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ABSTRACT Goss’s bacterial wilt and leaf blight is a disease of maize caused by the gram positive bacterium
Clavibacter michiganensis subsp. nebraskensis (Cmn). First discovered in Nebraska, Goss’s wilt has now
spread to major maize growing states in the United States and three provinces in Canada. Previous studies
conducted using elite maize inbred lines and their hybrids have shown that resistance to Goss’s wilt is a
quantitative trait. The objective of this study was to further our understanding of the genetic basis of
resistance to Goss’s wilt by using a combined approach of genome-wide association mapping and gene
co-expression network analysis. Genome-wide association analysis was accomplished using a diversity
panel consisting of 555 maize inbred lines and a set of 450 recombinant inbred lines (RILs) from three
bi-parental mapping populations, providing the most comprehensive screening of Goss’s wilt resistance to
date. Three SNPs in the diversity panel and 10 SNPs in the combined dataset, including the diversity panel
and RILs, were found to be significantly associated with Goss’s wilt resistance. Each significant SNP
explained 1–5% of the phenotypic variation for Goss’s wilt (total of 8–11%). To augment the results of
genome-wide association mapping and help identify candidate genes, a time course RNA sequencing
experiment was conducted using resistant (N551) and susceptible (B14A) maize inbred lines. Gene
co-expression network analysis of this time course experiment identified one module of 141 correlated
genes that showed differential regulation in response to Cmn inoculations in both resistant and susceptible
lines. SNPs inside and flanking these genes explained 13.3% of the phenotypic variation. Among 1,000
random samples of genes, only 8% of samples explained more phenotypic variance for Goss’s wilt re-
sistance than those implicated by the co-expression network analysis. While a statistically significant en-
richment was not observed (P , 0.05), these results suggest a possible role for these genes in quantitative
resistance at the field level and warrant more research on combining gene co-expression network analysis
with quantitative genetic analyses to dissect complex disease resistance traits. The results of the GWAS and
co-expression analysis both support the complex nature of resistance to this important disease of maize.
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Goss’s bacterial wilt and leaf blight of maize, caused by a gram positive
bacterium Clavibacter michiganensis subsp. nebraskensis (Cmn), can
dramatically reduce grain yield of maize if infection becomes severe
enough. Studies using artificial inoculations of Cmn conducted during
the 1990s showed yield losses up to 44% (Carson andWicks 1991), and
yield losses of 50% or more have been reported by producers
(Robertson 2012). Goss’ wilt was first discovered on one farm in south-
central Nebraska in 1969 (Schuster et al. 1972). Over the next decade,

Goss’s wilt spread to 58 counties in Nebraska and 34 counties across
seven states, becoming a major concern for maize producers (Wysong
et al. 1981). The incorporation of host plant resistance into maize
hybrids greatly reduced the incidence of Goss’s wilt, with it being only
sporadically observed in the far western Corn Belt throughout the late
1980s until the mid-2000s (Jackson et al. 2007). Goss’s wilt suddenly
re-emerged around 2006 as indicated by a large increase in the number
of samples diagnosed with Goss’s wilt submitted to plant disease
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diagnostic clinics (Jackson et al. 2007). Since 2006, Goss’s wilt has
continued to spread throughout North American maize growing re-
gions, having been reported in Nebraska, Iowa, Colorado, Missouri,
Indiana, Illinois, Kansas, Minnesota, North Dakota, South Dakota,
Wisconsin, Texas, and Louisiana. In Canada it has been confirmed in
Alberta, Manitoba, and Ontario (Ruhl et al. 2009; Malvick et al.
2010; Korus et al. 2011; EPPO 2014; Friskop et al. 2014; Howard
et al. 2015; Singh et al. 2015; Hosack et al. 2016). In recent years
Goss’s wilt has ranked among major diseases of maize in North
America in terms of estimated yield losses, with estimates ranging
from 38.5 million bushels in 2012 to 215.9 million bushels in 2014 in
major maize producing U.S. states and Canada (Mueller and Wise
2012, 2014; Mueller et al. 2016).

