we
evaluated sLFOs in a dataset with high temporal resolution in
which the respiration and cardiac waveforms are fully sampled
(Hocke et al., 2016). We found that even with fully sampled data,
in which the respiration and cardiac bands can be isolated with
spectral filters, the purely non-neuronal sLFOs (as determined
by time-delayed correlation with a peripheral NIRS signal) still
account for over 13% of the total BOLD signal variance across all
frequency bands.

Gastric Oscillations
A somewhat more recent theory for the cause of sLFOs
is proposed by Rebollo et al. (2018) who found significant
correlations between electrogastrogram signals (which measure

synchronized gut motions at ∼0.05 Hz) and BOLD fMRI data.
Unfortunately, the technique used was unable to determine
directionality. However, the authors found delays between
the earliest (somatosensory cortices) and the latest (dorsal
precuneous and extrastriate body area) nodes of the proposed
“gastric network” were about 3.3 s. These later regions lie
in close proximity to the superior sagittal and transverse
sinuses, respectively, vessels at the end of the vascular
path through the brain. While Rebollo’s analysis could not
ascertain directionality – this observation is consistent with a
hemodynamic perturbation generated in the stomach which then
propagated through the cerebral vasculature, which suggests that
gastric signals likely contribute to the “moving signal” category.

This finding is in good agreement with previous work
by Yacin et al. (2011) which showed a strong relationship
between gastric activity and systemic LFOs in the periphery.
Yacin was able to reconstruct the gastric slow wave signal
from a fingertip photoplethysmogram, using a deep learning
approach. The reconstructed signal correlated with the measured
electrogastrogram slow wave with R >= 0.9, clearly establishing
that the gastric signal contributed a significant portion of the
sLFO variance observable in the periphery.

IMPLICATIONS FOR RESTING STATE
ANALYSIS

As mentioned previously, BOLD fMRI infers neuronal activation
indirectly through neurovascular coupling. As a result, the
neuronal activation will appear in the low frequency range
(∼0.01–0.15 Hz) of BOLD signal in both resting state and task
fMRI studies. This frequency range significantly overlaps with
that of sLFO. Therefore, the presence of sLFO in the BOLD
signal will confound the results of fMRI analyses, especially in
resting state studies, as the neuronal firing is also spontaneous
and of unknown timecourse (like sLFO), unlike task activation
which can be modeled.

Pure Physiological sLFOs in Resting
State Networks
In the following, we describe a previously published study
demonstrating the confounding effect of sLFO to the resting state
network analysis in both simulation as well as using concurrent
fMRI/fNIRS data (Tong et al., 2013). The signals measured
by NIRS (concentration changes in oxyhemoglobin and deoxy-
hemoglobin: 1[HbO] and 1[Hb]) are, like BOLD fMRI signal,
blood-related measures. High consistency between these NIRS
and fMRI signals has been demonstrated in concurrent studies
(Strangman et al., 2002; Sassaroli et al., 2006; Cui et al., 2011).
In this particular concurrent study, 1[HbO] and 1[Hb] were
measured in the periphery (i.e., on finger and toes) using NIRS,
instead of the brain. We found that the LFO band component
of 1[HbO] in the periphery was highly correlated with the
sLFOs of the BOLD signal in the brain, with a time delay.
Most importantly, since the data was recorded in the periphery,
the sLFOs measured here represented “pure” physiological
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fluctuations that were clearly not contaminated by the neuronal
LFO as they would be in the brain.

We used this pure signal to assess the physiological influence
of sLFOs on each resting state network. In detail, each subject’s
connectivity networks were identified from rsfMRI data using
ICA (Melodic and FSL), from which, the signature BOLD signals
of each network were extracted. To assess the sLFO signal’s
influence, we correlated each network’s signature BOLD signal
with the subject’s own concurrent peripheral data (i.e., 1[HbO]
of the fingertip). The networks with high correlations are the
ones being significantly influenced by the sLFOs. The results
showed that in addition to clearly vascular components, such as
the superior sagittal sinus, several sensory networks (i.e., visual,
auditory, etc.) are strongly affected by the sLFOs (Figure 2).

The Dynamic Nature of sLFOs in Resting
State Networks
With this in mind, we sought to determine if the dynamic
nature of the sLFO signal in BOLD could, on its own, lead to
artifactual connectivity in “Can apparent network patterns be
generated by the moving physiological sLFO signal alone?” (Tong
et al., 2015). First, we performed a simple test on simulated data,
which consisted of a sinusoidal wave with gradually increased
time delay along the traveling direction (Figure 3a, the direction
of the arrows), representing the traveling sLFO BOLD signal in
the brain, additive noise, and a constant offset (see Figure 3).
We then applied a standard resting state analysis methodology,
namely ICA. The result showed that multiple “networks” along
the traveling direction were identified, even though the only
difference between the time series of these networks is the
time delay (see Figure 3c). This simulation demonstrated that
methods like ICA are prone to being confounded by time delayed
versions of identical signals in different voxels.

