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Abstract. In moving toward malaria elimination, finer scale malaria risk maps are required to identify hotspots for
implementing surveillance–response activities, allocating resources, and preparing health facilities based on the needs
and necessities at each specific area. This study aimed to demonstrate the use of multi-criteria decision analysis (MCDA)
in conjunction with geographic information systems (GISs) to create a spatial model and riskmaps by integrating satellite
remote-sensing and malaria surveillance data from 18 counties of Yunnan Province along the China–Myanmar border.
The MCDA composite and annual models and risk maps were created from the consensus among the experts who have
been working and know situations in the study areas. The experts identified and provided relative factor weights for nine
socioeconomic and disease ecology factors as aweighted linear combinationmodel of the following: ([Forest coverage ×
0.041] + [Cropland × 0.086] + [Water body × 0.175] + [Elevation × 0.297] + [Human population density × 0.043] + [Imported
case×0.258] + [Distance to road×0.030] + [Distance to health facility × 0.033] + [Urbanization ×0.036]). The expert-based
model had a good prediction capacity with a high area under curve. The study has demonstrated the novel integrated use
of spatialMCDAwhich combinesmultiple environmental factors in estimating disease risk by using decision rules derived
from existing knowledge or hypothesized understanding of the risk factors via diverse quantitative and qualitative criteria
using both data-driven and qualitative indicators from the experts. The model and fine MCDA risk map developed in this
study could assist in focusing the elimination efforts in the specifically identified locations with high risks.

INTRODUCTION

It has been anticipated that Yunnan, particularly the border
counties of the province, would be the final location of malaria
cases inChinaat the final phaseofmalaria elimination. Despite
the fact that malaria has been substantially decreasing during
the pre-elimination phase (2011–2016), the indigenous cases
dropped to zero in 2017, but the imported cases remain a
major threat to China’s malaria elimination progress.1–3 Spa-
tial and temporal models for predicting malaria and other
vector-borne disease risks based on environmental factors
such as climate and landscape have been developed for
highlighting areas for targeting public health programs.4–7

In China, several studies have used spatial and temporal
modeling to detect disease clusters while adjusting for pop-
ulation size variation in space and timescales in endemic
provinces.6–14 Most of the previous spatiotemporal modeling
tended to focus on the climatic risk factors such as rainfall,
temperature, and humidity related tomalaria incidence. At the
border regions, using such variables is problematic. First,
climatic data are not available on neighboring countries.
Second, regional conflicts led tomigration andcausedmalaria
outbreaks in the new settlements. An alternative spatiotem-
poral model of non-climatic, environment-associated risk
factors of malaria epidemiology in the border regions may be

more appropriate for identifying malaria transmission hot-
spots and guiding targeted malaria interventions.
There have been several other models and types of input

data that can be used to develop a spatialmap. For example, a
study in Colombia had developed a modeling framework
based on geographic information systems (GIS) and remote-
sensing environmental data using multiple regression analy-
sis, and subsequently, a model was constructed to estimate
the annual parasite incidence and to design risk maps for
the entire endemic region.15 Another study used binomial lo-
gistic regression to examine the determinants of malaria risk
among children, and, subsequently, model-based geo-
statistical methods were applied to analyze, predict, and map
malaria prevalence.16 Another study used epidemiology and
surveillance data to develop and calculate risk factor coeffi-
cients via a Bayesian spatial negative binomial model and
subsequently used the model-based relative risk estimates to
map malaria risk areas.17 Multi-criteria decision analysis
(MCDA) is a decision support tool that allows for the consid-
eration of diverse quantitative andqualitative criteria using both
data-driven and qualitative indicators from stakeholder partic-
ipations.4 Multi-criteria decision analysis was initiated in the
field of operation research and subsequently has been applied
to many disciplines, including environmental, agricultural,
transportation, and urban planning, and recently has been ap-
plied in public health.18–25 Multi-criteria decision analysis uses
statistical methods and human intuition, allows expert in-
teraction, and accommodates nonlinear relationships common
betweendisease organismsand the environment.Multi-criteria
decision analysis also allows the combination of multiple
environmental factors in estimating disease risk by using de-
cision rules derived from existing knowledge or hypothesized
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understanding of the factors leading to disease occurrence.20,26

Geographic information systems have been widely applied to
malaria risk mapping. Geographic information systems in con-
junction with MCDA, sometimes referred to as GIS-MCDA
or spatial MCDA, could help gain insights on the effects
of spatial constraints such as zoning, land use, or de-
mography on program management in public health and
other settings.24–27 The advantages of the GIS-MCDAmodel
are that it is the evidential reasoning technique providing a
structured framework for information exchange among the
different stakeholders and reducing the unstructured nature
of the problem; and it canbe used to support the optimization
and rationalization of the decision-making process.18,19 The
spatial MCDA has been proved to facilitate a systematic
and comprehensive way to identify malaria hazard and
risk mapping. Studies in Africa and South America applied
MCDA and produced risk maps from expert opinions on the
spatial risk representation of potential vector exposure and
malaria transmission to tackle the challenge during malaria
elimination.5,26–33

As China is moving towardmalaria elimination, the capacity
to accurately and reliably map malaria risk and target re-
sources becomes an invaluable resource to ensure program
success.33 Spatially accurate and fine risk maps could help
planning, decision-making, and prioritizing areas for targeted

control interventions, but socio-ecological and environmental
factors and local malaria transmission patterns might change
over the years and could also directly influence the design and
delivery of prevention and control strategies. This study thus
aimed to identify spatial clusters of malaria and quantify the
relationships between risk factors and malaria cases. Spe-
cifically, this study focused on the identification of high-risk
locations and periods of malaria cases along the border areas
of YunnanProvince during its pre-elimination period. This was
also the first attempt to integrate satellite remote-sensing and
malaria surveillance data to estimate the impacts of socio-
environmental factors on malaria cases in persistent endemic
areas along the China–Myanmar border.

METHODS

Study area. The study area comprises 18 counties along
the China–Myanmar border in Yunnan Province (Figure 1).
Yunnan is located in southwestern China, borderingMyanmar
in the west with a 2,185-km land border. The five Myanmar
special regions bordering Yunnan are mountainous and for-
ested. The local residents are mainly ethnic minorities living
under poor conditions. This area has an annual average total
population of 4.88 million (during 2011–2016). The elevation
varies greatly from 210 to 4,878 m above sea level.