Identifying sources of resistance to Goss’s wilt and breeding resis-
tance intomaize hybrids remains a viable strategy to reduce yield losses.
A great degree of variation in the level of resistance to Goss’s wilt exists
in maize. Maize inbred lines have shown variable response to Goss’s
wilt varying from resistant, intermediate, to highly susceptible based on
screenings in the 1970s and 1980s with a limited number of inbred lines
(Schuster et al. 1972; Calub et al. 1974; Wysong et al. 1981, Treat et al.
1990). For example, B14 and its derived lines, such as A619, have been
found to be generally susceptible; Oh43 was reported to be moderately
susceptible; andMo17was reported to be resistant (Schuster et al. 1972;
Calub et al. 1974). Studies using classical mating designs, including
diallels and generation means analyses, have indicated that resistance
to Goss’s wilt is under polygenic control, with additive genetic variation
being the predominant form of genetic variation (Gardner and Schuster
1974; Martin et al. 1975; Rocheford et al. 1989; Treat and Tracy 1990;
Ngong-Nassah et al. 1992).

Efforts to identify molecular markers linked to resistance to help
unravel the genetic architecture of Goss’s wilt have been lacking until
recently because the incidence of this disease was only sporadic during
the time plant geneticists and breeders were developing and adopting
molecular markers, QTLmapping, andmarker-assisted selection (circa
late 1980s to 2000s). The re-emergence of Goss’s wilt has increased
interest in identifying sources of resistance, molecular markers that
could be used for selection, and genes controlling resistance. Using
three bi-parental maize populations connected by a common parent,
Singh et al. (2016) identified eleven QTL of small effect, half of which
were population specific. Schaefer and Bernardo (2013) performed
genome-wide associationmapping for Goss’s wilt and identified several
SNPs associated with resistance, each explaining no more than 10% of
the phenotypic variation. The diversity panel used by Schaefer and
Bernardo (2013), however, was limited in size and diversity, being
comprised of only elite maize inbred lines. This limited diversity,
combined with relatively few molecular markers, lowered the map-
ping resolution achieved by this study. Most recently, Cooper et al.
(2018) used the Intermated B73 X Mo17 mapping population
and related introgression lines to map QTL controlling Goss’s wilt

resistance. These authors detected several of the previously mapped
QTL, including a QTL on chromosome 1 that overlapped with a
locus known to be important in resistance to multiple diseases of
maize (Cooper et al. 2018).

Transcriptomic approaches, such as RNA-seq, can help identify
resistance candidate genes by quantifying changes in gene expression
levels after resistance and susceptible plants have been exposed to a
pathogen. Several studies, however most of them involving fungal
pathogens of maize, have investigated the response of maize to its
pathogens using transcriptomics (Lanubile et al. 2014; Liu et al. 2015,
2016; Miranda et al. 2017). From these studies, several genes have been
reported to be differentially expressed in resistant and susceptible lines
in response to Fusarium and Bipolaris species with enrichment in
functions including pathogen recognition and signaling, growth and
development, plant hormone signal transduction, and defense
(Liu et al. 2016; Lanubile et al. 2014; Liu et al. 2015). Study of gene
expression changes in near-isogenic lines for disease resistance QTL to
Fusarium further revealed two different mechanism of resistance
provided by the QTL, where one QTL conferred resistance through
the expression of defense related genes and the other imparted re-
sistance by affecting auxin signaling and transport (Liu et al. 2016).
Systemic acquired resistance in maize to Colletotrichum was found
to be controlled by genes involved in salicylic acid pathway and
chromatin modification (Miranda et al. 2017).

Recently published transcription profiling of resistant and suscep-
tible maize genotypes (Doehlemann et al. 2008; Meyer et al. 2017;
Yu et al. 2018), expression QTL analysis (Christie et al. 2017), and
meta-analysis of expression profiling studies (Wang et al. 2018) for
Cercospora zeina, C. zeae-maydis, and Ustilago maydis pathogens also
revealed complex defense response and molecular interaction with
maize. Different approaches revealed changes in hormonal signaling
such as jasmonic acid, and salicylic acid, as well as oxidative reduction
in response to pathogens. Studies also pointed toward implication of
genes involved in primary defense such as leucine rich repeat recep-
tor like kinases, PAMPs, flavonoid and terpenoid biosynthesis genes,
calmodulin-like proteins, and genes encoding pathogenesis related
proteins.