FIGURE 2 | Independent components (1–7) from a group analysis of 10
subjects’ resting state data that have high, significant positive correlations with
simultaneously recorded peripheral NIRS data (Figure adapted from Tong
et al., 2015).

We then performed this test on data much closer to real
rsfMRI data. Initially, we calculated the delay between every brain
voxel and the peripheral NIRS signal using the subjects’ real
sLFO BOLD data as described above (Tong et al., 2013). Then, a
sinusoidal signal, adjusted with these delays (the real delays of the
subjects resting state data) replaced the real BOLD signal at each
voxel (i.e., the voxel-specific time delay was decided by the delay
value of that voxel). After that, we applied ICA on these simulated
fMRI data with identical time series at each voxel differing only by
the time delay. As a result, several “resting state networks” (RSNs)
were identified (see Figure 4), some of which closely matched
standard networks described in the literature. Finally, we applied
seed analysis on the same simulated data and were able to identify
“RSNs” as well (it is known that seed analysis is sensitive to
time delays). This study demonstrated that physiological noise
signals, depending only on vascular time delays can generate
network patterns similar to well-known RSNs through common
analytical procedures.

While clearly worrisome, these results should not be
interpreted as suggesting that RSNs are nothing but a vascular
artifact. There is extensive evidence for the existence of neuronal
RSNs, from both animal and human studies, with a range of
imaging technologies (Martinez-Montes et al., 2004; Hillman
et al., 2007; Brookes et al., 2011; Ma et al., 2016). Moreover, while
we have shown that up to 30% of the low frequency gray matter
variance (13% of the total variance across all frequency bands,
Hocke et al., 2016) is due to non-neuronal sLFOs (Frederick et al.,
2012a), this means, necessarily, that 70% of the variance is not
due to sLFOs, and likely represents neuronal signal. However, it
is clear that there are both vascular and neuronal “connectivity”
networks, with significant spatial overlap.

In order to support the metabolic demands of neurons,
vascular networks are formed according to various factors,
such as neuron density and metabolic demand. Areas of the
brain which routinely coactivate likely develop similar vascular
supplies, at similar times. This could lead to overlapping of
both networks. It is also possible that, despite being a map
of sLFO arrival time, the delay map may nevertheless contain
some neuronal information. We hypothesize that elevated
neuronal activation within a network will increase the blood flow
locally, minimizing the time delays within the network. These
subtle differences could be identified by ICA. Nevertheless, we
demonstrated that sLFO signals will confound the quantification
of some RSNs, in both the spatial and temporal domains, unless
some steps are taken to disentangle these signals.

MITIGATION STRATEGIES

As discussed, these widespread, correlated, non-neuronal
sLFOs obscure and distort the more localized patterns of
neuronal correlations between interacting brain regions, and
may even cause apparent connectivity between regions with
no neuronal interaction – numerous vascular “networks” are
commonly seen in data driven connectivity analyses. Standard
mitigation methods such as global signal regression (GSR) have
serious drawbacks, and may in fact induce artifactual negative
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FIGURE 3 | Synthetic data consisting of progressively delayed sum of sinusoids was placed inside two identical blocks (a). The red arrows indicate the direction of
the moving wave (increasing time delay). The examples of moving waves at the circles (1–3) are shown in panel (b). Six independent components resulting from ICA
are shown in panel (c) with the corresponding color bars (Figure adapted from Tong et al., 2015).
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BA

FIGURE 4 | Results from group ICA on 11 subjects’ real BOLD data were shown in panel (A). Results from group ICA on 11 subjects’ synthetic data were shown in
panel (B). The value in each result showed the spatial correlation coefficient calculated between that component and the corresponding RSN from the template
(Beckmann et al., 2005). The two components in the red block are the same (Figure adapted from Tong et al., 2015).

correlations between brain regions. Newer methods such as
CompCor (Behzadi et al., 2007) avoid some of these problems,
but may not fully remove the sLFO signal. By examining the
structure of temporal cross-correlations with non-zero time
delays throughout the brain (or by making simultaneous,
independent measurements in the periphery), it is possible to
parse the global, moving, blood-borne signal from the stationary,
neuronal connectivity signals. In the following we describe
a simple method to remove this signal, leaving the neuronal
connectivity intact, while substantially reducing the negative
(potentially spurious) correlations that result from global
signal regression.

