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This paper proposes a new consensus criterion for nonlinear complex systems with edge betweenness centrality measure. By
construction of a suitable Lyapunov-Krasovskii functional, the consensus criterion for such systems is established in terms of linear
matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. One numerical example is given
to illustrate the effectiveness of the proposed methods.

1. Introduction

During the last few years, complex systems have received
increasing attention from the real world such as the social
networks, electrical power grids, global economic markets,
small-world network, and scale-free network. Complex sys-
tems have the information flow which is consisted of a set
of interconnected nodes with specific dynamics. For more
details, see the literature [1–4] and the references therein.
Also, manymodels has been proposed to describe multiagent
systems, various coupled neural network, and so on [5–9].

Nowadays, most systems use microprocessor or micro-
controllers, which are called digital computer. But the phys-
ical real situation is that the computers are on discrete
signals while the plants are on continuous signals. In line
with this thinking, in order to analyze the behavior of the
plant between sampling instants, it is necessary to con-
sider both the discrete operation of the computer and the
continuous response of the plant. A little more to say, the
fundamental character of the digital computer is that it takes
the computed answers at sampling instants to calculate the
control operation of a continuous plant. In addition to this,
samples are taken from the continuous physical signals such
as position, velocity, or temperature and these samples are

used in the computer to calculate the controls to be applied.
Systems in which discrete signals appear in some places and
continuous signals occur in other parts are called sampled-
data systems because continuous data are sampled before
being used [10]. For this reason, various sampled-date control
problems were investigated in [11–13]. Return to complex
systems, this system is also booked for the consensus problem
with sampled data [14–16].

However, there is room for further improvements in con-
sensus analysis of complex systems. In most studies on com-
plex systems such as multiagent system, complex dynami-
cal network, and coupled neural network, the Laplacian mat-
rix which is consisted of the adjacency and degreematrices of
network is used. Because the foresaid matrices are based on
degree centrality measure, the existing works need only the
local structural information of network, that is, the degree
centrality of node, which is determined by the number of
nodes adjacent to it. Hence, by considering some other pro-
perties of graph theory, the structural information of net-
work to analyze consensus problem for such system will be
advanced. The edge betweenness centrality is selected from a
choice among the properties of graph theory. Moreover, the
edge betweenness centrality quantifies the average shortest
path between two other nodes per each edge. It was
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introduced as a measure for quantifying the control of a
human on the communication between other humans in a
social network by [17, 18]. Thus, the edge between two nodes
has strongly an impact on the overall structure of information
flow. Sometimes, the nodes with small degree centrality are
directly connected through edges with larger betweenness
centrality [3]. In this case, such edges should be weighted by
the value with proportional to their betweenness centrality.
Therefore, through the edge betweenness centrality measure,
not only the local structural information but also the global
effects of structure of information flow are considered. As
a result, the consensus analysis in complex systems will
be advanced by weighting each edge to its betweenness
centrality.

Motivated by what was mentioned above, in this paper,
a consensus criterion for nonlinear complex systems with
edge betweenness centrality measure under time-varying
sampled-data protocol will be proposed in Theorem 6 with
the frame work of LMIs [19]. For comparison, based on
the results of Theorem 6, a consensus criterion for such
system with degree centrality measure will be introduced
in Corollary 7. Through one numerical example, it will be
shown that the proposed model can give its usefulness.

Notation 1. R𝑛 andR𝑚×𝑛 denote the 𝑛-dimensional Euclidean
space with vector norm ‖ ⋅ ‖ and the set of all 𝑚 × 𝑛 real
matrices, respectively. S𝑛 and S𝑛

+
are the sets of symmetric

and positive definite 𝑛×𝑛matrices, respectively. 𝐼
𝑛
denotes 𝑛×

𝑛 identitymatrix.𝑋 > 0 (<0)means symmetric positive (neg-
ative) definite matrix. 𝑋⊥ stands for a basis for the nullspace
of𝑋. diag{⋅ ⋅ ⋅ } represents the block diagonal matrix. For any
square matrix 𝑋 and any vectors 𝑥

𝑖
, respectively, we define

sym{𝑋} = 𝑋 + 𝑋
𝑇 and col{𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} = [𝑥

𝑇

1
𝑥
𝑇

2
⋅ ⋅ ⋅ 𝑥

𝑇

𝑛
]
𝑇.

The symmetric terms in symmetric matrices and in quadratic
forms will be denoted by ⋆ (This is used if necessary.).𝑋

[𝑓(𝑡)]

means that the elements of matrix 𝑋
[𝑓(𝑡)]

include the scalar
value of 𝑓(𝑡) affinely.

2. Problem Statements

Consider the model of nonlinear complex systems given by

�̇�
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝐵𝑓 (𝑦

𝑖
(𝑡)) + 𝑢

𝑖
(𝑡) ,

𝑦
𝑖
(𝑡) = 𝐶𝑥

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(1)

where𝑁 is the number of coupled nodes, 𝑛 is the number of
state of each node, the subscript 𝑖means the 𝑖th node, 𝑥

𝑖
(𝑡) ∈

R𝑛 is the state vector, 𝑦
𝑖
(𝑡) ∈ R𝑛𝑦 is the output vector, 𝐴 ∈

R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑛𝑦 , and 𝐶 ∈ R𝑛𝑦×𝑛 are system matrices, and
𝑓(⋅) ∈ R𝑛𝑦 denotes the nonlinearity, which satisfies 𝑓

𝑞
(0) = 0

(𝑞 = 1, . . . , 𝑛
𝑦
) and

𝑙
−

𝑞
≤

𝑓
𝑞
(𝑢) − 𝑓

𝑞
(V)

𝑢 − V
≤ 𝑙

+

𝑞
, 𝑢 ̸= V, ∀𝑢, V ∈ 𝑅, (2)

where 𝑙
−

𝑞
and 𝑙

+

𝑞
are given constants. For simplicity, let us

define 𝐿− = diag{𝑙−
1
, . . . , 𝑙

−

𝑛
} and 𝐿

+

= diag{𝑙+
1
, . . . , 𝑙

+

𝑛
}.