Combing GWAS and transcriptomic analyses provides a powerful
systems approach to characterize the genetic basis of resistance to this
pathogen ofmaize. The objectives of this studywere: 1)Characterize the
genetic variation for Goss’s wilt within a large panel of diverse inbred
lines; 2) Discover genomic regions and candidate genes controlling
variation for resistance to Goss’s wilt; 3) Discover co-expressed mod-
ules of genes that show changes in gene expression patterns between
a resistant and susceptible maize line in response to inoculation with
Cmn, and compare these genes to those implicated by GWAS; 4)
Quantify the amount of variation in field resistance explained by
differentially expressed gene modules.

MATERIALS AND METHODS

Germplasm and selection of diversity panel for genome-
wide association analysis
Two sets of germplasm were used for the GWAS: a diversity panel of
555 inbred lines and three bi-parental linkage mapping populations
selected from themaizenested associationmapping (NAM)population.
The diversity panel of 555 maize inbred lines was selected from a larger
set of 2,815 maize inbred lines genotyped by Romay et al. (2013). This
panel consisted of lines from Stiff Stalk Synthetic (SSS), non-SSS, trop-
ical, popcorn, and sweet corn genetic backgrounds. Subpopulation clas-
sification (i.e., SSS, non-SSS, popcorn) of each line was according to
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Romay et al. (2013). The first year of Goss’s wilt resistance evaluation
included 400 inbred lines selected from the total set of 2,815 inbred
lines. To arrive at this set of 400, the initial set was first reduced to
900 lines by retaining only those that reachedmid-silk within four days
of B73 according to mid-silk growing degree data provided by Romay
et al. (2013). This was done to reduce confounding effects that variation
in days to flowering could have on disease ratings. A k-means clustering
analysis was then applied to SNP data to classify the 900 lines into
400 clusters, and one line from each of the 400 clusters was randomly
selected. Seed of the 400 inbred lines was obtained from the North
Central Regional Plant Introduction Station (NCRPIS) in Ames, IA
and increased during the summer of 2014 in the breeding nursery
through self-pollination. Insufficient statistical power to detect as-
sociations in the first year of this study prompted an increase in the
panel size for evaluations in 2015. The panel evaluated in 2015 con-
sisted of 555 lines, which was formed by the addition of 155 inbred
lines from the set of 900 for which adequate seed quantities were
immediately available. No specific criteria were applied to selection
of these additional 155 lines beyond immediate seed availability.

The three bi-parental RIL populations selected from the NAM
population were B73 x Oh43, B73 x HP301, and B73 x P39. These
same populations were used in an earlier study to identify QTL for
Goss’s wilt through linkage mapping (Singh et al. 2016). While the
common parent, B73, is moderately resistant, the other three par-
ents were found to be comparatively susceptible to Goss’s wilt in a
preliminary screening. Moreover, Oh43, HP301, and P39 are dent,
popcorn, and sweetcorn types, respectively, which allowed for the
discovery of Goss’s wilt resistance alleles from three distinct genetic
backgrounds. In 2012, 195 RILs from the B73 x Oh43 population
were screened for Goss’s wilt. In 2013, 172 RILs from the B73 x
Oh43 population, 141 RILs from the B73 x HP301 population, and
125 RILs from the B73 x P39 population were evaluated. In 2014,
174 RILs from the B73 x Oh43 population, 143 RILs from the B73 x
HP301 population, and 124 RILs from the B73 x P39 population
were phenotyped for Goss’s wilt. The lines were evaluated using a
completely randomized field design with replicated checks as de-
scribed earlier (Singh et al. 2016).