We have conducted continuous research on isolating,
characterizing, and separating the neuronal LFO and sLFO in
the resting state BOLD fMRI during the past 8 years (Tong and

Frederick, 2010, 2012, 2014a,b; Tong et al., 2011a,b,c, 2012, 2013,
2014, 2015, 2016, 2017, 2018; Frederick et al., 2012a; Erdogan
et al., 2016; Hocke et al., 2016). The methods developed utilized
the key differences between these two oscillations, part of which
are discussed in “Characteristics of LFOs”: (1) neuronal LFO
is regional, while sLFO is global; (2) the neuronal LFO signal
does not “propagate” in space, while sLFO does (sLFOs are
dynamic), traversing the brain on the time scale of seconds; (3)
while neuronal LFO should be found largely in the capillary
bed (it is known to biased toward veins), sLFO BOLD is also
detected near/in the large blood vessels, especially veins as well
as capillaries; (4) neuronal LFO originates in the brain, while
sLFO has extracerebral origins and propagates into and through
the brain with the blood. These differences do allow us to
effectively parse the sLFO and neuronal components of the low
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frequency BOLD signal, and examine them separately using a
technique we call Regressor Interpolation at Progressive Time
Delays (RIPTiDe) which is described in more detail below.

Regressor Interpolation at Progressive
Time Delays (RIPTiDe)
The RIPTiDe procedure has been described in detail previously
(Frederick et al., 2012a). Initially, we developed a method to
determine relative blood arrival times in the voxels of a resting
state fMRI (rsfMRI) dataset by using simultaneous NIRS to
estimate the non-neuronal, systemic signal. We use a cross-
correlation procedure to determine the delay time between this
peripheral signal and the timecourse of each voxel in the fMRI
dataset. Determination of the precise arrival time of blood-borne
signal at every brain voxel also allows correct determination of the
fraction of that voxel’s signal that is accounted for by the moving
blood signal, which depends on the voxel’s relative cerebral blood
volume (rCBV) and the oxygenation of blood in the voxel (Tong
et al., 2018). We have used this NIRS based method to remove
non-neuronal signal from BOLD data (Frederick et al., 2012a),
as a probe to study physiological signal partitioning in brain
(Tong and Frederick, 2012, 2014a; Tong et al., 2012, 2013), and
to measure cerebrovascular reserve (Tong et al., 2011a).

Our previous time-delay image analysis work focused closely
on two physiological inputs – endogenous hemodynamic
fluctuations in normal controls measured directly and
concurrently with scanning using NIRS, and exogenous
hemodynamic fluctuations (caused by a carbogen gas challenge)
extracted post hoc from BOLD imaging data collected in
symptomatic IC stenosis patients undergoing CVR experiments
(Donahue et al., 2016). However, we have determined that in
many cases, the signal can be extracted from the fMRI data itself,
either from a region rich in venous blood (such as in the superior
sagittal sinus) (Tong et al., 2016), or more simply from the global
mean average of the data (Erdogan et al., 2016).

Using the global mean data has a number of advantages
relative to other methods, the most obvious being that it requires
nothing other than the fMRI data itself – no external recordings –
and processing is extremely simple, as there is no need to
define anatomic regions a priori. Moreover, we showed in our
recent study (Tong et al., 2018) that the global mean signal
is highly correlated with the BOLD signal extracted from the
SSS (i.e., maximum cross-correlation values are 0.81 ± 0.1),
which indicates that essential components of global mean overlap
with those of large veins (with little neuronal contamination).
The drawback is that the global mean signal is essentially
a temporally “blurred” version of the physiological regressor,
because it contains contributions from voxels over a range of
delay values. Moreover, each voxel contains fluctuations caused
by local neuronal activity (which in this case are considered
noise). To overcome these drawbacks, we have developed
bootstrap sharpening method to recover the source signal, which
is diagrammed in Figure 5. We have released an open source
software package, “rapidtide”1, to perform this fitting procedure

1https://github.com/bbfrederick/rapidtide

and isolate and remove the sLFO signal from resting state (or
task) fMRI data.

One of the most widespread methods of preprocessing rsfMRI
to remove low frequency physiological noise is GSR. In this
procedure, the mean signal of all voxels over time is regressed out
of all of the BOLD time series prior to resting state analysis. While
this does remove a significant amount of physiological signal,
it has a serious drawback – the creation of spurious, negative
correlations between brain regions (Carbonell et al., 2011). This
is an unavoidable consequence of simple regression. The global
mean signal is a summation of many copies of the sLFO signal
with a range of delays reflecting the blood arrival time throughout
the brain. Because the sLFO signal is low frequency (below 0.1–
0.15 Hz), when copies of the signal over the range of delays found
in the brain are summed, the signal strongly resembles the driving
sLFO signal. However, this signal is not properly aligned in time
in the vast majority of the voxels of the brain – it is shifted forward
or backward relative to each voxels’ signal, but the correlation
with each voxel is generally high. Regressing out a delayed
version of the driving signal at the wrong time delay unavoidably
results in a lower amplitude, inverted version of the global
signal being added to the voxel at the correct time delay. This
will necessarily create artifactual negative correlations in GSR
processed data, as shown by Erdogan in both real and simulated
data (see Figure 6, reproduced from Erdogan et al., 2016). In
a detailed comparison of static global signal regresson (sGSR)
with the dynamic global signal regression (dGSR) performed
by rapidtide, we found that by regressing the sLFO signal out
of each voxel at the proper time delays, the efficacy of noise
removal was improved. More importantly, we demonstrated that
by removing the sLFO dynamically, negative correlations, which
were present in the results of sGSR processing, were substantially
attenuated (Erdogan et al., 2016). We would argue that many
of these negative correlations are potentially spurious, being
generated by the removal process itself, but this has yet to be
confirmed. Aso et al. (2017) have found that an analogous noise
removal procedure yield similar improvements in task based
analyses, and also showed significant increases in reproducibility
of analyses over time.