Let us consider the following consensus protocol pro-
posed by [3]:

𝑢
𝑖
(𝑡) = −

𝜎

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
𝛾
𝑖𝑗

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝛾
𝑖𝑗
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)) ,

𝑖 = 1, 2, . . . , 𝑁,

(3)

where 𝜎 is a given scalar meaning the coupling strength, 𝛾
𝑖𝑗

is the edge betweenness centrality between nodes 𝑖 and 𝑗

defined by

𝛾
𝑖𝑗
= ∑

𝑘 ̸=𝑙

g
𝑘𝑙
(e
𝑖𝑗
)

g
𝑘𝑙

, (4)

where e
𝑖𝑗
denotes the edge between nodes 𝑖 and 𝑗, g

𝑘𝑙
is the

number of the shortest paths from nodes 𝑘 to 𝑙 in the graph,
and g

𝑘𝑙
(e
𝑖𝑗
) is the number of these shortest paths through

path e
𝑖𝑗
.

Remark 1. The consensus protocol (3) with edge betweenness
centrality measure will be compared with the common
consensus protocol followed by

𝑢
𝑖
(𝑡) = −𝜎

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑑
𝑖𝑗
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)) , (5)

where 𝑑
𝑖𝑗
= 1 if node 𝑖 is connected to node 𝑗 and otherwise,

𝑑
𝑖𝑗
= 0.

For details, from Figure 1, the thickness of edge is pro-
portional to the edge betweenness centrality, which can
be paraphrased as the load of edge. Thus, node 2 has the
edge with the largest value of edge betweenness centrality
compared to its smallest degree centrality while the degree
centrality of node 1 is the largest value. As a guide, the degree
centrality of node is determined by the number of nodes
adjacent to it, for example, the value of node 1 is∑

𝑗 ̸=𝑖
𝑑
1𝑗
= 5,

and in this sense, the common protocol (5) considers degree
centrality measure. Therefore, in protocol (3), not only the
local structural information but also the global effects of
structure of information flow can be considered.

In this paper, the following protocol with the sampled-
data information flow is proposed:

𝑢
𝑖
(𝑡
𝑘
) = −

𝜎

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
𝛾
𝑖𝑗

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝛾
𝑖𝑗
(𝑥
𝑖
(𝑡
𝑘
) − 𝑥

𝑗
(𝑡
𝑘
)) ,

𝑖 = 1, 2, . . . , 𝑁,

(6)

where 𝑡
𝑘
are the sampling instants satisfying 0 = 𝑡

0
< 𝑡

1
<

⋅ ⋅ ⋅ < 𝑡
𝑘
< ⋅ ⋅ ⋅ < lim

𝑘→∞
𝑡
𝑘
= +∞. For its analysis, assume

that the sampling interval is constant; that is, 𝑡
𝑘+1

− 𝑡
𝑘
= ℎ

𝑀
.

Then, let us define

ℎ (𝑡) = 𝑡 − 𝑡
𝑘
, 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1

) . (7)

Note that ℎ(𝑡) ≤ ℎ
𝑀
and ̇

ℎ(𝑡) = 1 for 𝑡 ̸= 𝑡
𝑘
.
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Figure 1: Structure example for information flow.
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Figure 2: Time-varying sampling.

Remark 2. The consensus protocol (6) is assumed to be gen-
erated by using a zero-order-hold functionwith a sequence of
hold times 0 = 𝑡

0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ . Then, the definition

(7), ℎ(𝑡) = 𝑡 − 𝑡
𝑘
, is that the interval between two sampling

instants is less than a given bound, ℎ
𝑀

= 𝑡
𝑘+1

− 𝑡
𝑘
. Hence, (7)

means the time-varying sampling drawn as shown in Figure
2. In addition to the figure, all slopes are 1.

The aim of this paper is to analyze the consensus of the
complex systems (1) under the time-varying sampled-data
protocol (6) given by

�̇�
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝐵𝑓 (𝐶𝑥

𝑖
(𝑡)) −

𝜎

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
𝛾
𝑖𝑗

×

𝑁

∑

𝑗∈𝑁𝑖

𝛾
𝑖𝑗
(𝑥
𝑖
(𝑡
𝑘
) − 𝑥

𝑗
(𝑡
𝑘
)) , 𝑖 = 1, 2, . . . , 𝑁.

(8)

This means that the protocol 𝑢
𝑖
(𝑡
𝑘
) solves the consensus

problem, if and only if the states of each node satisfy

lim
𝑡→∞






𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)






= 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑁. (9)

The following lemmas will be used to derive the main result.

Lemma 3 (see [6]). Let 𝑈 = [𝑢
𝑖𝑗
]
𝑁×𝑁

, 𝑃 ∈ R𝑛×𝑛, 𝑥 =

col{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, and 𝑦 = col{𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
}. If 𝑈 = 𝑈

𝑇

and each row sum of 𝑈 is zero, then

𝑥
𝑇

(𝑈 ⊗ 𝑃) 𝑦 = − ∑

1≤𝑖<𝑗≤𝑁

𝑢
𝑖𝑗
(𝑥
𝑖
− 𝑥

𝑗
)

𝑇

𝑃 (𝑦
𝑖
− 𝑦

𝑗
) . (10)

Lemma 4 (see [20]). Let 𝑥 ∈ R𝑛, 𝐴 = 𝐴
𝑇

∈ R𝑛×𝑛, and
𝐵 ∈ R𝑚×𝑛 such that rank{𝐵} < 𝑛. The following statements
are equivalent:

(i) 𝑥𝑇𝐴𝑥 < 0, for all 𝐵𝑥 = 0, 𝑥 ̸= 0,

(ii) 𝐵⊥𝑇𝐴𝐵⊥ < 0,

(iii) ∃𝑋 ∈ R𝑛×𝑚: 𝐴 + sym{𝑋𝐵} < 0.