FIGURE 1. Map of the study areawith the 18 counties of Yunnan Province borderingMyanmar highlighted (A) and (B). This figure appears in color
at www.ajtmh.org.
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Multi-criteria decision analysis. The spatial MCDAmodel
used here encompassed five steps: 1) identify the risk factors,
2) identify relative importance of each risk factor, 3) stan-
dardize the factors for comparability, 4) perform multi-criteria
evaluation (MCE), and 5) validate the model (accuracy
assessment).
Risk factor identification. Malaria risk factors commonly in-

clude hosts, vectors, pathogens, and environment, which vary in
space and time. Based on literature review, besides climatic fac-
tors (temperature, rainfall, humidity, etc.), non-climatic factors
influencing malaria distribution and transmission include, for ex-
ample, environmental changes, socioeconomic status, human
activities, andpopulationmovement andsettlement (density).34–39

This study focuses on the non-climatic risk factors of malaria
transmission at the local level in the Yunnan border areas.
In developing the MCDA model, risk factors can be identi-

fied and achieved either by extracting information from a lit-
erature review or from expert opinions.40,41 In this study, as
there has been no similar research in this area and ranking for
relative importance and type associated with risk factors
(standardization) could not be achieved precisely through lit-
erature review, an expert opinion method was selected. The
working process of expert opinion included 1) making a list of
risk factors of malaria and 2) brainstorming and obtaining
consensus on the weightings of each risk factor.41

There were six experts in Yunnan Institute of Parasitic Dis-
eases who passed the inclusion criteria such that they had
experiences in malaria control and specialized in fieldwork,
laboratory work, or project management (Table 1). They were
invited to a brainstorm session to express their opinions and
reach a consensus on a pair-wise comparisonmatrix by using
the analytical hierarchy process (AHP).
Basedon the discussion of potential risk factors in the study

areas, the six experts had a consensus on nine risk factors, as
shown in Table 2. Data sources of the risk factors on both
China and Myanmar sides were extracted from remote-
sensing online resources in certain official websites. GPS
data of villages and health facilities in China were obtained
from official websites. The primary data used in this study,
listed in Table 2, were extracted from different data sources.
Land cover data, including forest coverage, cropland, and
water body, were extracted from the GLOBELAND30 website
(http://www.globallandcover.com/GLC30Download/index.aspx),
which provides global raster maps of land cover with 30-m
resolution. The SRTM digital elevation data with 90-m reso-
lution, produced by NASA, were extracted from the
CGIARCSI website (http://www.cgiar-csi.org/data). The hu-
man population density raster dataset at 100-m resolution was
obtained from the WorldPop project (http://www.worldpop.
org.uk/). The road vector data were downloaded from the

DIVA-GIS website (http://www.diva-gis.org/), and the health fa-
cility coordinates were downloaded from the GPSspg website
(http://www.gpsspg.com/). The distance to road anddistance to
health facilitydatawereprocessed inArcGIS10.2 (Redlands,CA)
using the cost distance tool. Urbanization data were extracted
from the SEDAC website (http://sedac.ciesin.columbia.edu/data/
set/grump-v1-urban-ext-polygons-rev01/data-download). Data
on malaria cases and demographic data were collected from 613
villages (all villages with reported malaria cases during the study
period) in 18 counties of Yunnan Province from 2011 to 2016.
Population data at the village level were obtained from the local
governments on the China side. Imported cases of malaria, col-
lected by the National Notifiable Infectious Disease Reporting
Information System (NIDRIS) of China, were aggregated into
polygons of 18 counties bordering Myanmar. All geographical
datawere converted into raster datasetswith 100-m resolution;
ArcGIS 10.2 software was used tomanage all geo-processing.
Relative importance weight of each risk factor. In assessing

the importance of the selected factors, the AHP was used. In
the AHP, the experts will assign and have a consensus on
weight of each factor by assessing its importance relative to
the importance of the other factor in pair using a pair-wise
matrix.42 As shown in Table 3, the importance of each factor
relative to the other in a pair would have a value ranging from 1
(extremely less important) to 9 (extremely more important).
The consistency of the pair-wise matrix is then evaluated as
follows: consistency ratio (CR) = CI/RI, where CI = (λmax−n)/
(n−1), RI is the random consistency index (shown in Table 4),
n is the number of factors, CI is the consistency index, and
λmax is priority vector multiplied by each column total. The CR
of the pair-wise matrix was evaluated using CR = 0.1 as a
threshold. If CR > 0.1, then some pair-wise values required
revision until CR < 0.10was reached, indicating an acceptable
consistency.42,43

Factor standardization. The data layers might contain var-
iably scaled information; thus, fuzzy functions are used to
standardize all the layers to a common data range needed to
facilitate factor integration. Fuzzy functions measure the de-
gree of membership of data cells in a layer through control
points that are set based on the relationship between the layer
and disease/vectors. In the ArcGIS program, these relation-
ships determine the shape (linear, Guassian, large, small, etc.)
and direction (increasing, decreasing, or symmetric) of the
fuzzy function. In this study, those functions were selected
and represented on an 8-bit (0–255) scale in the data analysis.
Multi-criteria evaluation. Subsequently, theMCE procedure

is used to integrate all data layers to create composite risk
maps for the study area by choosing the weighted linear
combination (WLC). The WLC is a linear function which
combines fuzzy layers according to their weight of importance
(i.e., all factor weights add up to 1).41,44

S¼ +
n

i¼1
wixicj,

where wi = the weight of factor i, xi = the criterion score of
factor i (value corresponding to the raster cell in the criterion
raster map), n = the number of factor, and ci = the criterion
score (1 or 0) of constraint.
Map validation (accuracy assessment). The predictive ability

of the MCDA models can be quantitatively evaluated by cal-
culating the area under the curve (AUC) from receiver operating

TABLE 1
Information about the experts inYunnan InstituteofParasiticDiseases

Number Professional title
Years working
on malaria Expertise

1 Senior 33 Laboratory
2 Senior 30 Epidemiology and

vector control
3 Senior 20 Epidemiology
4 Intermediate 13 Epidemiology
5 Intermediate 10 Vector control
6 Intermediate 9 Project management

