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Abstract 

Objective:  In lethal primary metastatic prostate cancer, biopsy material is often the only accessible cancer tis‑
sue. Lack of tissue quantity limited the use of biopsy cores for analyzing higher numbers of molecular markers and 
standard histopathologic evaluation for clinical diagnosis simultaneously. Recent advances in single cell analytics 
have paved the way to characterize a tumor in more depth from minute input material such as biopsies. We therefore 
aimed to develop a biopsy needle, which generates two cores side by side from the same punch: one for standard 
histopathologic analysis to allow for routine diagnostics and the second one for single cell analytics.

Methods:  On the basis of a conventional punch biopsy needle we have milled two parallel longitudinal rifts into the 
needles shat which are separated by a 100 µm thick metal sheet. Each rift can harbor a single tissue core.

Results:  Two cores from the same punch were generated reproducibly from a radical prostatectomy specimen and 
showed congruent results in histopathologic analysis. Both cores yielded equally sufficient material for standard H&E 
staining and histopathological evaluation.

Conclusion:  Our modified biopsy system will allow for simultaneous acquisition of tissue cores for diagnostic and 
scientific analysis from solid tumors or metastatic sites.
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Background
There still exists a discrepancy between the clinical diag-
nosis or treatment and growing molecular knowledge of 
prostate cancer. Gold standard for the diagnosis of pros-
tate cancer is the histopathologic analysis of prostate 
needle biopsies. They often represent the only available 
tumor tissue because non-surgical systemic treatment 
such as radiation or androgen deprivation therapy (ADT) 
is administered to these patients. Only few parameters are 
analysed such as morphology (Gleason Score), tumour 
volume (number of tumour bearing biopsy cores and 
percentage of tumor tissue in all positive biopsy cores) 
(Schroder et al. 2012) and in some cases protein expres-
sion (AMACR and p63) (D’Amico et al. 1998; Heidenre-
ich et al. 2014; b; Jiang et al. 2002; Rubin et al. 2002; Zhou 
et al. 2002). In localized prostate cancer risk stratification 
systems are also based on these few parameters and lead 

to significant inaccuracies in clinical endpoints (Schroder 
et  al. 2012). In primary metastatic disease resistance to 
systemic ADT still hampers long lasting therapeutic suc-
cess. Risk stratification systems based on the same diag-
nostic parameters do not allow for predictions regarding 
time to resistance or response to specific ADT regimes. 
Despite systemic therapy survival at this stage is signifi-
cantly compromised and novel therapeutic concepts are 
urgently needed. To overcome the diagnostic and prog-
nostic variability as wells as the therapeutic limitations by 
current standards, molecular strategies have to be devel-
oped for improved diagnostic and therapeutic purposes. 
Crucial to such undertaking are adequate tissue samples 
from primary and metastatic sites. Tissue biopsy cores 
will remain the primary source of such tissue samples. 
The limited tissue quantity could be compensated by high 
flexibility and wide availability to biopsy nearly every tis-
sue within the body with acceptable risk for the patient. 
Furthermore, recent advances in single cell analytics have 
paved the way to utilize even minute amounts of input 
material (Kronig et al. 2015; Lohr et al. 2014; Patel et al. 
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2014; Shalek et al. 2014; Trombetta et al. 2014). Prostate 
cancer is no longer seen as a standalone cell type but 
rather has to be handled as a complex network of vari-
ous cell types influencing tumour initiation, progression 
and therapy (Lohr et al. 2014; Haffner et al. 2013; Brennen 
et al. 2012; Comito et al. 2014; Donkor et al. 2011; Karja 
et al. 2005; Madar et al. 2013; Maher and Davies 2004; Sfa-
nos et al. 2008; Sluka and Davis 2013; Webber et al. 2015). 
To resolve the cellular heterogeneity and to identify inter-
cellular networks single cell analytics represent a powerful 
tool (Lohr et al. 2014; Patel et al. 2014; Shalek et al. 2014; 
Trombetta et al. 2014; Pettit et al. 2014; Picelli et al. 2013; 
Ramskold et al. 2012). The limited tissue quantity gener-
ated by biopsies turns into an advantage and even poten-
tiates by the ability for high sampling frequency. Primary 
biopsy cores contain viable cells, which provide optimal 
results with regard to downstream analytics. Gold stand-
ard histopathologic analysis is usually performed on for-
malin fixed tissue, which provides optimal conditions for 
morphologic analysis but limited capacity for large scale 
single cell analytics. Nonetheless, gold standard histo-
pathologic analysis must not be compromised by using 
primary biopsy tissue within research project. We there-
fore aimed to develop a biopsy needle, which generates 
two parallel cores out of one single punch: one for stand-
ard histopathologic analysis to allow for routine diagnos-
tics and the second one for single cell analytics.

Methods
Needle modification
We used a MaxCore System (MC1416) by BARD Biopsy 
Systems: penetration depth 22  mm, length and width of 
the original biopsy rift: 19 ×  2.1  mm. In a first step the 
original needle notch including the rift was cut away 
which shortened the needle by ca. 22 mm. We then man-
ufactured a positioning frame to keep the needle under 
tension and mounted it on a fine metal milling machine. 
Two parallel 19 mm in length rifts were then milled into 
the needle’s shaft in such a way that a 100 µm thin sheet 
remained standing between them. The tip of the needle 
was then sharpened in the original angle to reconstitute 
a fully functioning needle. The cutting cylinder, which is 
running over the needle was adapted to the new needle 
length and the notch sharpened accordingly. No other 
modification to the biopsy system were necessary. The 
modifications were neither initiated by BARD Biopsy Sys-
tems nor are they covered by the company’s liability regu-
lations. The modified biopsy system is not certified for in 
patient use. Prototype testing has been performed with 
ex vivo radical prostatectomy samples within this research 
project approved by our local ethics committee (328/15). 
Samples were biopsied within 15 min after resection. The 
patient gave written consent prior to the procedure.