For convenient analysis, with the Kronecker product [21],
the system (8) can be expressed as

�̇� (𝑡) = (𝐼
𝑁
⊗ 𝐴) 𝑥 (𝑡) + (𝐼

𝑁
⊗ 𝐵) 𝐹 ((𝐼

𝑁
⊗ 𝐶) 𝑥 (𝑡))

− 𝜎 (Γ
𝑒
⊗ 𝐼

𝑛
) 𝑥 (𝑡 − ℎ (𝑡)) , 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1

) ,

(11)

which imply

[

[

[

�̇�
1
(𝑡)

.

.

.

�̇�
𝑁
(𝑡)

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

̇𝑥(𝑡)

= diag {𝐴, . . . , 𝐴}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼𝑁⊗𝐴

[

[

[

𝑥
1
(𝑡)

.

.

.

𝑥
𝑁
(𝑡)

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥(𝑡)

+ diag {𝐵, . . . , 𝐵}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼𝑁⊗𝐵

[

[

[

𝑓 (𝑦
1
(𝑡))

.

.

.

𝑓 (𝑦
𝑁
(𝑡))

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐹(𝑦(𝑡))

− 𝜎
[

[

[

𝛾
11
𝐼
𝑛

−𝛾
12
𝐼
𝑛

⋅ ⋅ ⋅

−𝛾
21
𝐼
𝑛

d d
.
.
. d 𝛾

𝑁𝑁
𝐼
𝑛

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Γ𝑒⊗𝐼𝑛

×
[

[

[

𝑥
1
(𝑡 − ℎ (𝑡))

.

.

.

𝑥
𝑁
(𝑡 − ℎ (𝑡))

]

]

]

[

[

[

𝑦
1
(𝑡)

.

.

.

𝑦
𝑁
(𝑡)

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑦(𝑡)

= diag {𝐶, . . . , 𝐶}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼𝑁⊗𝐶

[

[

[

𝑥
1
(𝑡)

.

.

.

𝑥
𝑁
(𝑡)

]

]

]

,

(12)

where 𝜎 = 𝜎/∑
𝑁

𝑗=1,𝑗 ̸=𝑖
𝛾
𝑖𝑗
and Γ

𝑒
=
[

[

[

𝛾
11

−𝛾
12

⋅ ⋅ ⋅

−𝛾
21

d d
.
.
. d 𝛾

𝑁𝑁

]

]

]

with 𝛾
𝑖𝑖
= ∑

𝑗 ̸=𝑖
𝛾
𝑖𝑗
.

Remark 5. With the Kronecker product, the transformation
from (8) to (11) has two advantages in the consensus analysis
for the system (8): the first is the ease of mathematical
representation, and the second is, in construction of the
Lyapunov-Krasovskii functional, the applicability of the rela-
tion between the use of the Kronecker product with the
matrix 𝑈 defined in Lemma 3 and the term ‖𝑥

𝑖
(𝑡) − 𝑥

𝑗
(𝑡)‖

stated in the condition (9) (see the equality (10)). As a result,
based on the Kronecker product and Lemma 3, the consensus
problem of the system (8) is converted into the Lyapunov
stability problem of the transformed system (11).
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3. Main Results

For simplicity of matrix and vector notations in Theorem 6,
the following scalars and matrices are defined as

]
1
(𝑡) =

1

𝑡
𝑘
− 𝑡 + ℎ

𝑀

∫

𝑡𝑘

𝑡−ℎ𝑀

𝑥 (𝑠) 𝑑𝑠,

]
2
(𝑡) =

1

𝑡 − 𝑡
𝑘

∫

𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠,

𝜛 (𝑡) =

1

𝑡 − 𝑡
𝑘

∫

𝑡

𝑡𝑘

�̇� (𝑠) 𝑑𝑠,

𝜁 (𝑡) = col {𝑥 (𝑡) , 𝑥 (𝑡
𝑘
) , 𝑥 (𝑡 − ℎ

𝑀
) , �̇� (𝑡) , ]

1
(𝑡) ,

]
2
(𝑡) , 𝜛 (𝑡) , 𝑓 (𝐶𝑥 (𝑡))} ,

Υ = [𝐼
𝑁
⊗ 𝐴 −𝜎 (Γ

𝑒
⊗ 𝐼

𝑛
) 0 − (𝐼

𝑁
⊗ 𝐼

𝑛
) 0 0 0 𝐼

𝑁
⊗ 𝐵]

𝑥
𝑖𝑗
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

𝑗
(𝑡) ,

𝑓 (𝐶𝑥
𝑖𝑗
(𝑡)) = 𝑓 (𝐶𝑥

𝑖
(𝑡)) − 𝑓 (𝐶𝑥

𝑗
(𝑡)) ,

𝜁
𝑖𝑗
(𝑡) = col {𝑥

𝑖𝑗
(𝑡) , 𝑥

𝑖𝑗
(𝑡
𝑘
) , 𝑥

𝑖𝑗
(𝑡 − ℎ

𝑀
) , �̇�

𝑖𝑗
(𝑡) ,

]
1𝑖𝑗

(𝑡) , ]
2𝑖𝑗

(𝑡) , 𝜛
𝑖𝑗
(𝑡) , 𝑓 (𝐶𝑥

𝑖𝑗
(𝑡))} ,

Υ
𝑖𝑗
= [𝐴 𝜎𝛾

𝑖𝑗
𝑁𝐼

𝑛
0 −𝐼

𝑛
0 0 0 𝐵] ,

Π
1,1[ℎ(𝑡)]