Genotypic data
ZeaGBSv1.0 dataset consisting of 681,257 GBS SNPs published by
Romay et al. (2013) downloaded from panzea.org in 2013 was used
to select the diversity panel. In 2014, ZeaGBSv2.7 version dataset of
955,690 GBS SNPs was made available for maize germplasm public
germplasm including NAM RILs at panzea.org, which was then down-
loaded and used for the genome-wide association analysis. Briefly, the
GBS data made available by Romay et al. (2013) was obtained using the
ApeKI restriction enzyme as previously described (Elshire et al. 2011).
A reference genome-based GBS pipeline in TASSEL 5.0 was used for
SNP discovery with standard parameters as applied tomaize Discovery
Build was used to call the SNPs (Glaubitz et al. 2014). The imputed
version of the ZeaGBSv2.7 dataset, imputed using Fast Inbred Line
Library ImputatioN (FILLIN) method, was used (Swarts et al. 2014).

Markers with more than 80% missing data and a minor allele
frequency (MAF) less than 0.05 were filtered out, leaving 342,237 SNPs
for analysis.Thisfilteredand imputedSNPdatasetwasusedforprincipal
component analysis (PCA), LD decay, and GWAS analyses.

Diversity panel characterization
Population structure within the diversity panel was visually assessed
using PCA and ADMIXTURE, a software for model-based estimation
of ancestry (Alexander et al. 2009). A cross validation procedure

implemented in ADMIXTURE was used to initially choose the opti-
mum number of subpopulations (K) by minimizing the cross valida-
tion error. Multiple runs of ADMIXTURE were conducted at
different values of K ranging from 3 to 20. Twenty replications were
performed for each value of K. Cluster memberships for each repli-
cate were aligned using the cluster matching software CLUMPP
(Jakobsson and Rosenberg 2007). A plot of cross validation error
vs. K was examined, but an exact optimum could not be determined
(Supplementary Figure 1). K was set to three based on visual inspec-
tion of a PCA plot of PC1 vs. PC2 (Supplementary Figure 2a), sub-
population membership plots from ADMIXTURE differing in K
(Supplementary Figure 2b), and subpopulation information from
Romay et al. (2013). The average cluster membership across twenty
replications of the ADMIXTURE analysis was used as a covariate in
the GWAS model to account for population structure.

Decay of linkage disequilibrium (LD) was assessed as pairwise R2

between the SNP markers within 10 kb windows using PLINK v1.07
available at http://zzz.bwh.harvard.edu/plink/ (Purcell et al. 2007).
To assess the relationship among the lines of the diversity panel and
visualize the clustering of inbred lines according to Goss’s wilt resis-
tance, a Hamming distance matrix was created using PLINK in which
the distance was calculated as 1-IBS, where IBS is the identity-by-state
coefficient. The distance matrix was used to create a neighbor joining
tree using the method of Saitou and Nei (1987) as implemented
in ape package in R (Paradis et al. 2004).

Goss’s wilt phenotyping and disease nursery
In 2014, the diversity panel of 400 inbred lines was planted in aGoss’s
wilt nursery at the Agricultural Research and Development Center
of the University of Nebraska in Mead, NE. Plots were arranged in a
randomized complete block design with three replications. Suscep-
tible line B14A, and two susceptible and two resistant proprietary
check inbred lines from Dow AgroSciences were included to assess
disease development. In 2015, the diversity panel of 555 lines was
planted at the same location using the same experimental design as
in 2014. Inoculations with Cmn were carried out following the same
procedure as described previously (Singh et al. 2016). Briefly,
wounds were created on plant leaves with motorized weed whippers
and Cmn inoculum was sprayed within seconds of injuring the
plants to ensure infection. Disease ratings were recorded 15, 30,
and 45 days after inoculations (DAI). A disease rating scale of
1 to 9 on a whole plot basis was used in this study, where 1 represents
complete resistance, 2 indicates disease spread less than approxi-
mately 5 cm from the point of inoculation, 3 represents limited
spread but more than 5 cm from the point of inoculation, 4 indicates
a large spread with lesions often extending to middle of the leaf,
5 indicates systemic infection and lesions on un-inoculated leaves,
6 indicates blight of un-inoculated leaves and wilting of plants,
7 indicates severe blight and wilt, 8 indicate severe blight and severe
wilt with limited green tissue on leaves and stems of plants, and
9 represents a completely dead plot (Singh et al. 2016).