We also compared sLFOs derived from peripheral NIRS
1[HbO] with other LFO models (Hocke et al., 2016), namely
the model-based methods for respiration and cardiac listed
above in “Potential causes of the low frequency oscillation.”
With high temporal resolution (TR of 400 ms), we found only
small contributions (1–5%) of explained variance by the models
considering respiration and cardiac variation. We also found
that sLFO explained significantly more variance (up to 16%)
when aliased respiration or cardiac signals do not play a critical
role when fully sampled and filtered. In addition, sLFO was
also substantially different from the variation models with very
little temporal and spatial overlap (Hocke et al., 2016), even
though NIRS 1[HbO] is closely related to modulations in CO2
concentration. This study showed that sLFO is not an artificial
signal created by suboptimal acquisition parameters, but a real
and pervasive physiological signal accounting for a substantial
amount of the variance in the BOLD LFO, and which is not
accounted of by previous methods. It should be noted that
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FIGURE 5 | A schematic representation of the RIPTiDe regressor refinement procedure (Figure reproduced from Erdogan et al., 2016).

this procedure cannot remove stationary non-neuronal signal.
However, this type of noise, should it exist, could be removed
using ICA techniques, which are well suited to detecting (and
removing) spatial patterns of synchronized signals.

Significance Determination
Because RIPTiDe analysis relies on the cross-correlation of
low pass filtered signals, there is some concern that the
correlations derived by the method may be spurious. Until
recently, determination of the statistical significance of RIPTiDe
metrics has been problematic. As the method is based on the
cross-correlation of time series, it is tempting to use standard
formulae, which determine significance based on number of
degrees of freedom and the correlation coefficient. However,
this greatly overestimates the statistical significance of the data
obtained through our procedure, for two reasons. The first is
that both our test regressor and the fMRI data are bandpass
filtered to select the LFO component prior to correlation, which
effectively reduces the degrees of freedom in the correlation. One
method proposed to correct for this, specifically for the case
of fMRI data, is to apply a correction factor to the degrees of
freedom based on the portion of the spectrum retained by the
filtering procedure (Davey et al., 2013). While this improves the
estimation of significance in filtered correlations, to be strictly
correct, both the exact transfer function of the filter function and
the spectrum of the data being filtered must be known a priori and
included in the calculation of the correction factor. In practice,
the power spectra of fMRI data in general and the systemic
low frequency oscillation signal in particular are not white (see
section “Limitations” for further discussion on this topic), even
over the limited frequency band of the sLFO, and vary in space.
This second condition makes this procedure cumbersome.

The second, and more difficult aspect of the analysis to
address, is that the peak correlation value within a range is
selected to determine the “optimal” time lag, which necessarily
serves to inflate the correlation value, and bias it toward more
positive values. Proper application of correction for multiple
comparisons requires accounting for the smoothness of the
correlation function, which in turn is determined by the
factors listed above. There are analytical methods for doing
this (Olden and Neff, 2001), however they too are somewhat
intractable for fMRI data.

While analytical calculation of the significance is difficult,
there are two straightforward numerical methods to achieve this
goal. The first, and simplest, method is to perform mismatched
correlations. In this case the voxel timecourses are correlated with
an sLFO signal from a different subject (or from the same subject
at an extremely large time delay of several minutes). In this
case any correlations between the timecourses are known to be
spurious; a distribution of spurious correlations can be calculated
to find various significance thresholds. We have employed this
method in many of our analyses where the data permits (most
recently here, Yao et al., 2019).