= [

𝑒
1

(𝑡
𝑘
− 𝑡 + ℎ

𝑀
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℎ𝑀−ℎ(𝑡)

𝑒
5

(𝑡 − 𝑡
𝑘
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℎ(𝑡)

𝑒
6
] ,

Π
1,2

= [𝑒
4

−𝑒
3

𝑒
1
] ,

Ξ
1[ℎ(𝑡)]

= sym {Π
1,1[ℎ(𝑡)]

PΠ
𝑇

1,2
} + 𝑒

1
𝑄𝑒

𝑇

2

− 𝑒
3
𝑄
𝑇

3
+ ℎ

2

𝑀
𝑒
4
𝑅𝑒
𝑇

4
−

[

[

[

[

[

𝑒
𝑇

2
− 𝑒

𝑇

3

𝑒
𝑇

2
+ 𝑒

𝑇

3
− 2𝑒

𝑇

5

𝑒
𝑇

1
− 𝑒

𝑇

2

𝑒
𝑇

1
+ 𝑒

𝑇

2
− 2𝑒

𝑇

6

]

]

]

]

]

𝑇

×[

diag {𝑅, 3𝑅} M

⋆ diag {𝑅, 3𝑅}
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ω

×

[

[

[

[

[

𝑒
𝑇

2
− 𝑒

𝑇

3

𝑒
𝑇

2
+ 𝑒

𝑇

3
− 2𝑒

𝑇

5

𝑒
𝑇

1
− 𝑒

𝑇

2

𝑒
𝑇

1
+ 𝑒

𝑇

2
− 2𝑒

𝑇

6

]

]

]

]

]

,

Ξ
2[ℎ(𝑡)]

= (𝑡
𝑘
− 𝑡 + ℎ

𝑀
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℎ𝑀−ℎ(𝑡)

𝑒
4
𝑆𝑒
𝑇

4
− (𝑡 − 𝑡

𝑘
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℎ(𝑡)

𝑒
7
𝑆𝑒
𝑇

7
,

Ξ
3
= −sym {(𝑒

8
− 𝑒

1
𝐶
𝑇

𝐿
−

)𝐷(𝑒
8
− 𝑒

1
𝐶
𝑇

𝐿
+

)

𝑇

} ,

Ξ
[ℎ(𝑡)]

= Ξ
1[ℎ(𝑡)]

+ Ξ
2[ℎ(𝑡)]

+ Ξ
3
,

(13)

where 𝑒
𝑖
∈ R(7𝑛+𝑛𝑦)×𝑛 (𝑖 = 1, 2, . . . , 8) are the block entry

matrices; for example, 𝑒𝑇
2
𝜁
𝑖𝑗
(𝑘) = 𝑥

𝑖𝑗
(𝑡
𝑘
) and 𝑒

𝑇

8
𝜁
𝑖𝑗
(𝑡) =

𝑓(𝐶𝑥
𝑖𝑗
(𝑡)).

Theorem 6. For a given positive scalar ℎ
𝑀
, the node in the

system (8) is consented, if there exist matricesP = [𝑃
𝑖𝑗
] ∈ S3𝑛

+
,

𝑄 ∈ S𝑛
+
, 𝑅 ∈ S𝑛

+
, 𝑆 ∈ S𝑛

+
, M = [𝑀

𝑖𝑗
] ∈ R2𝑛×2𝑛, and

diagonal matrix 𝐷 ∈ S
𝑛𝑦

+
satisfying the following LMIs for

1 ≤ 𝑖 < 𝑗 ≤ 𝑁:

[(𝑗 − 𝑖) Υ
⊥

𝑖𝑗
]

𝑇

Ξ
𝑘
[(𝑗 − 𝑖) Υ

⊥

𝑖𝑗
] < 0 (𝑘 = 1, 2) , (14)

Ω > 0, (15)

where Ξ
𝑖
is the two vertices of Ξ

[ℎ(𝑡)]
with the bounds of ℎ(𝑡),

that is, 0 if 𝑘 = 1 and ℎ
𝑀
if 𝑘 = 2.

Proof. Define a matrix 𝑈 as 𝑈 = [𝑢
𝑖𝑗
]
𝑁×𝑁

with 𝑢
𝑖𝑗
= 𝑁 − 1 if

𝑖 = 𝑗, and otherwise, 𝑢
𝑖𝑗
= −1. Then, consider the Lyapunov-

Krasovskii functional candidate given by

𝑉 = 𝑉
1
+ 𝑉

2
, (16)

where

𝑉
1
=

[

[

[

[

[

[

𝑥 (𝑡)

∫

𝑡𝑘

𝑡−ℎ𝑀

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

]

]

]

]

]

]

𝑇

[

[

𝑈 ⊗ 𝑃
11

𝑈 ⊗ 𝑃
12

𝑈 ⊗ 𝑃
13

⋆ 𝑈 ⊗ 𝑃
22

𝑈 ⊗ 𝑃
23

⋆ ⋆ 𝑈 ⊗ 𝑃
33

]

]

×

[

[

[

[

[

[

𝑥 (𝑡)

∫

𝑡𝑘

𝑡−ℎ𝑀

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

]

]

]

]

]

]

+ ∫

𝑡

𝑡−ℎ𝑀

𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑄) 𝑥 (𝑠) 𝑑𝑠

+ ℎ
𝑀
∫

𝑡

𝑡−ℎ𝑀

∫

𝑡

𝑠

�̇�
𝑇

(𝑢) (𝑈 ⊗ 𝑅) �̇� (𝑢) 𝑑𝑢 𝑑𝑠,

𝑉
2
= (𝑡

𝑘+1
− 𝑡) ∫

𝑡

𝑡𝑘

�̇�
𝑇

(𝑠) (𝑈 ⊗ 𝑆) �̇� (𝑠) 𝑑𝑠.