Histologic analysis
Fixation, paraffin embedding, cutting, H&E staining and 
Gleason grading was performed according to routine 
diagnostic standards.

Results
We successfully modified the original needle by milling 
two parallel rifts separated by a 100 µm thin sheet into the 
needles shaft (Fig.  1a–c). The original single rift was cut 
way. The function of the entire biopsy system was not com-
promised. The core size was ca. 19 ×  1  mm each versus 
19 × 2.1 mm of the single core. Double biopsy cores were 
easily removed from the biopsy needles. The needle could 
also be reused for several biopsies from the same patient 
sample. The quality of the biopsy cores was sufficient to 
allow for standard H&E staining within routine diagnostic 
workup. All biopsy cores were generated from the same 
prostatectomy specimen: a 57 year old male patient with 
pre-operative PSA 7.65 ng/ml, Overall Gleason Score was 
3 + 4 = 7. Ten double biopsies were taken in total. Cores 
were fixed, paraffin embedded, cut and routine H&E stain-
ing was performed. Cores were analyzed for tumor or no 
tumor. In cases of tumor Gleason Grading was assigned 
to each core. 6 of the 10 double biopsies were tumor bear-
ing and 4 were not. All 10 double cores showed congruent 
results. Two double cores are shown here. Both cores in 
Fig. 2a show prostate cancer Gleason Score 3 + 4 (Grade 
Group 2) in ca. 10–20 % of the biopsy core, which corre-
sponds to ca. 1.5–2.0 mm of tumor. Both cores in Fig. 2b 
show benign prostate glands (1). The mean core length 
was 15 mm (±3 mm). Special attention was payed during 
paraffin embedding to allow for optimal cutting. The cel-
lular heterogeneity of prostate cancer and benign prostate 
tissue is also underlined these representative biopsy cores. 
Tumor cells in Fig.  2a (red square) represent the minor-
ity of cells (20 %, 2 mm of tumor). The tissue is dominated 
by mesenchymal cells (2) which comprise stromal cells, 
endothelial cells, myofibroblasts and lipocytes. But also 
benign prostate glands are located in close proximity to 
the tumor cells. Also the benign sample (Fig. 2b) is domi-
nated by mesenchymal cells (2).

Discussion
Our modified biopsy needle enables the simultaneous 
generation of two biopsy cores side by side from a single 
punch. The technique ensures histological evaluation of 
the tissue and at the same time provides a second core 
for molecular analysis down to the single cell level. No 
further modifications to the biopsy system were neces-
sary. It is a universally applicable cost effective technique 
in several solid tumor entities and organs. To the best of 
our knowledge no comparable system is available on the 
market or has been described in the literature.
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Alternative approaches which used formalin fixed par-
affin embedded tissue (FFPE) are limited by the output 
yield of DNA, RNA or protein and do not allow for in 
depth single cell analytics (Hedegaard et al. 2014). Fresh 
tissue on the other allows for utilizing all molecular tech-
niques scaled for low input material, even culturing of 
the cells is possible (Kronig et al. 2015; Lohr et al. 2014; 
Patel et  al. 2014; Shalek et  al. 2014; Picelli et  al. 2013; 
Ramskold et al. 2012; Treutlein et al. 2014). We have pre-
viously shown that needle biopsy cores can utilized for 
single cell gene expression analysis and culturing (Kronig 
et al. 2015).

Even from the few representative biopsy cores shown 
here it is evident that bulk tissue analysis will produce 
significantly biased results due to high degree of cellular 

heterogeneity within the tissue. Only single cell analytics 
can resolve the cellular heterogeneity present in prostate 
tissue (Patel et al. 2014).

Repetitive single core biopsies of presumably the same 
location suffer from lack of accuracy due to uncontrol-
lable distance between biopsy cores and cellular hetero-
geneity with high local variance. It also means repetitive 
trauma to the patient.

In patients not undergoing surgical therapy due to sys-
temic disease such as metastatic prostate cancer, a fresh 
frozen biopsy core not only from the primary tumor but 
also from metastases provides an invaluable research 
source to further develop individualized therapy strate-
gies. Little is known about microenvironment alterations 
under systemic therapy because tissue is rarely accessible 

Fig. 1  a, b Schematic illustration of the modified biopsy needle from above (a) and side angled (b); c photo from the prototype needle. A 100 µm 
thick longitudinal metal sheath was carved out to generate two parallel rifts to harbor the biopsy cores. No other modifications to the system was 
necessary to allow for normal function. Scale is indicated in cm
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with minimal risk to the patient. Additional components 
such as circulating tumor cells, exosomes or circulating 
RNA could complement the approach (Lohr et al. 2014; 
Peinado et al. 2012; Jackson et al. 2014). Advances in sin-
gle cell technologies made this source accessible and will 
be the basis to develop novel diagnostic, prognostic and 
therapeutic tools.
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