MALARIA RISK MAP 795

http://www.globallandcover.com/GLC30Download/index.aspx
http://www.cgiar-csi.org/data
http://www.worldpop.org.uk/
http://www.worldpop.org.uk/
http://www.diva-gis.org/
http://www.gpsspg.com/
http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-ext-polygons-rev01/data-download
http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-ext-polygons-rev01/data-download


characteristic (ROC) analysis (Figure 2). Predicted values are
obtained from the suitability maps by calculating the average
risk in the study area, whereas observed values correspond to
malaria data at the same aggregation level (village). In Yunnan,
malaria data during 2011–2016 were obtained from NIDRIS,
which has been considered as a surveillance system with very
good sensitivity and specificity. Therefore, themodel validation
was performed by comparing the model performance of ex-
perts’ opinion as sources of a priori knowledge for spatial
MCDAagainst theYunnandataset todetermine theaccuracyof
the model developed. The AUC of model reflects the suitability
of the risk maps for malaria transmission in the study area. In a
quantitative validation of the riskmap produced in study area, if
the predictive performance of themodel is useful for prediction,
then it should have the AUC with a relatively high predictive
power. As a rule of thumb, an AUC of 0.5–0.7 indicates low
accuracy, 0.7–0.9 useful applications, and > 0.9 very high
accuracy.45,46 For example, if theAUCof themodel = 0.88, then
it means for 88%of the time, a randomly selected location with
malaria has a probability that is greater than that for a randomly
selected location without malaria.
In summary, in developing spatial MCDA models, the five

steps were conducted by using the raster-based ArcGIS
software and validated in RStudio (Figure 3). As the number of
imported cases was the only risk factor that varied over the 6
years of the study period, the analysis at each year was per-
formed to determine any temporal trend changes.

RESULTS

Identification and factor weights of malaria risks. Based
on the brainstorm session experts’ consensus on a pair-wise

comparison matrix using the AHP, nine malaria risk factors
associated with malaria transmission were considered. Table 5
shows a 9 × 9 comparison matrix of the malaria risk factors
with factor weights. A value of 1 means the pair of column and
row factors has the same weight and affects the malaria oc-
currence equally. A value of 3, 5, 7, or 9 means the factor in the
column has the selected corresponding multiplication weight
of important level as a risk of malaria occurrence relative to
its pair-wise factor in the row. The weights of each factor used
for the spatial model in producing the malaria risk map were
as follows: elevation (29.7%), importedcases (25.8%), distance
to a water body (17.5%), cultivated land (8.6%), human pop-
ulation density (4.3%), forest coverage (4.1%), urbanization
(3.6%), distance to a health facility (3.3%), and distance to
road (3.0%). The CR for the pair-wise matrix passed the ac-
ceptable threshold with a score of 8.5%, meaning that the
factor weighting produced an acceptable consistency.
Standardizationofmalaria risksandmappingbyeach risk.

The data for malaria risk factors were standardized for mapping
in the study area using the malaria risk layer as indicated in
Table 6. In this study, the fuzzy function for ArcGIS mapping
used the WLC approach. Spatial risk assessment and mapping
of malaria occurrences in the 18 counties of Yunnan Province
by each of the nine factors are shown in Figure 4. In each risk
factor map, the locations of indigenous cases were also plotted
to visually observe the distribution of cases, with the individual
risk factor as a background image.
Composite malaria risk mapping by MCE. In creating the

composite risk map in the study area, the factor weights of
malaria risk layers indicated in Table 6 were combined by the
WLC method. The model to produce the malaria risk map for-
mula was as follows: [(Forest coverage × 0.041) + (Cropland ×

TABLE 2
Risk factors for malaria according to expert consensus

Risk factor Description

Forest coverage Forest coverage in 18 counties of Yunnan Province bordering with Myanmar. Data extracted from: http://
www.globallandcover.com/GLC30Download/index.asp

Cropland Cultivated land coverage in 18 counties of Yunnan Province bordering with Myanmar. Data extracted from:
http://www.globallandcover.com/GLC30Download/index.asp

Water body Water bodies in 18 counties of Yunnan Province bordering with Myanmar. Data extracted from: http://
www.globallandcover.com/GLC30Download/index.asp

Elevation Elevation in 18 counties of Yunnan Province bordering with Myanmar. Data extracted from: http://www.cgiar-
csi.org/data/srtm-90m-digital-elevation-database-v4-1

Human population density Population in 18 counties of Yunnan Province bordering with Myanmar. Data extracted from: http://
www.worldpop.org.uk/

Imported case Monthly imported cases at the village level in 18 counties bordering with Myanmar during 2011–2016. Data
extracted from the National Notifiable Infectious Disease Reporting Information System of China

Distance to road Main road development in 18 counties of YunnanProvince borderingwithMyanmar. Data extracted from: http://
www.diva-gis.org/

Distance to health facility GPS data (point) of township-level health facilities (the lowest level health facility where the malaria can be
diagnosed, treated, and reported) in 18 counties. Data extracted from: http://www.gpsspg.com/

Urbanization Land use in 18 counties. Data extracted from: http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-ext-
polygons-rev01/data-download

TABLE 3
A nine-point continuous comparison scale

Less important More important

Extremely
Very

strongly Strongly Moderately Equally Moderately Strongly
Very

strongly Extremely

1/9 1/7 1/5 1/3 1 3 5 7 9
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0.086) + (Water body × 0.175) + (Elevation × 0.297) + (Human
population density × 0.043) + (Imported case × 0.258) + (Dis-
tance to road × 0.030) + (Distance to health facility × 0.033) +
(Urbanization × 0.036)]. Figure 5 shows the final malaria risk
map of the study area after combining all the weighted risk
factor layers by using the Raster Calculator in an ArcGIS

environment. The composite risk maps of the nine factors are
shown in Figure 5A. In validating the risk map developed
comparing themodel basedon the experts’ opinion against the
malaria data in Yunnan’s dataset, the expert-based model for
this study had a good prediction capacity with an AUC of 0.89
(CI %95: 0.86–0.91; Figure 5B).