Analysis of phenotypic data
Three visual ratings taken after inoculation at 15, 30, and45DAIwere
combined to calculate WMD scores. For calculation of WMD, the
average of two consecutive ratings was taken and multiplied by the
number of days between the two ratings. These values were summed
and divided by the total number of days spanning the first and last
rating (Balint-Kurti et al. 2010; Singh et al. 2016). Analysis of var-
iance (ANOVA) was conducted on WMD values using ASReml-R
(Butler et al. 2009) by fitting the following model:
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yijk ¼ mþ gi þ ej þ rkðjÞ þ geij þ eijk [1]

Where, yijk represents the WMD value, m is the grand mean, gi is the
effect of genotype i, ej is the effect for year j, rkðjÞ is the effect of the kth

replication nested within the jth year, geij is the interaction effect
between inbred line and year, and eijk is the residual. All effects except
for the residual were treated as fixed effects. Best linear unbiased
estimates (BLUEs) for WMD of the inbred lines were calculated.
For estimating heritability, inbred line, inbred line-by-year interac-
tion, and residual variances were estimated using ASReml-R by fit-
ting these effects as IID random effects. Plot-based heritability was

calculated as H2 ¼ s2
G

s2
Gþs2

GYþs2
e
where s2

G is the variance among in-

bred lines, s2
GY is the inbred-by-year interaction variance, and

s2
e is the residual variance.

Genome-wide association model
Genome-wide association mapping was performed using the follow-
ing mixed linear model:

y ¼ Xbþ wmþ Zuþ e [2]

where y is a vector ofWMDBLUEs of the inbred lines;b is a vector of
fixed effects, including an intercept and subpopulation (K = 3) effects;
X is an incidence matrix relating b to y and contains subpopulation
membership probabilities output from ADMIXTURE; m is the fixed
SNP effect of the SNP being tested; w is a vector indicating the allelic
state of each inbred line for the marker being tested; u is a vector of
random polygenic effects where u � MVNð0;Gs2

uÞ and G is a geno-
mic relationship matrix (GRM) calculated using the marker data;
Z is a design matrix relating u to y; and e is a vector of random
residuals where e � MVNð0; Is2

e Þ. Model [2] was implemented using
the factored spectrally transformed linear mixed model (FaST-LMM)
algorithm, including calculation of the GRM (Lippert et al. 2011).
Parameter -fileSim was added to FaST-LMM command to obtain
the GRM which uses a realized relationship matrix from SNPs to
calculate the GRM.

The linear mixed model described was also applied to the com-
bined dataset of diversity panel (N = 555) and bi-parental populations
(N = 450). The model was modified to include a fixed environmental
effect to account for the different environments in which these sets of
germplasmwere evaluated.Also, subpopulationeffectswere extended to
include subpopulation effects for each of the three bi-parental popula-
tions. The subpopulation effect incidence matrix, X, which included
subpopulation memberships as described above, was extended by
adding three columns for each of the bi-parental populations, where
each column contained a 1 when the RIL in that row belonged to the
corresponding bi-parental population and a 0 in all other columns.

In order to declare SNPs as significantly associated withWMD in
GWAS analyses, a false-discovery rate (FDR) based on a q-value of
0.1 was used (Storey and Tibshirani 2003). To calculate the percent
variation explained by significant SNPs (R2

SNP�) after accounting for
subpopulation effects, a multiple regression model was fit including
WMD BLUEs as the dependent variable, and subpopulation effects
and those of significant SNPs as independent variables (full model). A
model including only subpopulation effects as independent variables
was also fit (reduced model), and R2

SNP� was calculated as the differ-
ence in variation explained between the full and reduced models.

The total variation in WMD BLUEs within the diversity panel that
could be explained by all genotyped SNPs (polygenic background
effects) was calculated using a variance component approach
(Gusev et al. 2014):

ĝ ¼ uþ e [3]

where ĝ is the BLUE for inbred lines estimating using model [1], u is a
random polygenic background effect where u � MVNð0;Gs2

u), and e
is residual. The proportion of variation explained by all genotyped
SNPs was calculated as s2

u

.
s2
gþs

2
e
.