(17)

Time-differentiating 𝑉
1
leads to

�̇�
1
= 2

[

[

[

[

[

[

𝑥 (𝑡)

∫

𝑡𝑘

𝑡−ℎ𝑀

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

]

]

]

]

]

]

𝑇

[

[

𝑈 ⊗ 𝑃
11

𝑈 ⊗ 𝑃
12

𝑈 ⊗ 𝑃
13

⋆ 𝑈 ⊗ 𝑃
22

𝑈 ⊗ 𝑃
23

⋆ ⋆ 𝑈 ⊗ 𝑃
33

]

]

×
[

[

�̇� (𝑡)

−𝑥 (𝑡 − ℎ
𝑀
)

𝑥 (𝑡)

]

]

+ 𝑥
𝑇

(𝑡) (𝑈 ⊗ 𝑄) 𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − ℎ
𝑀
) (𝑈 ⊗ 𝑄) 𝑥 (𝑡 − ℎ

𝑀
)
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+ ℎ
2

𝑀
�̇�
𝑇

(𝑡) (𝑈 ⊗ 𝑅) �̇� (𝑡)

− ℎ
𝑀
∫

𝑡

𝑡𝑘

�̇�
𝑇

(𝑠) (𝑈 ⊗ 𝑅) �̇� (𝑠) 𝑑𝑠.

(18)

By Wirtinger-based inequality [22] and reciprocally convex
approach [23], the integral term is bounded as

− ℎ
𝑀
∫

𝑡

𝑡−ℎ𝑀

�̇�
𝑇

(𝑠) (𝑈 ⊗ 𝑅) �̇� (𝑠) 𝑑𝑠

= −ℎ
𝑀
∫

𝑡𝑘

𝑡−ℎ𝑀

�̇�
𝑇

(𝑠) (𝑈 ⊗ 𝑅) �̇� (𝑠) 𝑑𝑠

− ℎ
𝑀
∫

𝑡

𝑡𝑘

�̇�
𝑇

(𝑠) (𝑈 ⊗ 𝑅) �̇� (𝑠) 𝑑𝑠

≤ −

ℎ
𝑀

𝑡
𝑘
− 𝑡 + ℎ

𝑀

× {𝜙
𝑇

1,1
(𝑡) (𝑈 ⊗ 𝑅) 𝜙

1,1
(𝑡) + 𝜙

𝑇

1,2
(𝑡) (𝑈 ⊗ 3𝑅) 𝜙

1,2
(𝑡)}

−

ℎ
𝑀

𝑡 − 𝑡
𝑘

× {𝜙
𝑇

2,1
(𝑡) (𝑈 ⊗ 𝑅) 𝜙

2,1
(𝑡) + 𝜙

𝑇

2,2
(𝑡) (𝑈 ⊗ 3𝑅) 𝜙

2,2
(𝑡)}

≤ −[

𝜙
1,1

(𝑡)

𝜙
1,2

(𝑡)

]

𝑇

×
[

[

diag {𝑈 ⊗ 𝑅,𝑈 ⊗ 3𝑅} [

𝑈 ⊗𝑀
11

𝑈 ⊗𝑀
12

𝑈 ⊗𝑀
21

𝑈 ⊗𝑀
22

]

⋆ diag {𝑈 ⊗ 𝑅,𝑈 ⊗ 3𝑅}

]

]

× [

𝜙
1,1

(𝑡)

𝜙
1,2

(𝑡)

] ,

(19)

where 𝜙
1,1
(𝑡) = 𝑥(𝑡

𝑘
) − 𝑥(𝑡 − ℎ

𝑀
), 𝜙

1,2
(𝑡) = 𝑥(𝑡

𝑘
) + 𝑥(𝑡 −

ℎ
𝑀
)− (2/(𝑡

𝑘
−𝑡+ℎ

𝑀
)) ∫

𝑡𝑘

𝑡−ℎ𝑀

𝑥(𝑠)𝑑𝑠, 𝜙
2,1
(𝑡) = 𝑥(𝑡)−𝑥(𝑡

𝑘
), and

𝜙
2,2
(𝑡) = 𝑥(𝑡) + 𝑥(𝑡

𝑘
) − (2/(𝑡 − 𝑡

𝑘
)) ∫

𝑡

𝑡𝑘

𝑥(𝑠)𝑑𝑠.
From Lemma 3, �̇�

1
can be bounded as

�̇�
1
≤ ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑡) Ξ

1[ℎ(𝑡)]
𝜁
𝑖𝑗
(𝑡) . (20)

By Jensen inequality [24] and Lemma 3, an upper bound of
�̇�
2
is obtained as

�̇�
2
= (𝑡

𝑘+1
− 𝑡) �̇�

𝑇

(𝑡) (𝑈 ⊗ 𝑆) �̇� (𝑡)