TABLE 4
Random indices for matrices

Number of factors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.46 1.49 1.51 1.54 1.56 1.57 1.58

FIGURE 2. Model validation of multi-criteria decision analysis. (A) Formula of sensitivity and specificity and (B) area under the curve of receiver
operating characteristic plot. Note: Sensitivity and specificity: 0.5–0.7 indicates low accuracy, 0.7–0.9 indicates useful applications, and > 0.9
indicates high accuracy. This figure appears in color at www.ajtmh.org.
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Based on the risk map developed, risk areas can be pin-
pointed. It can be seen that in the combined map, the high
malaria risk areas are mainly concentrated at Yingjiang,
Tengchong, Longchuan, Ruili, and Mangshi counties in the
western part, and Gengma, Cangyuan, Ximeng, andMenglian
counties in the southwestern part of Yunnan Province, which
border with KSR II and Shan State of Myanmar, respectively.
All these areas are located within low to moderate elevation,
close to the major water bodies, and/or close to villages
(points) where indigenous cases occurred (Figure 5A).
Spatial malaria risk mapping by MCE. As a major risk

factor was the “imported cases” and it was the variable that
changed in terms of the numbers and locations annually over the
6-year study period, it was of interest to develop risk maps by
taking intoconsideration the importedcasesasa time-dependent
factor. Annual risk maps were created using the same MCDA
model but applying the imported cases in each year in combi-
nation with the other eight risk factors (Figure 6). The risk maps
were validated to check the strength of association between lo-
cations where indigenous cases really occurred (from the sur-
veillance system) and the risk areas that was generated by the
MCDAmodel with imported cases that were changed annually in
a spatial pattern (Table 7). The AUCs for the risk maps showed
good fit of themodels, ranging from0.75 to 1.00. TheAUC for the
year2016was1.00because there isonlyone indigenouscase left
in the study area. Theoretically, perfect prediction is a point when
the predicted and actual values coincide 100%.When examining

the risk areas over the 6 years, there appears to be a spatially
distributed relationship between the location of the annual in-
digenous cases and the imported cases. Although both in-
digenous and imported cases were decreasing, similar risk areas
remained in the counties as shown in the composite riskmap. No
obvious temporal effect was observed as the annual risk areas
appeared not to change much over the years.

DISCUSSION

China, particularly Yunnan Province, is nowmoving toward the
malaria elimination phase. As malaria transmission declines, the
number and size of the infection foci are shrinking. Strategies to
achieve and maintain malaria elimination should concentrate on
identifying and eliminating transmission foci. Thus, finer scale
malaria risk maps are required to identify transmission hotspots
that can be used for implementing surveillance–response strate-
gies, allocating resources, and preparing health facilities based on
the requirement of each area. This study used the MCDA model,
aiming to identify and assess the relationships between non-
climatic factors andmalaria cases and to visualize spatial high-risk
areas of malaria transmission on a finer scale.
In this study, the MCDA model and risk maps were created

from the consensus among the experts who have been
working and know malaria situations in the study areas very
well. This study not only developeda composite spatialMCDA
model but also explored temporal effects by developing

FIGURE 3. Summary of malaria risk analysis process in ArcGIS and RStudio. This figure appears in color at www.ajtmh.org.
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annualMCDA riskmaps by varying the numbers and locations
of annual imported cases in the study areas. The composite
model and annual models were validated and appeared to
provide a good fit of the model with high AUCs. This good
predictive performance could be explained that although the
major risk factor, imported cases, changed in terms of the
numbers and locations, its weight remained unchanged, and
thus the risk area generated by the model for each year was
highly consistent with the actual location of indigenous cases
that was extracted from the surveillance system. As afore-
mentioned, the possible explanation for the very good per-
formance of the expert-based model was that the experts
could identify accurate and precise risk factors used in gen-
erating the risk map because they have been working in the
study areas for a long time and knew situations in their areas,
and some of them had previously conducted research studies

in malaria prevention and control. Although imported cases
were considered to give the temporal dimension of the study,
other variables in the model, which were identified by the ex-
perts, represented only the spatial dimension because of the
limited availability of data on the websites and limited access
to various data sources in China. Our model is thus charac-
terized as a spatial MCDA model rather than a full-fledged
spatiotemporal MCDA model. Even though our model pro-
vides a good fit for the results, as shown in AUC statistics, the
model may be more complete and provide even better fit if
these variables and other variables with temporal variation of
malaria risk are taken into account.
The selection of malaria risk factors is essential for the re-

liability of the risk map to be developed. Malaria could be
considered as an environmental disease, as the vectors
and parasite populations are influenced by specific habitats,

TABLE 5
Risk factors weighted by experts

Risk factor
Forest

coverage Cropland Water body Elevation
Human population

density
Distance to

imported case
Distance
to road

Distance to
health facility Urbanization Weight

1 Forest coverage 1 1/3 1/3 1/9 3 1/9 1 1 1 0.041
2 Cropland 3 1 1 1/3 3 1/3 3 1 1 0.086
3 Water body 3 1 1 1/3 3 1 9 9 9 0.175
4 Elevation 9 3 3 1 9 1 9 9 9 0.297
5 Human population

density
1/3 1/3 1/3 1/9 1 1/7 1 5 1 0.043

6 Imported case 9 3 1 1 7 1 9 9 9 0.258
7 Distance to road 1 1/3 1/9 1/9 1 1/9 1 1 1 0.030
8 Distance to health

facility
1 1 1/9 1/9 1/5 1/9 1 1 1 0.033

9 Urbanization 1 1 1/9 1/9 1 1/9 1 1 1 0.036
Sum 28.333 11.000 7.000 3.222 28.200 3.921 35.000 37.000 33.000 1.000

TABLE 6
Standardization of the selected risk factors

Risk factor Factor weight Application in this study Relationship and control point
Fuzzy function

applied in ArcGIS Assumption/logic

Forest coverage 0.041 Use forest coverage Binominal ↓, 0, 1 (without, with) Linear ↓ Forest is not suitable for vector breeding.
(Vectors occur in lowland, foothills, and
mid-hills some distance away from
forest.)

Cropland 0.086 Use cropland
coverage

Binominal ↑, 0, 1 (without, with) Linear ↑ Cropland (paddy field) is suitable for
vector breeding

Water body 0.175 Use distance to
water body

Binominal ↑, 0, 1 (without, with) Linear ↑ Vectors foundwithin 2 kmof water bodies
(normal flight range)

Elevation 0.297 Use elevation Sigmoidal ↓, 600, 3,500 m
(min, max)

Linear ↓ Main vector exposure above 600 m, then
decreases with elevation increases,
and is null above 3,500 m in the study
area

Human
population
density

0.043 Use predicted human
population in 2020

Sigmoidal ↑, 0.005,104.539 unit
(min, max)

Linear ↑ Increased population density and greater
malaria risk

Imported case 0.258 Use distance to
imported cases

Sigmoidal ↓, 0, 5,000 m
(min, max)

Linear ↓ Higher risk of malaria transmission within
5 km of imported case (normal flight
range of mosquito and human
movement)

Distance to road 0.030 Use distance to road Linear ↑, 5,000, 48,734.5 m
(min, max)