However, in cases where datasets are small, or time delayed
sLFO signals are not available, there is a more general method
which is also quite straightforward – we can estimate the
distribution of null correlations using a Monte Carlo approach
(Hocke et al., 2016). The probe regressor is permuted by
randomizing the time indices, preserving the distribution of
intensity values but destroying any temporal correlations, and
the RIPTiDe procedure (filtering, cross-correlation, and peak
finding) is performed on this timecourse with the unpermuted
regressor. The procedure is repeated a sufficient number of
times that the null distribution of correlation coefficients can be
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FIGURE 6 | The effect of static and dynamic global signal regression on group level connectivity strengths from a posterior cingulate cortex (PCC) seed to ROIs in
panel (A) major default mode network (DMN) ROIs (task negative regions), (B) Task positive network (TPN) ROIs, (C) and reference regions thought not to be
involved in either network. L, left hemisphere; R, right hemisphere; VIS, visual cortex ROI. Both static and dynamic global signal regression remove spurious
connectivity within the DMN (panel A), while preserving the expected anticorrelations with regions of the task positive network (panel B). Spurious positive
correlations with unrelated reference regions were eliminated with both types of regression; however this came at the cost of large, significant spurious
anticorrelations using static GSR, but not with dGSR (panel C) (Figure reproduced from Erdogan et al., 2016).

estimated, so the p-Values of different correlation coefficients can
be directly determined. This procedure is rapid – our analysis
software estimates this distribution from 10000 iterations at
the beginning of each refinement cycle for each subject’s data
in under 25 s. By default, the results presented by rapidtide
are thresholded to the p < 0.05% level. This is probably too
stringent in general, as there will be many voxels with true, lower
correlation due to low rCBV. In practice for high quality data
though, this is not too much of a problem.

It is important to note that for autocorrelated data, such as
fMRI, one should only permute samples within exchangeability
blocks to maintain the autocorrelation – time index shuffling
is not generally correct. A better (but significantly slower)
procedure is to randomize the phase of the Fourier transform
of the data, which preserves the autocorrelation structure
(Handwerker et al., 2012). However, in the case of RIPTiDe
processing, both the regressor and shuffled data are filtered to the
LFO band after shuffling, and the effect of this filter dominates
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the autocorrelation properties of the inputs to the correlation,
so time shuffling performs well. This was verified in the HCP
data, where we estimated the p < 0.05 correlation level both
by the shuffling procedure described, and with the mismatched
correlation method. The results were in close agreement, with an
average spurious correlation threshold of 0.2.

APPLICATIONS OF THE sLFO SIGNAL

Up to now we have discussed the moving sLFO as a noise signal
contaminating rsfMRI. But whether the moving signal is noise
or signal is simply a matter of perspective. If we reframe the
moving, blood-borne variance as a “signal” carrying information,
rather than simply a nuisance complicating the interpretation
of resting state connectivity, we can use it as a sensitive
measure of hemodynamic function. The relative arrival time
and strength of this signal as it propagates through the cerebral
vasculature carries information regarding the distribution and
timing of blood flow in the brain. We propose that the moving
hemodynamic signal is a unique contrast mechanism in its own
right, which provides information not currently available to
other techniques. It may offer insights into subtle hemodynamic
alterations that can be used as early indicators of circulatory
dysfunction in a number of neuropsychiatric conditions, such
as prodromal stroke, moyamoya, and Alzheimer’s disease.
Characterization of the sLFO signal throughout the brain allows
for continuous monitoring of blood arrival time delay without a
dedicated acquisition, with high sensitivity, and over a wide range
of delay times, without any externally administered contrast.

Cerebrovascular Reactivity (CVR)
Mapping
The moving sLFO signal can be used to determine
cerebrovascular reactivity (CVR) to CO2 changes both for
clinical evaluation and to calibrate the BOLD response. CVR
is typically measured using a hypercapnic challenge (either
exogenously applied gas or breathhold) (Heyn et al., 2010; Bright
and Murphy, 2013; Hare et al., 2013; Donahue et al., 2014).
Accounting for the particular dynamics of the sLFO signal can
give more accurate estimates of the regional response (Tong et al.,
2011a). Golestani et al. (2016a,b) fully exploited the effect of the
moving paCO2 sLFO waveform on voxel wise BOLD to perform
quantitative CVR mapping throughout the brain using only
resting state data. By correcting for time delay and correlating
the end-tidal CO2 (a proxy for paCO2) with the BOLD signal
(with additional noise removal and modeling), they were able
to determine the local BOLD response per percent change in
paCO2 simply from the resting state signal fluctuations.

Quantitative Blood Flow Imaging
In addition to assessing CVR, sLFO signals can be used
to track blood throughout the brain to reveal both normal
circulation patterns, and circulatory alterations in response to
tasks, pharmacological challenges, or pathology. The temporal
resolution of delay measured using cross-correlation depends on
the length of the input signals, rather than the signal repetition

time, so very fine delay distinctions are possible with normal
fMRI data. Furthermore, because the delay measurement relies
on a pattern of pseudorandom signal fluctuations over the
entire timecourse, rather than a single tag, such as that used in
arterial spin labeling (ASL), extremely long delay times can be
measured. Newer ASL techniques, such as multidelay ASL offer
some information on arrival time, but are still limited by the
short lifetime of the ASL tag (under 3 s). Velocity-selective ASL
does remove the restrictions on tag lifetime, and has been used
for delays over 6 s (Qiu et al., 2012), however, the ability to
quantify delay over a range of 10 to 100 s of seconds has not been
demonstrated, and this does require another scan in addition to
the resting state.