− ∫

𝑡

𝑡𝑘

�̇�
𝑇

(𝑠) (𝑈 ⊗ 𝑆) �̇� (𝑠) 𝑑𝑠

≤ (𝑡
𝑘+1

− 𝑡) �̇�
𝑇

(𝑡) (𝑈 ⊗ 𝑆) �̇� (𝑡)

−

1

𝑡 − 𝑡
𝑘

(∫

𝑡

𝑡𝑘

�̇� (𝑠) 𝑑𝑠)

𝑇

(𝑈 ⊗ 𝑆) (∫

𝑡

𝑡𝑘

�̇� (𝑠) 𝑑𝑠)

= (𝑡
𝑘+1

− 𝑡) �̇�
𝑇

(𝑡) (𝑈 ⊗ 𝑆) �̇� (𝑡)

− (𝑡 − 𝑡
𝑘
) 𝜛

𝑇

(𝑡) (𝑈 ⊗ 𝑆) 𝜛 (𝑡)

= ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑡) Ξ

2[ℎ(𝑡)]
𝜁
𝑖𝑗
(𝑡) .

(21)

In addition, the following inequality holds for any positive
diagonal matrix𝐷:

0 ≤ −2[𝑓 ((𝐼
𝑁
⊗ 𝐶) 𝑥 (𝑡)) − (𝐼

𝑁
⊗ 𝐿

−

) (𝐼
𝑁
⊗ 𝐶) 𝑥 (𝑡)]

𝑇

× (𝑈 ⊗ 𝐷) [𝑓 ((𝐼
𝑁
⊗ 𝐶) 𝑥 (𝑡)) − (𝐼

𝑁
⊗ 𝐿

+

) (𝐼
𝑁
⊗ 𝐶) 𝑥 (𝑡)]

= −2[𝑓 ((𝐼
𝑁
⊗ 𝐶) 𝑥 (𝑡)) − (𝐼

𝑁
⊗ 𝐿

−

𝐶) 𝑥 (𝑡)]

𝑇

× (𝑈 ⊗ 𝐷) [𝑓 ((𝐼
𝑁
⊗ 𝐶) 𝑥 (𝑡)) − (𝐼

𝑁
⊗ 𝐿

+

𝐶) 𝑥 (𝑡)]

= ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑡)

× sym {− (𝑒
8
− 𝑒

1
𝐶
𝑇

𝐿
−

)𝐷(𝑒
8
− 𝑒

1
𝐶
𝑇

𝐿
+

)

𝑇

}
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ξ3

𝜁
𝑖𝑗
(𝑡) .

(22)

Therefore, from (20) to (22), an upper bound of �̇� is

�̇� ≤ ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑡) (Ξ

1[ℎ(𝑡)]
+ Ξ

2[ℎ(𝑡)]
+ Ξ

3
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ξ[ℎ(𝑡)]

𝜁
𝑖𝑗
(𝑡) . (23)

Then, for ℎ(𝑡) → 0 and ℎ(𝑡) → ℎ
𝑀
, the following conditions

hold
∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑡)Ξ

[ℎ(𝑡)]
𝜁
𝑖𝑗
(𝑡) < 0

⇐⇒ 𝛼 ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑡)Ξ

[0]
𝜁
𝑖𝑗
(𝑡) + (1 − 𝛼)

× ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑡)Ξ

[ℎ𝑀]
𝜁
𝑖𝑗
(𝑡) < 0,

(24)

where 𝛼 = (ℎ
𝑀
− ℎ(𝑡))/ℎ

𝑀
.

Applying (i) and (iii) of Lemma 4 with the following
equality:

∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) Υ
𝑖𝑗
𝜁
𝑖𝑗
(𝑡) = 0 (25)

leads to the following two conditions:

∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑡) (Ξ

[0]
+ sym {𝑋Υ

𝑖𝑗
}) 𝜁

𝑖𝑗
(𝑡) < 0,

∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑡) (Ξ

[ℎ𝑀]
+ sym {𝑋Υ

𝑖𝑗
}) 𝜁

𝑖𝑗
(𝑡) < 0.

(26)

Here, if the inequalityΞ
[ℎ(𝑡)]

+sym{𝑋Υ
𝑖𝑗
} < 0 holds, then there

exist positive scalars 𝜀
1
and 𝜀

2
such that

Ξ
[0]

+ sym {𝑋Υ
𝑖𝑗
} < −𝜀

1
𝐼
8𝑛
,

Ξ
[ℎ𝑀]

+ sym {𝑋Υ
𝑖𝑗
} < −𝜀

2
𝐼
8𝑛
.

(27)
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From (25), (26), and (27), we have

�̇� ≤ ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑡) (Ξ

[ℎ(𝑡)]
+ sym {𝑋Υ

𝑖𝑗
}) 𝜁

𝑖𝑗
(𝑡)

< ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑡) (−min {𝜀

1
, 𝜀
2
} 𝐼
8𝑛
) 𝜁
𝑖𝑗
(𝑡)

< ∑

1≤𝑖<𝑗≤𝑁

𝑥
𝑇

𝑖𝑗
(𝑡) (−min {𝜀

1
, 𝜀
2
} 𝐼
𝑛
) 𝑥

𝑖𝑗
(𝑡)

= ∑

1≤𝑖<𝑗≤𝑁

(−min {𝜀
1
, 𝜀
2
}






𝑥
𝑖𝑗
(𝑡)







2

)

= ∑

1≤𝑖<𝑗≤𝑁

(−min {𝜀
1
, 𝜀
2
}






𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)







2

) .

(28)

By Lyapunov theorem and the definition for consensus (9), it
can be guaranteed that the nodes in the nonlinear complex
systems (8) are asymptotically consented.