Linear ↑ Low risk of malaria infection as higher
probability of prevention and control
when distance from road is < 5 km

Distance to
health facility

0.033 Use distance of
health facility

Linear ↑ 10,000, 59,371 m
(min, max)

Linear ↑ Low risk of malaria transmission within
10 km of health facility, as individual
patient could access timely diagnosis
and treatment

Urbanization 0.036 Use distance to
urban areas

Sigmoidal ↑ 5,000, 180,839 m
(min, max)

Linear ↑ Vectors absent from urban areas but
increased in urban periphery and rural
areas
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humidity, and temperature, whereas the hosts are found to
be related to poverty, migration, and access to health
care.5,26,29,47–49 The experts in this study reached consensus
on selecting ninemajor risk factors for the study areas—forest
coverage, cropland, water body, elevation, urbanization,

humanpopulationdensity, distance to road, distance tohealth
facility, and imported case. Several other studies using an
MCDA model in other settings used similar and different de-
terminants. A study in Mozambique identified malaria risk
factors of average temperature, precipitation, altitude, slope,

FIGURE 4. Spatial risk assessment of malaria occurrence by each factor in 18 counties of Yunnan Province. This figure appears in color at
www.ajtmh.org.
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distance to water body, distance to road, normalized differ-
ence index, land use and land cover, malaria prevalence, and
population density.32 A study in Ethiopia used natural factors
affecting mosquito-breeding sites, habitat formation, and
disease transmission, including distance from water bodies,
temperature, drainage status, elevation, and slope; the study
also developed malaria risk hazard mapping at a specific hy-
dropower development site using the natural conditions and
the other elements at risk, including gross population density,
land use/cover, health services, and road access as factors of
development.27 Spatial MCDA study in Ghana produced a
predictive model from eight risk factors ranging from envi-
ronmental to anthropogenic (human-induced) variables such
as land use/land cover changes and distance to road,29

whereas another study in Iran used four factors including
temperature, water bodies, humidity, and vegetation sug-
gested spatiotemporal variations in trend of malaria-risk
area.47 Similar to the present study, a study in South Amer-
ica used nine parameters associated with the environment
related to availability of vector-breeding sites (wetlands, pre-
cipitation, and topographic wetness index), thermal and alti-
tudinal limits for parasites and vectors (elevation and
temperature), and access to blood meals (population density,
roads, urban areas, and deforestation).26 In this study, the
experts did not identify climate as a risk factor of malaria in-
cidence and transmission corresponding to the literature re-
view that climatic indicators were rather controversial; some
studies reported significant associations, whereas others
did not.30,31,47,48

The factors identified by the experts in this study reflect the
complexity of border malaria transmission, which integrate
influential natural factors (i.e., elevation and water body), an-
thropogenic elements (i.e., forest coverage, cropland, and
urbanization), access to healthcare dimensions (i.e., avail-
ability and distance to health care), and imported infections
(i.e., cases imported along the borders). The integrated risk
parameters of natural factors and anthropogenic elements
couldbeseenas landcover and landusecharacteristics. Land

cover concerns the physical material observed at the earth’s
surface, whereas land use is related to the human use of
the land, integrating socioeconomic and cultural functions.50

A focus on land cover helps understand the presence of
vectors and hosts, and a focus on land use identifies which
places people visit for specific activities, at what time of
the day and the year, and how frequently.27,28,51 Several
studies have noted that land cover and land use were the
major eco-epidemiological systems that could improve the
understanding and prediction of disease risk.50,52,53 Spatial
and temporal variations inmalaria risk dependnot only on land
cover but also on land use, via the probability of contact be-
tween vectors and hosts.51 It should be noted, however, that
the elements of land cover and land use might interact with
each other, for example, the intensification of deforestation
that is generally associated with urbanization or large culti-
vated areas. Studies with geographical analysis noted that
land surfaces covered in low vegetation were associated with
a significant malaria risk immediately after deforestation, but
lower riskwas foundwhen the size of the areaswas increasing
or when the areas became urbanized.50,54,55 Besides the land
cover/use factors, the collegial factors, including imported
infections and access to health facilities, were also suggested
in the literature to be important elements for deploying and
targeting efforts and resources, especially while moving to-
ward malaria elimination.56–62

Thechallengealong theborder areas is related to thenatural
environment, which is complex and harbors a variety of
malaria vectors.63 The land cover natural risk factors identified
by the experts were elevation and water body. Topography
(elevation) generally has a great influence on mosquito repli-
cation such that higher topographies in cooler temperatures
would limit the reproduction rate of the parasite.28 Studies
on environmental factors and malaria risk reported that dif-
ferent mosquito species with special ecological niches, and
slope, play important roles in the distribution of malaria
vectors.49,64,65 Previous studies reported the relationship of
elevation and malaria such that the biology of malaria vectors

FIGURE 5. Composite riskmapderived fromweighted linear combination of nine risk factors. (A) Risk areas in 18 countiesof YunnanProvinceand
(B) area under the curve of the developed model. This figure appears in color at www.ajtmh.org.
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with species diversity and density declines from the lowlands
to highlands.66 Increasing distance from a village center and
decreasing elevation were positively associated with malaria
risk.67 In particular, the study in Yingjiang County in the

Yunnan border area reported that the two main malaria vec-
tors, Anopheles minimus and Anopheles sinensis, spread
across different elevation levels and remained stable during
the entire epidemic season in low-elevation areas along the
border. The seasonal abundances of the two main vectors
were different; whereas An. minimus preferred low-elevation
and tropical areas with high density in July, An. sinensis pre-
ferred medium elevation with high density in August.68 The
results of that study showed that the community structure of
Anopheles was highly complex in areas below an elevation of
600 m, whereas a high elevation (> 1,800 m) correlated with
low species richness, diversity, and evenness in the area.68

Based on studies of malaria vectors and their ecology in
Yunnan Province,69,70 areas in this study at low elevation
above 600 m were considered as having high risk for malaria

FIGURE 6. Risk map derived from weighted linear combination of annually imported cases with other eight risk factors. This figure appears in
color at www.ajtmh.org.