Haplotype analysis
Once significant SNPs were identified by the GWAS, a haplotype
analysis was performed in the regions of the genome surrounding the
significant SNPs using the software Haploview (Barrett et al. 2005).
The SNPs within 10 kb of each significant SNP were included ini-
tially to conduct the haplotype block analysis. The regions were
extended beyond 10 kb for haplotype block analyses if the haplotype
block length in a region was greater than 10 kb. Haplotype blocks
were defined according to the four gamete rule (Wang et al. 2002).
A cutoff of 1% was used to define the haplotype block boundaries,
meaning that if a fourth two-SNP haplotype allele was observed at a
frequency of greater than 1%, recombination was assumed to have
occurred between the SNPs that formed the haplotype. Allele fre-
quencies of haplotype alleles were examined within each subpopu-
lation of the diversity panel to determine the allele frequency
differences among subpopulations.

Plant materials and inoculations for
transcriptome profiling
Transcriptome profiles were obtained for B14A and N551 under both
control and Cmn inoculated conditions. B14A was found to be suscep-
tible and N551 was found to be resistant to Cmn in the field screening
described above (Figure 1c). Mean field ratings of B14A andN551 were
3.4 and 1.0, respectively. B14A and N551 both belong to the stiff stalk
heterotic group (Figure 1b) and are related to one another as B14 was a
founder of the synthetic population from which N551 was derived
(Russell 2006). The IBS, as calculated from SNPs, between N551 and
B14A was 0.82 which was greater than the average IBS of 0.67 in the
diversity panel.

To perform inoculations, seeds of the inbred lines were planted in
plastic inserts and placed in a greenhouse for two weeks before inoc-
ulations. Inoculations were carried out when the plants were at the V2
stage (Abendroth et al. 2011). For inoculations, plants were transported
to the lab and were inoculated using a vacuum infiltration method with
theWelch 1400Duo Seal VacuumPump. Inoculumwas prepared from
Cmn isolate 12038 from the Alfano Lab (University of Nebraska-
Lincoln), which was tested and determined to be virulent on maize.
The bacterial cells were suspended in 10mM MgCl2 for measuring
concentration and then were mixed into distilled water. The inoculum
bacteria concentration was set to 1 · 108 colony forming units with a
spectrophotometer. To increase the surface tension of the suspension,
0.005% Tween20 was added to the inoculum. Control inoculations
were done with water in place of the Cmn inoculum and samples were
also collected from these controls at each time point. The plants were
placed upside down into the inoculum and the vacuum was applied to
each plant for three minutes.

Leaf sampleswere collected at 0, 8, and 15 hr post inoculations (hpi).
All abovegroundleaveswere cutwithsterilizedscissorsand immediately
placed in liquid nitrogen after wrapping in aluminum foil. These time
points were chosen to evaluate genes that change expression patterns
early in response to Cmn infection and contribute to primary defense
response. In a preliminary RT-PCR experiment designed to deter-
mine optimal hpi, the pathogen responsive genes PR1 and PR5 were
expressed within 12 to 15 hr. A previous study in Arabidopsis found
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Figure 1 Genetic relationship among the inbred lines
of the diversity panel and distribution of Goss’s wilt
among the inbred lines. (a) Histogram showing the dis-
tribution of weighted mean disease BLUEs for inbred
lines included in the diversity panel. Vertical dotted
lines display the check lines B73 and B14A; (b) Neigh-
bor joining tree of 555 lines of the diversity panel cre-
ated from a distance matrix calculated using the GBS
SNP data. Labels are colored coded by the six subpop-
ulation groups within the diversity panel; (c) The same
neighbor joining tree as in (b) but labels are color coded
according to Goss’s weighted mean disease values.
Red color indicates that a line is susceptible and green
color represents resistant lines. Specific groups are
zoomed to indicate trends in Goss’s wilt resistance
distribution. For example, most of the B14-related
lines were susceptible while Mo17-related lines were
relatively resistant. N551 is present in the B14 zoomed
window along with B14A.
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that genes involved in early defense signaling responded to elicitor
flg22 as early as 30 min after treatment (Asai et al. 2002).

Three biological replicates, with one plant representing a replicate,
were included for each line, treatment, and hpi combination, resulting
in a total of 30 samples (Supplementary Table 1). RNA was isolated
using the Qiagen RNeasy mini kit (Qiagen, Valencia, CA, USA) based
on the manufacturer’s protocol, and was purified using the Qiagen
RNA clean-up protocol according to the manufacturer instructions.