In addition to this, in order to illustrate the process of
obtaining (25), let us define

Λ = [Λ
1
, Λ

2
, . . . , Λ

𝑁
] = [𝑁,𝑁 − 1, . . . , 1] ⊗ 𝐼

𝑛
∈ R

𝑛×𝑛𝑁

,

(29)

where Λ
𝑘
∈ R𝑛×𝑛 (𝑘 = 1, . . . , 𝑁).

Then, according to the proof ofTheorem 1 in [9], we have
the following zero equality:

0 = Λ (𝑈 ⊗ 𝐼
𝑛
) Υ𝜁 (𝑡)

= Λ (𝑈 ⊗ 𝐼
𝑛
) [ 𝐼

𝑁
⊗ 𝐴 −𝜎 (Γ

𝑒
⊗ 𝐼

𝑛
) 0 − (𝐼

𝑁
⊗ 𝐼

𝑛
) 0 0 0 𝐼

𝑁
⊗ 𝐵 ] 𝜁 (𝑡)

= Λ [ 𝑈 ⊗ 𝐴 −𝜎 (𝑈Γ
𝑒
⊗ 𝐼

𝑛
) 0 − (𝑈 ⊗ 𝐼

𝑛
) 0 0 0 𝑈 ⊗ 𝐵 ] 𝜁 (𝑡)

= Λ (𝑈 ⊗ 𝐴) 𝑥 (𝑡) − 𝜎Λ (𝑈Γ
𝑒
⊗ 𝐼

𝑛
) 𝑥 (𝑡

𝑘
)

− Λ (𝑈 ⊗ 𝐼
𝑛
) �̇� (𝑡) + Λ (𝑈 ⊗ 𝐵) 𝑓 (𝐶𝑥 (𝑡)) .

(30)

By Lemma 3, the first term of (30) can be obtained as

Λ (𝑈 ⊗ 𝐴) 𝑥 (𝑡)

= [𝑁𝐼
𝑛
, (𝑁 − 1) 𝐼

𝑛
, . . . , 𝐼

𝑛
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛×𝑛𝑁

(𝑈 ⊗ 𝐴)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛𝑁×𝑛𝑁

× [𝑥
1
(𝑡) , . . . , 𝑥

𝑁
(𝑡)]

𝑇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛𝑁×1

= − ∑

1≤𝑖<𝑗≤𝑁

𝑢
𝑖𝑗
(Λ

𝑖
− Λ

𝑗
)𝐴 (𝑥

𝑖
(𝑡) − 𝑥

𝑗
(𝑡))

= ∑

1≤𝑖<𝑗≤𝑁

(Λ
𝑖
− Λ

𝑗
)𝐴 (𝑥

𝑖
(𝑡) − 𝑥

𝑗
(𝑡))

= ∑

1≤𝑖<𝑗≤𝑁

((𝑁 + 1 − 𝑖) 𝐼
𝑛

− (𝑁 + 1 − 𝑗) 𝐼
𝑛
) 𝐴 (𝑥

𝑖
(𝑡) − 𝑥

𝑗
(𝑡))

= ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) 𝐴 (𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)) .

(31)

Similarly, the other terms of (30) are calculated as

− 𝜎Λ (𝑈Γ
𝑒
⊗ 𝐼

𝑛
) 𝑥 (𝑡

𝑘
)

= ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) (𝜎𝑁𝛾
𝑖𝑗
𝐼
𝑛
) (𝑥

𝑖
(𝑡 − ℎ (𝑡)) − 𝑥

𝑗
(𝑡 − ℎ (𝑡))) ,

− Λ (𝑈 ⊗ 𝐼
𝑛
) �̇� (𝑡)

= − ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) 𝐼
𝑛
(�̇�
𝑖
(𝑡)) − (�̇�

𝑗
(𝑡)) ,

Λ (𝑈 ⊗ 𝐵) 𝑓 (𝐶𝑥 (𝑡))

= ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) 𝐵 (𝑓 (𝐶𝑥
𝑖
(𝑡)) − 𝑓 (𝐶𝑥

𝑗
(𝑡))) .

(32)

Then, (30) can be rewritten as

0 = Λ (𝑈 ⊗ 𝐼
𝑛
) Υ𝜁 (𝑡) = ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) Υ
𝑖𝑗
𝜁
𝑖𝑗
(𝑡) . (33)

Finally, reapplying (ii) and (iii) of Lemma 4 to (26), the
following inequalities can be obtained

∑

1≤𝑖<𝑗≤𝑁

[(𝑗 − 𝑖) Υ
⊥

𝑖𝑗
]

𝑇

Ξ
[0]

[(𝑗 − 𝑖) Υ
⊥

𝑖𝑗
] < 0,

∑

1≤𝑖<𝑗≤𝑁

[(𝑗 − 𝑖) Υ
⊥

𝑖𝑗
]

𝑇

Ξ
[ℎ𝑀]

[(𝑗 − 𝑖) Υ
⊥

𝑖𝑗
] < 0.

(34)

From (34), if the LMIs (14) satisfy, then the condition (24)
subject to (25) holds. This completes our proof.

For comparison, the following corollary is introduced.

Corollary 7. For a given positive scalar ℎ
𝑀
, the node in the

system (1) under the procotol (5) with time-varying sampled
data is consented, if there exist matricesP = [𝑃

𝑖𝑗
] ∈ S3𝑛

+
, 𝑄 ∈
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1 2

Figure 3: 2-node information flow.