TABLE 7
Area under the curve of risk map using annually imported cases
combined with eight other risk factors in the study area

Year Indigenous case Imported case (from Myanmar) AUC 95% CI

2011 145 432 0.82 0.78–0.85
2012 92 274 0.83 0.79–0.88
2013 40 232 0.75 0.67–0.83
2014 27 235 0.86 0.77–0.96
2015 9 305 0.84 0.67–1.00
2016 1 183 1 1.00–1.00
AUC = area under the curve.
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occurrence; the risk decreases with the elevation increase up
to 3,500 m where the An. sinensis could still be found in some
areas, and areas over 3,500 m were classified as having the
lowest risk of malaria transmission.
Related to elevation is the slope factor; steeper slopes allow

the fast movement of water and, thus, result in less chance
to accumulate stagnant water.28Water body is a predominant
risk factor formalaria transmission because it can formvector-
breeding sites.50,71 Previous studies reported a positive as-
sociation between malaria prevalence and proximity to
water body, together with increased mosquito density and
malaria.72,73 Larval mosquitoes are usually highly aggregated
in pools of waters with specific characteristics.28 A study in
Africa reported a significant risk factor for malaria risk was
distance from household to stagnant water body, and
householdsusingaborehole/unprotectedwell in their yards.74

A study of malaria hazard mapping with climatic and geo-
graphic factors reported that almost all breeding places were
located in riverbeds and riverbanks.49 In a mathematical
model study, location far from water bodies was associated
with malaria transmission seasonality, closely following rain-
fall, with a lag of 1–2 months.75 A study carried out in China
indicated that populations living within 60 m of water bodies
had a higher risk of contracting malaria.12 Based on studies
indicating that mosquitoes fly no more than 170 m after
ingesting a bloodmeal76 and that a hungrymosquitowill fly up
to 1,500 m,77 in this study areas above 1,500 m from water
bodies were classified as low-risk areas.
The integrated effect of land cover and land use as an-

thropogenic elements, as identified by the experts in this
study, was forest coverage, cropland, and urbanization. Pre-
vious studies in the Greater Mekong Subregion suggested
that forest was commonly considered as a major determinant
of malaria risk; a large proportion of all malaria cases and
deaths occurred in the central mountainous and forested
areas in Vietnam,78 and about 60% of the total malaria cases
occurred in forest areas in Myanmar.79 Studies along the
Thailand–Myanmar border also noted that the seasonal
abundance of mosquito vectors and the seasonal movement
of local people to forests, either to find forest products or to
carry out agricultural activities, with overnight stays on either
side of the border, can increase the risk of contracting
malaria.80,81 A study in India using both a model and obser-
vations also reported that malaria vector abundance is higher
during the summer monsoon season, and the intensity of
malaria transmission is higher with the mosquito populations
and the number of infective bites, particularly in forest or
mountainous ecotypes.82 Contrarily, other studies reported
forest clearance which provides abundant new habitat for
vector species is a classic cause of the emergence of malaria
problems,83 and vectors are found within 5 km of deforested
areas.26 A study in the Amazon area also suggested that de-
forestation and other human environmental alterations had
changed in the presence of both mosquito larvae and adults;
although forest clearance and pollution may reduce the
availability of larval sites for one species, it may conversely
increasehabitats preferredby another species.50,84–86A study
in the forested area of northernMyanmar borderingwithChina
suggested that the scenario was different from other parts of
Southeast Asia such that the high altitude leads to low tem-
perature and thus less malaria vector, whereas malaria vector
normally occurs in lowlands, foothills, and mid-hills some

distance away of forest.87,88 According to the experts in this
study, forest was not suitable for mosquito proliferation. Un-
fortunately, with some limitation of data availability in this
study, the developed model in this study was based on the
forest factor coded as a binomial variable (0 or 1) rather than
the distance to forest. Further spatial studies of changes to
forest areas over longer temporal data periodsmay result in an
even better best-fit model.
Deforestation and cultivation of commercial crops have

created major environmental changes in rural areas of
Southeast Asia and China.89–91 After 2005, in Yingjiang
County, Yunnan Province, themain crop changed from rice to
bananas, and in early 2016, the area became a source of ba-
nana production, and no rice crops remained.68 A few vector
studies reported that such changes suggested alterations
in the population density, life history, and behavior of
vectors.68,71,92 In the study areas, the subsistence activities of
local residents and several ethnic minorities were associated
with forest logging and rice, or banana and rubber planting.
According to the experts, the cropland was considered as a
risk factor that affectsmalaria incidencebecause rice, banana,
and other irrigated crops in the study areas often create an
ideal habitat for the mass production of mosquitoes. Previous
studies in the samestudy areas reported that thepeak timesof
malaria occurrence were closely related to agricultural activi-
ties; farmers cultivate crops in summer and harvest in autumn,
whenmosquitoes propagate activelywith feasible climate and
ecologic environment, while the farmers usually worked in the
field and slept in the open.56,57 In addition, the cropland in the
study areas could also be changed because of several dam
development during the study period. As noted in the litera-
ture, the construction of dams for irrigation or hydroelectric
power can lead to high populations of Anopheles.38,93 In a
study in Africa, an increase in malaria incidence in villages
around dams at all elevations was found to be significantly
associated with reservoir-associated factors (distance from
reservoir shoreline, monthly average reservoir water level, and
monthly water level change), and reservoir water level man-
agement could help manage malaria transmission around
dams.94 However, there were inconclusive results about
cropland or agriculture areas, as shown in other studies on
land coverage/use, where a positive association between
agricultural activities andmalaria riskwas found for slash-and-
burn agriculture but not in areas deforested for industrial
agriculture.50,54,55,91,92 Again, due to limitations of data
availability (the same for the other two factors, water body and
forest coverage), themodel developed in this studywasbased
on cropland being coded as a binomial variable (0 or 1). The
effect of cropland on malaria incidence thus needs further
investigation; a more precise model might be obtained by in-
corporating longer periods of spatial and temporal data into
the model.
Urbanization is another integrated land use and land cover

indicator that is related tobreeding sites andmosquito survival
rate and dispersal.28 In rapidly expanding urban areas, ex-
tensive water storage and inadequate water disposal can lead
to high mosquito populations. The absence of cattle can
promote stable transmission by forcing zoophilic species to
feed on people. Vectors are absent in urban areas but found
in the urban periphery where the settlements retain rural
characteristics, and the dense populations promote condi-
tions that are ideal for transmission.26,38 Many studies of the
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impact of human population and urbanization on Plasmodium
malaria endemicity reported a general trend of reduced trans-
mission in urban areas in Asian and African countries.95–98 A
study in Cameroon evaluating amathematical model ofmalaria
transmission noted that besides climatic factors, transmission
tends to be high in rural and peri-urban areas relative to urban
centers; however, one should be cautious that themodel might
be oversensitive by neglecting population movements and
differences in hydrological conditions, housing quality, and
access to health care.75 In the model developed in this study,
the assumption was set for the lowest risk of malaria infection
when the distance away from central urban area was within
5,000 m.
Related to urbanization, population density was found to be