Library preparation and sequencing
RNA samples were submitted to theUniversity ofMinnesotaGenomics
Center for library preparation and sequencing. RNA sizing, quantifi-
cation, and purity assessments were done with an Agilent Bioanalyzer
(Agilent, Santa Clara, CA). Standard 36 dual indexed TruSeq RNA
libraries were created. Libraries were sequenced on the Illumina HiSeq
2500 instrument using v4 chemistry (Illumina, Inc., San Diego, CA).
Single end 50 bp reads were generated from the sequencing runs.

Sequence quality control and transcript
abundance estimates
Read quality was determined using FastQC version 0.11.5 (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). High con-
tents of Illumina Universal and TruSeq adapters were detected and
these adapters were removed with CutAdapt version 1.8.1 (Martin
2011). The quality cutoff value was set to 20 and a minimum pro-
cessed read length value of 20 was used in CutAdapt while processing
the reads. After adapter trimming, the reads were aligned to the
B73 v4 reference genome using a splice-site aware aligner TopHat2
version 2.0.13 (Kim et al. 2013) with a minimum intron size (-i) of 5 and
a maximum intron size (-I) of 60000. The B73 v4 genome assembly was
downloaded from Gramene Release 33 (http://www.gramene.org). Read
counting was performed with HTSeq version 0.5.3 (Anders et al. 2015)
with strand specific option (-s) set to no, the feature type (-t) set to gene,
the mode for handling overlapping reads (-m) set to union, and
a minimum alignment quality (-a) of 20.

Gene co-expression network anaylsis
The raw expression matrix of 39,324 genes was filtered to remove
genes with consistently no counts across the samples. The filtered
count matrix was read into the DESeq2 R package and log2(x+1)
transformed (Love et al. 2014). A coefficient of variation (CV)
filter was applied to filter out the genes with consistently low
expression across the samples in which the genes with CV less
than 0.5 were removed. After applying the transformation and
CV filter, the expression matrix with 9,303 genes comprisong
26 samples out of 30 sequenced, was processed with R package
WGCNA to identify gene co-expression modules (Langfelder and Hor-
vath 2008). The blockwiseConsensusModules function from the
WGCNA package was used to identify modules with tree cut height
0.4 and all other options set to default. WGCNA is a systems biology
approach which uses the global gene expression matrix for all the
genes to group the genes that show similar expression pattern to-
gether into co-expression ‘modules’.

Module eigen genes that were representative of the expression
profile of all the genes inside each module were visualized by a heat
map to find trends in expression profiles across the control and
treated samples. The normalized and transformed expressionmatrix
was centered and standardized to calculate the Z-scores and the
expression profile of all the genes inside each module across the
control and treated samples was plotted using parallel coordinate
plots. A gene ontology (GO) analysis was performed using the

AgriGOserver to test if anyof themoduleswere enriched in functions
related to defense (Du et al. 2010).

It was hypothesized that the gene modules responding to in-
oculation with Cmn would explain a disproportionate amount of
variation in WMD as compared to a bootstrapped set of random
genes. GBS SNPs from the GWAS panel that fell inside genes of such
module(s) and those that flanked within one kb (determined based
on genome-wide average LD decay) were used to calculate a GRM,
according to [3], and the proportion of phenotypic variation in
Goss’s wilt resistance explained was calculated using a variance
component approach (Gusev et al. 2014). To establish a baseline
for determining whether the genes implicated by the gene module(s)
explain a disproportionate amount of phenotypic variance, variance
component approach was applied to 1,000 random sets of an equal
number of genes as in the module of interest. It is important to note
that the sampling unit is the gene, and all SNPs inside each sampled
gene were used to calculate the GRM, meaning that the number of
SNPs could vary across gene samples. To compare this approach to
an approach where the number of SNPs was well held constant
rather than genes, 1000 random sets of 83 SNPs were also sampled
and used to generate a null distribution of variation explained using
the variance component approach.