S𝑛
+
,𝑅 ∈ S𝑛

+
, 𝑆 ∈ S𝑛

+
,M = [𝑀

𝑖𝑗
] ∈ R2𝑛×2𝑛, and diagonalmatrix

𝐷 ∈ S
𝑛𝑦

+
satisfying the following LMIs for 1 ≤ 𝑖 < 𝑗 ≤ 𝑁:

[(𝑗 − 𝑖) Υ̃
⊥

𝑖𝑗
]

𝑇

Ξ
𝑘
[(𝑗 − 𝑖) Υ̃

⊥

𝑖𝑗
] < 0, (𝑘 = 1, 2) , (35)

Ω > 0. (36)

Proof. ReplacingΥ
𝑖𝑗
with Υ̃

𝑖𝑗
= [𝐴 𝜎𝑑

𝑖𝑗
𝑁𝐼

𝑛
0 −𝐼

𝑛
0 0 0 𝐵]

in the proof of Theorem 6 leads to (35).

4. Numerical Example

In this section, one numerical example will be presented to
illustrate the effectiveness of the proposed criteria in this
paper.

Consider 2-node information flow drawn in Figure 3
consisted of the Chua’s circuit [25] given by

�̇�
𝑖1
(𝑡) = 𝛼 (𝑥

𝑖2
(𝑡) − ℎ (𝑥

𝑖1
(𝑡))) ,

�̇�
𝑖2
(𝑡) = 𝑥

𝑖1
(𝑡) − 𝑥

𝑖2
(𝑡) + 𝑥

𝑖3
(𝑡) ,

�̇�
𝑖3
(𝑡) = − 𝛽𝑥

𝑖2
(𝑡) , 𝑖 = 1, 2

(37)

with the nonlinear function ℎ(𝑥
𝑖1
(𝑡)) = 𝑚

1
𝑥
𝑖1
(𝑡)+(1/2)(𝑚

0
−

𝑚
1
)(|𝑥

𝑖1
(𝑡) + 𝑐| − |𝑥

𝑖1
(𝑡) − 𝑐|), where parameters 𝑚

0
= −1/7,

𝑚
1
= 2/7, 𝛼 = 9, 𝛽 = 14.28, and 𝑐 = 1 and its Lur’s form can

be rewritten with

𝐴 =
[

[

[

−𝛼𝑚
1

𝛼 0

1 −1 1

0 −𝛽 0

]

]

]

, 𝐵 =
[

[

[

−𝛼 (𝑚
0
− 𝑚

1
)

0

0

]

]

]

,

𝐶
𝑇

=
[

[

[

1

0

0

]

]

]

.

(38)

For the above system, themaximum interval of 𝑡
𝑘+1

−𝑡
𝑘
(=ℎ

𝑀
)

for fixed coupling strength 𝜎 = 1 is compared between degree
and edge betweenness centralities as shown in Table 1. From
Table 1, it can be seen that the result with the edge between-
ness centrality measure for this example gives larger max-
imum interval of 𝑡

𝑘+1
−𝑡
𝑘
(=ℎ

𝑀
) than the one with the degree

centrality measure.

Moreover, the elements of matrix Γ
𝑒
can be calculated as

𝛾
12

= ∑

𝑘 ̸=𝑙

g
𝑘𝑙
(e
12
)

g
𝑘𝑙

=

g
12
(e
12
)

g
12

+

g
21
(e
12
)

g
21

=

1

1

+

1

1

= 2,

𝛾
21

= ∑

𝑘 ̸=𝑙

g
𝑘𝑙
(e
21
)

g
𝑘𝑙

=

g
12
(e
21
)

g
12

+

g
21
(e
21
)

g
21

=

1

1

+

1

1

= 2,

𝛾
11

= ∑

𝑗 ̸=𝑖

𝛾
1𝑗
= 𝛾

12
= 2, 𝛾

22
= ∑

𝑗 ̸=𝑖

𝛾
2𝑗
= 𝛾

21
= 2.

(39)

However, the system performance with the edge betweenness
centrality measure is more poor and needs more protocol
input than the one with the degree centrality measure.
For comparison between two measure cases, the sampling
interval 𝑡

𝑘+1
− 𝑡

𝑘
(=ℎ

𝑀
) is assumed to be 0.4. Figure 4

shows that the states with the responses consent to the same
behavior under two measure cases for the given initial states
of the nodes 𝑥𝑇

1
(0) = [0.1 0.5–0.7] and 𝑥

𝑇

2
(0) = [3 1–4]. In

Figure 5, their error trajectories are shown. Here, the case of
the edge betweenness centrality measure indicates the poor
performance. Thus, it can be confirmed that it is necessary
to consider the global information for network structure as
mentioned in Remark 1.Their corresponding protocol inputs
can be identified in Figure 6. In addition to this, without the
protocol, the behaviors of two nodes are different as shown in
Figure 7.

5. Conclusions

In this paper, the consensus analysis for nonlinear complex
systems under time-varying sampled-data protocol has been
conducted. The information for network structure is mea-
sured by edge betweenness centrality, which has the global
information while the degree centrality has the local one. To
achieve this, by constructing the simple Lyapunov-Krasovskii
functional, sufficient conditions for guaranteeing asymptotic
consensus of such systems have been derived in terms of
LMIs. One numerical example has been given to show the
usefulness of the proposed model.
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Figure 4: State trajectories of each node: (a) degree and (b) edge.

Table 1: Comparison with fixed coupling strength 𝜎 = 1.

Measures Methods Structure 𝑡
𝑘+1

− 𝑡
𝑘
(=ℎ

𝑀
)

Degree centrality Corollary 7 ∗

Γ
𝑑
= [

1 −1

−1 1

] 0.41

Edge betweenness centrality Theorem 6 Γ
𝑒
= [

2 −2

−2 2

] 0.49

∗is the Laplacian matrix of graph drawn in Figure 3.
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Figure 5: Error trajectories of each node: (a) degree and (b) edge.
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