an important predictor of malaria risk as it provides a reliable
metric to adjust for the patterns of malaria risk in densely
populated urban areas.99 A study in the Peruvian Amazon,
using boosted regression tree models based on social and
environmental predictors derived from satellite imagery and
data, noted that cumulative rainfall, population density,
and time to populated villages were consistently the top
three predictors for the incidence of both Plasmodium vivax
and Plasmodium falciparum.100 Population density was thus
considered as risk by the experts in this study under the as-
sumption that the denser the population, the more vulnerable
it will be to malaria hazard; when population densities are
high, there is a greater likelihood that malaria will be
transmitted.27,28 In this study, the density unit was people per
hectare; the minimum and maximum values were 0.005 and
104.539 unit, respectively. It should be noted that socioeco-
nomic factorswerenot directly put into themodel according to
the experts in this study. Rather than considering socioeco-
nomic status, which is a factor at themicro- or individual level,
the experts selected to consider risk factors at themacro level
which could be observed via population density and other
related risk factors including population movement (in-
troducing imported cases), health facility distribution, and
urbanization.
Disease risk depends on the spatial connectivity of habitats

for vectors and hosts; geographical and environmental fea-
tures generally control the dispersion of vectors from their
breeding sites to hosts.51 However, access to health care as a
specific factor related to host alone could be an incremental
risk factor for disease transmission. Access to health care can
be defined by different dimensions of access, including
availability, accessibility, affordability, and acceptability;
some have defined access as the opportunity to use health
care, whereas others did not distinguish between access and
use.101 Several studies on applying environmental variables
that influence the transmission of malaria had applied and
reported best-fit models with distance to streams, distance to
main road, distance to health facility, and distance to
border.32,102–104 The experts in this study identified two proxy
indicators of access to treatment and care, distance to road
anddistance to health facilities. Distance of aplace from roads
could affect or determine the effectiveness of measures to be
taken to control the risk of malaria infestation.27 A study in
Kenya found that malaria hotspot locations correlated with
environmental and static household characteristics, such as
distance to roads or rivers.105 In the border areas of China,
poor transportation still exists, making it difficult to perform
blood smear verification within 3 days.63,106 A study in Henan

Province, China, using surveillance data during 2012–2017,
reported that imported malaria cases were mostly working-
age males, and many typically went to provincial and munic-
ipal healthcare institutions as their first option because many
were near cities on their way home; however, cases living
away from cities, in rural areas, tended to frequent local
healthcare institutions nearby.107 As patients in rural areas
usually have a longway to go to county healthcare institutions,
they usually take empirical medicines instead of visiting dis-
tant healthcare facilities.107–109 In this study, an assumption
was that the shorter the distance from the patient’s house to
road, the higher the probability of access to prevention and
control; thus, the malaria risk on a community is lower. A
previous study in Zimbabwe assumed lowest risk within
5,000 m,110 whereas in Mozambique, the lowest risk was
classified within 2,500 m.32 This study adopted the assump-
tion of the lowest risk of malaria infections when the distance
from road access was within 5,000 m.
Distance from the patient’s house to the nearest health fa-

cility was another risk factor for malaria as it reflects the quick
and effective provision of malaria control and treatment.28,111

A systematic review study noted that 77% of the included
studies showed evidence of an association between worse
health outcomes the further a patient lived from healthcare
facilities.112 A study in Nigeria reported poor access to
healthcare and public health services could be responsible for
thehighmalaria endemicity in the region.113Besidesaccess to
health facilities, a study in Uganda noted that facility quality
and readiness were important factors associated with re-
duced risk of malaria outcomes.58 A few studies reported that
the degree of severity of malaria in patients was due to dis-
parities in the availability of health services and significant
gaps in the awareness of malaria at different administrative
levels.107,114,115 Although China has made remarkable prog-
ress in strengthening its primary healthcare system, chal-
lenges still exist in the structural characteristics and quality of
care, which affect the efficiency of care delivery.116 Based on
the model developed from the surveillance data in Henan
Province, China, major factors influencing complications of
imported malaria cases were due to inadequate seeking of
medical care and insufficient capacity to diagnose malaria by
healthcare institutions at lower administrative levels.107 The
results of that study noted the time gap between onset and
initial diagnosis among 77% was no more than 72 hours;
however, those visiting county healthcare facilities had the
longest period from onset to initial diagnosis, compared with
those visiting private clinics and township health facilities.107

Similarly, a study comparing the same time gap among im-
ported malaria cases in former endemic and non–malaria-
endemic areas in China reported that health facilities in former
endemic areas outperformed those in former non-endemic
areas.60 Other studies in China categorizing the foci and
evaluating whether the responsemet the requirements issued
by the country during the same period of this study reported
that the healthcare workers’ response in these foci was
inefficient.106,117 Regarding distance to health facility, a study
in Africa reported that more severely ill cases traveled further
for clinic visits, and the rate of clinic visits decreased linearly
with the number of kilometers from the residence to a clinic,
even after adjusting for some potential confounders (such as
socioeconomic status, maternal education, distance to a
road, and household clustering) in the analysis.59 Another
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study in Africa reported residing beyond 10 km from the clinic
to be associated with higher prevalence of comorbidities and
the incidences of severe malaria and severe illness among
children with acute malaria.118 In Yunnan, township health
facility is the lowest level unit in which the malaria cases are
diagnosed, treated, and reported simultaneously. There is
typically one health facility per township in the study area.
Spatially, the location of these health facilities was indicated
on a map, and the average distance from the nearest health
facility was within 20,000 m.
The challenge for primary health care in China requires a