Healthy Circulation
We have used RIPTiDe analysis extensively in healthy subjects
to quantify typical blood flow patterns, have validated these
measurements against gold standard dynamic susceptibility
contrast (DSC) imaging data (see Figure 7) collected in the same
session (Tong et al., 2017), as shown in Figure 7, and have
followed signal through the head from the inflowing carotid
arteries to the exiting jugular veins (Tong et al., 2018) to establish
that the sLFO signal does indeed move with the blood.

Because the bootstrap RIPTiDe analysis requires only fMRI
data to assess hemodynamic parameters, it can be applied
retrospectively to existing data [as in the myconnectome analysis
described above (Tong et al., 2017), and a wider analysis of
myconnectome, ABCD, and HCP data (Yao et al., 2019)]. We
have also applied this technique to the resting state data from the
Human Connectome Project (Frederick et al., 2017), and were
able to produce very detailed maps of average time delay and
correlation strength throughout the brain (shown in Figure 8).
This can provide a standard comparison dataset for young
healthy controls.

It is important to note that the time delay measurement is
always relative. Our standard is to set “zero time” at the peak of
the histogram of delay values. As a result, there are necessarily
always positive and negative delay times – positive delays tend to
be in the later parts of the vascular tree – large draining veins, etc.,
while negative delays correspond to parts of the brain close to the
source arteries (so they get blood before most other regions). This
is a somewhat arbitrary choice – we could (and have) used an
anatomical reference region such as the cerebellum as the delay
time origin (Donahue et al., 2016) depending on the application.

We note that we consistently observe higher positive delay
values in white matter (by a few seconds) than in the cortex;
presumably this is because gray matter circulation is prioritized.
This observation has been confirmed with DSC imaging, the gold
standard MR technique for perfusion measurement.

Circulatory Pathology
This technique is not limited to studying healthy circulation,
however. Compromised circulation due to arterial occlusion
from to atherosclerosis, moyamoya disease, or stroke, can
lead to extremely long delay times (up to 10 s of seconds)
which are not quantifiable using conventional methods such
as ASL or CT angiography. We demonstrated that time delay
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FIGURE 7 | Blood arrival time delay values (in seconds) obtained from
rapidtide analysis of (A) resting state fMRI data and from (B) dynamic
susceptibility contrast imaging during the same imaging session in healthy
controls (N = 8) (Figure adapted from Tong et al., 2017).

imaging with exogenous CO2 manipulation can reveal and
accurately quantitate extremely long delays in vivo (Frederick
et al., 2013; Donahue et al., 2016). However, the exogenous
CO2 manipulation is not necessary – the hemodynamic delays
arising from moyamoya disease can also be quantified using the
endogenous sLFO signal from rsfMRI alone as a probe (Christen
et al., 2014). Others have used the endogenous sLFO in a number
of clinical applications.

Stroke
There have been several studies using global signal correlation
delays to investigate hypoperfusion acutely and longterm after
strokes. Lv et al. (2013) showed that “significant delay in
BOLD signal corresponded to areas of hypoperfusion identified

by contrast-based perfusion MRI” in 11 subjects acutely
after ischemic stroke. Amemiya et al. (2014) found similar
agreement in the results of BOLD delay and contrast perfusion
measurements in five patients with chronic hypoperfusion
and six with acute stroke. In 2016, Siegel assessed 130
subjects 2 weeks, and 3 and 12 months post-stroke onset
(and 30 controls), and showed that increased BOLD lag
delay was strongly correlated with decreased blood flow
assessed with ASL. Furthermore, they found that removing the
delayed hemodynamic signal somewhat normalized functional
connectivity measurements (which were distorted by delayed
hemodynamics) (Siegel et al., 2016). Khalil et al. (2017) assessed
delay changes of sLFO BOLD signals among acute stroke patients
in two separate studies. In one study, they found the delay
maps were highly correlated with the time-to-peak maps derived
from DSC-MRI in ischemic stroke. In another longitudinal
study, they found the sizes of the extended-delay regions and
the corresponding delay values changed according to the vessel
conditions (Khalil et al., 2018). Recently, Nishida et al. (2018)
has found the delay maps from patients with the arterial
occlusive disease were correlated with the CVR maps from
SPECT. These multimodal studies validated the method of BOLD
delay and showed its great potential in perfusion assessment of
cerebrovascular disease.

Other Conditions
Christen et al. (2014) were able to quantify delayed blood flow
in moyamoya disease using a cross-correlation technique. In
addition, Yan et al. (2018) have successfully detected perfusion
deficits (from BOLD delay) in patients with Alzheimer’s disease
and mild cognitive impairment.

LIMITATIONS

There are two rather significant factors that can complicate
the crosscorrelation method for tracking sLFO’s – unfortunate

FIGURE 8 | Averaged correlation parameters (lag time of maximum correlation and maximum correlation value) for 487 subjects from the 500 subjects release of the
Human Connectome Project data. Each subject had four scans (LR and RL phase encode in two sessions, REST1 and REST2) (Figure adapted from Frederick et al.,
2017).
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spectral characteristics of the sLFO signal, and initializing the
proper regressor to perform the calculation. These factors are
discussed below.

Spectral Characteristics
The first problem is the random nature of the sLFO signal itself.
Usually this benefits us in that it allows us to find the signal
throughout the brain despite whatever local signal variations are
present, and to determine its time delay – the cross-correlation
of the sLFO with any other random variation (such as neuronal
signals) is, in general, low, and the correlation with delayed copies
of itself is high and strongly peaked at the appropriate time delay.
The spurious correlation threshold can be determined through
permutation or comparison of correlations between subjects, as
discussed above, so we can decide when correlation is “real.”

However, all of this rests on the assumption that that sLFO
signal is (1) truly random, or at least not determined by factors
that will influence other noise signals found in the brain, and that
(2) the signal is sufficiently “white” within the band of interest.
While the first condition seems to be satisfied in general, the
second frequently is not. The random nature of the signal means
that by chance it sometimes has undesirable spectral properties
which make it less suitable for our purposes. This leads to two
problems – pseudoperiodicity and non-uniform spectra. The first
is a special case of the second, but is common enough to be
discussed on its own.

Pseudoperiodicity
The first uncontrolled quantity is pseudoperiodicity. From time
to time, signal energy in the 0.09–0.15 Hz band will be strongly
concentrated in one or more spectral peaks. Whether this is
completely random, or due to some pathological or congenital
condition that affects circulation is not known – it seems for the
most part to be purely by chance, as it is occasionally seen when
looking at multiple runs in the same subject, where one run is
pseudoperiodic while the rest are not.

The effect of this is to cause the crosscorrelation between
the probe signal and voxel timecourses to have more than
one strong correlation peak. This means that in the presence
of noise, or extreme spectral concentration of the sLFO, the
wrong crosscorrelation peak can appear larger, leading to an
incorrect delay estimation. This is particularly problematic if
the pseudoperiod is shorter than the reciprocal of the search
window (for example, if the search window for correlation peaks
is between −5 and +5 s, and the sLFO has a strong spectral
component at 0.1 Hz or higher, more than one correlation peak
will occur within the search window). As the width of the search
range increases, the spectral range of potentially confounding
spectral peaks covers more of the sLFO frequency band.

Implications of pseudoperiodicity
The extent to which pseudoperiodicity is a problem depends on
the application. In the case of noise removal, where the goal is to
remove the global sLFO signal, and leave the local or networked
neuronal signal variance, it turns out not to be much of a problem
at all. If the sLFO signal in given voxel is sufficiently periodic
that that the correctly delayed signal is indistinguishable from the

signal one or more periods away, then it doesn’t matter which
signal is removed – the resulting denoised signal is the same.

Mitigation of pseudoperiodicity
While we continue to work on fully resolving this issue, we have a
number of ways of dealing with this. First of all, spectral analysis
of the sLFO signal allows us to determine if the signal may
be problematic. Rapidtide checks the autocorrelation function
of the sLFO signal for large sidelobes with periods within the
delay search window and issues a warning when these signals
are present. Then after delay maps are calculated, they are
processed with an iterative despeckling process analogous to
phase unwrapping. The delay of each voxel is compared to
the median delay of its neighbors. If the voxel delay differs by
the period of an identified problematic sidelobe, the delay is
constrained to “correct” value and refit. This procedure greatly
attenuates, but does not completely solve, the problem of bad
sidelobes. A more general solution to the problem of non-
uniform spectra will likely improve the correction.

Non-uniform Spectra
As noted before, the pseudoperiodicity is a special case of
non-uniformity within the sLFO spectral region. In addition
to peaks in the power spectrum, there can be gaps, which are
also problematic.

Implications of non-uniform spectra due to spectral gaps
Non-uniform spectra will tend to distort the crosscorrelation
between the sLFO and any given voxel signal. In addition
to sidelobes which lead to the periodic correlation functions
discussed above, gaps in the spectrum, especially in the higher
frequency regions, can lead to blurry correlation functions.
Our method relies on identifying peaks in the crosscorrelation
waveform – the sharpness of these peaks depends on the higher
frequency portion of the sLFO power spectrum. If the energy
of the sLFO is concentrated in the lower frequency portion of
the LFO band, the crosscorrelation peaks become broad, which
makes the estimation of the peak location less accurate in the
presence of noise. This makes delay maps less accurate, and
will tend to lower the correlation values closer to the spurious
correlation threshold.