strategy aiming for equity in access. In 2014, the Chinese
government issuedofficial guidance emphasizing that primary
healthcare institutions are responsible for providing basic
health services to migrants within China.116 The health facili-
ties at all levels in the study area provide treatment for malaria
patients who are local residents ormigrant workers. Technical
Scheme of China Malaria Elimination classified two types of
malaria cases: “indigenous case” and “imported case.” An
imported case is a diagnosed malaria patient with a history of
traveling to overseas malaria-endemic areas during the
malaria transmission season, and the onset of malaria
symptoms was less than 1 month after return. An indigenous
case is a malaria patient with infection acquired from local
transmission within China or a malaria case with no clear ev-
idence of being imported from outside the country. Importing
infections must be addressed to achieve malaria elimina-
tion.119 From an elimination setting perspective, an opportu-
nity to prevent acquisition or transmission of imported
parasites can be tackled during four general stages of human
movement: while people are in the eliminating region, during
transit, in the endemic region, and on return to the eliminating
country.119 The magnitude of imported malaria infection in
terms of timing and number is a function of several factors,
including the transmission intensity of the origin location, the
number of people going to and from that location, the activities
undertaken in the location, and prophylaxis availability and
adherence.61,120 Several studies have indicated that Chinese
laborers returning to China have mainly contributed to the
increasing importation of malaria into China.61,121–123 Re-
garding border malaria, as there is generally no natural barrier
along the border lines, it is open to a largemobile cross-border
population, making management of imported malaria a sig-
nificant challenge.63,124,125 A study in Yunnan Province noted
the differences in seasonal pattern of imported cases in dif-
ferent locations, which may be due to the different cross-
border behaviors of people.2 Other studies in the same areas
of this study also indicated imported malaria cases have been
a major challenge of interrupting malaria reintroduction in
China.1,62,117,126 A study on receptivity to malaria at the
Yunnan border noted that under conditions of high receptivity
and potential exposure of the local people, imported malaria
cases in the county could increase the probability of rees-
tablishment.68 The existence of disease ecology and mos-
quito species helpsmalaria transmission from imported cases
to local people.127 With similar climate and natural environ-
ment and vectors, importation and autochthonous trans-
mission of malaria have been found in the regions along the
China–Myanmar border.7,61,124 The endemicity ofmalaria was
found to be positively related to the distance between the
households of the cases and the nearest larval habitats.12,128

As high importation of malaria and wide distribution and

abundance of malaria vectors in the China–Myanmar border
area sustain risks for secondary infections among local
populations, in this study, risk factor as distance to imported
cases was defined as the mosquito flight range and the
sphere of malaria patient activity. As noted in the literature,
the flying distance of different types of mosquitoes can be
kilometers, under advantageous geographical, wind veloc-
ity, and other meteorological conditions.129,130 The as-
sumption was set such that the highest risk occurs within
5,000 m between imported cases and indigenous cases in a
spatial pattern.
Based on the risk map developed by the MCDA model,

spatial heterogeneities still remain presented over the years
in the border areas of Yunnan Province. Counties with high
malaria risk are mainly concentrated in the central part (west
of Yunnan) that borderswithMyanmar. Besides the declining
trends, the fast declining rates of indigenous (99% reduction;
from 145 in 2011 to one in 2016) and the relatively slower
decreasing trends of imported cases (58% reduction; from
432 in 2011 to 183 in 2016), most of the reported malaria,
particularly the imported, cases persistently clustered in
certain locations, as shown in the developed spatial risk
maps. According to the literature and the highest factor
weight rated by the experts in this study, the imported cases
were identified as a major factor contributing to persistent
malaria transmission in the border areas of Yunnan Province.
As shown in this study, when taking into consideration
the imported cases as a time-varying factor, spatiotempo-
ral MCDA risk maps were developed annually. Despite
deceasing reported malaria cases, the MCDA risk maps of
annual imported cases combinedwith other eight risk factors
showed somewhat consistent risk locations within the 18
counties over the study period of 2011–2016. It is important
to focus the elimination efforts in the specifically identified
locations with high risks, as shown in the fine MCDA
risk map.
Limitations of the study. There were several limitations in

this study. First, the use of the spatial MCDAmethodmight be
useful for exploration of factors related to complex epidemi-
ology in making decisions on malaria management and con-
trol strategies, especially in moving toward elimination
phases, but there are several approaches in creating MCDA
models, and themodel used in this studymight be effective or
appropriate with a certain setting, not for all situations. It was
suggested in the literature that MCDA-based models might
have the potential bias for manipulation of the decision result;
thus, one should take into consideration the sensitivity and
robustness of results and should use the results of the model
as a decision aid support rather than a decision-making
tool.4,19 Second, it should be noted that theMCDAmodels are
basically not designed and cannot be used to conclude about
the causality factor. Third, in identifying risk factors, theMCDA
model used in this study was based on navigating and syn-
thesizing the input provided among the experts during the
consensus process, and, thus, they could be subjective and
sensitive to inaccuracies or omissions of important factors.
Moreover, a bias could be related to the subjective nature of
the MCDA approach in assigning fuzzy functions and weights
to the selected factors.23 Fourth, in creating a risk map in this
study, the numbers of positive malaria cases per village were
located at the center of the village, not at the specific coordi-
nates of the location of each positive malaria case where the
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actual infection might have occurred. Correlation between
imported and indigenous cases in this study was based on
spatial pattern over the years, not truly matching space and
time of each individual case. A bias could also occur for the
factors related to land cover/use (forest, cropland, and water
body) in this study as they were assigned with value 1 or
0 (exist or does not exist) in the spatial coordinates, not dis-
tance to them. Finally, there was a suggestion in the literature
that MCDA requires the participation and engagement of a
number of experts; thus, it is more suitable for long-term
planning rather than during an emergency/outbreak situation.
This study, however, created the spatial MCDA model to as-
sess the effects of major risk factors and aid the malaria
planning for the next few years in an attempt toward malaria
elimination in Yunnan border areas.

CONCLUSION

During the pre-elimination period, several strategies and
interventions have been implemented. However, malaria
transmission along and across borders remains a great threat
to the successful elimination of malaria in China. To move
forward and eliminate malaria as planned, the main focus
should be appropriate control in areas particularly affected by
imported malaria. The study has demonstrated the novel in-
tegrateduseof spatialMCDA tomodel themalaria epidemic at
the village level. Themodel could not only serve as apredictive
tool for identifying and analyzing malaria risk factors but also
be used to obtain a comprehensive understanding of
the dynamics surrounding malaria in the construction of
surveillance–response systems. The MCDA model and risk
maps developed in this study could enable a visualization of
the effects of different proposed factors to the malaria situa-
tion in the study area. The incorporation of factors identified in
this study togetherwith dynamic changes in imported cases in
border areas over the years has provided additional detail to
the risk maps relative to past studies that did not use the
MCDA model. The proposed model could help public health
decision-makers/policy-makers to give additional attention to
spatial planning for cost-effectiveness and prevention and
control strategies gearing to the specific location in the risk
areas shown in the fine risk maps.
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