Mitigation of non-uniform spectra
The most straightforward solution to non-uniform spectra is to
prewhiten the sLFO and voxel signals (effectively flattening the
peaks and troughs of the magnitude spectrum, while preserving
phase) prior to performing the correlation; there are numerous
variants of this procedure, known as generalized crosscorrelation
(Knapp and Carter, 1976; Liang et al., 2015). The methods
require some tuning to determine thresholds for magnitude
recovery to avoid inflating noise, but are included as options in
rapidtide. However, when using the generalize crosscorrelation,
the resulting maximum correlation magnitudes are difficult to
interpret, as they no longer directly represent the amount of
variance explained by the sLFO regressor.
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Inhomogeneous Time Delays
Finally, there is the problem of obtaining the sLFO regressor
to begin with. In subjects with healthy circulation, the majority
of the brain has delays which are relatively tightly clustered
over a range of a few seconds; in this case the global mean
is a good starting regressor. After multiple refinement passes,
the regressor will converge on a stable candidate sLFO signal.
However, pathology can lead to significant volumes of brain
tissue with a large delay relative to the rest of the brain, but with
a small spread of values around that delay. This can result in a
global mean regressor which includes one or more “echoes” –
strong, delayed copies of the true driving regressor.

Implications of Inhomogenous Delays and Mitigation
Having a regressor with multiple delayed copies of the driving
sLFO signal will lead to ambiguous delay values, and will
keep the refinement process from converging. While it may be
possible to clean the signal using a technique analogous to echo
cancelation, it is generally easier to avoid the situation to begin
with by starting from a region of homogenous delay values.
A number of the cited studies in pathology have used regressors
derived from the superior sagittal sinus, which is easy to locate
and clearly homogenous. However, its location at the end of
the vascular tree means that blood in that region may have
traversed multiple distinct paths to get there, which could result
in multiple delay components. Our current thinking is to use a
cerebellar ROI to derive the starting sLFO regressor, as circulation
in that region is undisturbed in a wide range of pathologies
(Donahue et al., 2016).

Stationarity
One assumption that has been made throughout these
discussions is that the time delay in a region is constant over time,
or “stationary.” While convenient, this is clearly a simplification.
We know that these delays are not, in fact, completely constant
over time. There are slight variations in delay time within HCP
subjects between runs on the same day, and larger variations
between days. There is no reason to suspect that there are not
variations within runs as well – the correlation delays presented
are averaged over the entire run. Moreover, when we calculate the
delay maps from the HCP motor task data, we consistently see a
regional, average 0.5 s decrease in the blood arrival time in the
motor cortex relative to the values from the resting state scans,
consistent with increased blood flow due to neuronal load – this is
presumably an average change between the active and non-active
periods leading to a shorter average delay time. This is a potential
interesting area of research that as of yet, does not seem to have
been explored. We have experimented some with a windowed
version of RIPITiDe analysis analogous to dynamic connectivity

studies, but have not worked out whether there is sufficient SNR
to do this routinely.

CONCLUSION

Low frequency oscillations contribute significantly to the rsfMRI
signal. The signal is defined by its characteristics rather than by
its origins – in specific, a low frequency range of ∼0.01–0.15 Hz.
In fact, there are likely many sources of signals in this spectral
region. We have discussed a number of theories for the origin of
LFOs; it is important to note that these theories do not conflict –
power in this frequency band is likely due to some combination of
the sources we describe. Because of this, it is more useful to talk
about how the low frequency contamination in the fMRI signal
behaves, and what can be done about and with it.

Unlike other physiological signals, such as respiration and
cardiac contamination, LFOs cannot be separated from neuronal
signals through spectral filtering – they must be modeled. We
have observed that up to 30% of the low frequency signal power
in the gray matter moves through the vasculature, and is carried
with the blood into and through the brain. This portion of
the signal is therefore amenable to detection, quantitation, and
removal using cross-correlation techniques, which perform well
at the task of noise removal, without introducing the significant
artifacts seen with other methods, such as global signal regression.

Finally, we and others have demonstrated that this moving
signal can be used as a probe to quantitate cerebral hemodynamic
parameters, over a wide range of conditions, without the use
of contrast or specialized imaging techniques, making this an
ideal method for inferring hemodynamic information both in
new studies and in retrospective analysis of existing datasets. Half
of these studies have been in the last 2 years, demonstrating the
increasing interest in the broad clinical application of the method.
As large-scale public databases such as the Human Connectome
Project and the UK Biobank become available, we expect the use
of these techniques to continue to expand into new research areas.
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