Data availability
Phenotypic data used in this study is available at figshare GSA portal.
FileS1 contains raw phenotypic data collected from555 diversity panel
lines, FileS2 contains Goss’s wilt BLUEs for diversity panel inbred
lines, FileS3 contains subpopulation memberships (population struc-
ture) of 555 diversity panel lines computed using ADMIXTURE,
FileS4 is contains raw phenotypic data for biparental populations,
FileS5 contains Goss’s wilt BLUEs (1005 lines) used in Combined
GWAS model, FileS6 contains membership assignments or popula-
tion structure information used in Combined GWAS model, and
FileS7 contains gene expression data used for WGCNA. Genotypic
data used in this study was obtained from https://www.panzea.org/
genotypes. Data are now available at CyVerse Data Store. CyVerse
data store file path is /iplant/home/shared/panzea/genotypes/GBS/
v27/. Supplemental material available at FigShare: https://doi.org/
10.25387/g3.7884779.

RESULTS

Significant pnenotypic variability for resistance to
Goss’s wilt exists among inbred lines
A diverse panel of 555 maize inbred lines was screened for Goss’s wilt
resistance over two years, forming the largest and most diverse set of
lines screened for resistance to this gram positive bacterial disease to
date. Variation in flowering time was restricted to reduce the confound-
ing effects of flowering time on resistance (see Materials andMethods).
Resistance scores for each plot were taken at multiple time points,
which were then summarized by calculating the “weighted mean
disease” (WMD). A skewed distribution toward resistance was ob-
served (Figure 1a), similar to what was observed in an earlier eval-
uation of bi-parental mapping populations (Singh et al. 2016). Leaf
blight symptoms were common following inoculation, while only a
few plots showed severe wilting. In an analysis of variance on the
diversity panel experiment, inbred line and inbred line-by-year in-
teraction effects were found to be significant (P , 0.05). Broad-
sense heritability on a plot basis was high (H2 = 0.75), indicating
a combination of measurement precision and a large amount of
genetic variation for Goss’s wilt WMD in this panel.
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Genetically similar lines vary in their level of resistance
to Goss’s wilt
After filtering on the basis of SNP quality and minor allele frequency, a
total of 342,237 SNP calls on the diversity panel remained. Linkage
disequilibrium between SNPs was found to rapidly decay to 0.2 within
1000 bp, suggesting a high amount of diversity in the chosen panel.
Principal component analysis and ADMIXTURE analysis (K = 3) using
the SNP dataset revealed subpopulations within the diversity panel
(Supplementary Figure 2). The first principal component (PC1) sepa-
rated lines according to stiff stalk, non-stiff, and popcorn subpopula-
tions. A few sweet corn and tropical lines included in the panel also
clustered among themselves (Supplementary Figure 2a).

A neighbor joining tree of the diversity panel lines was created to
visualize the subpopulations anddistribution ofGoss’swilt resistance by
subpopulation. Color coding of lines by subpopulation clearly indi-
cated that the lines clustered according to subpopulation, as expected
(Figure 1b). No strong pattern in the distribution of lines according to
Goss’s wilt resistance score was observed (Figure 1c) as groups of highly
related lines included both those that were resistant and susceptible.
Although elite popcorn breeding lines are generally highly susceptible
to Goss’s wilt (Rocheford et al. 1985), the popcorn lines screened as part
of this diversity panel ranged from resistant to highly susceptible, in-
dicating a high degree of variation even within popcorn (Figure 1c). It
was found that lines closely related to Mo17 were generally resistant, and
most of the lines related to B14 were moderately to highly susceptible, in
agreement with previous findings (Calub et al. 1974).

Genetic variation in Goss’s wilt resistance is controlled
by many loci of small effect
Association analysis within the diversity panel identified three SNPs on
chromosome 5 that passed a FDR cutoff of 0.10, with two of the SNPs

beingwithin just 17 bp of each other (Table 1, Figure 2a). The amount of
phenotypic variation for Goss’s wilt resistance explained by individual
SNPs within the diversity panel was 3–5% (Table 1). Together the three
significant SNPs explained 8% of the phenotypic variation after account-
ing for population structure. In contrast, the polygenic genetic variance,
modeled by the genomic relationship matrix (GRM) calculated using
all SNPs, explained 64% of the phenotypic variation for Goss’s wilt
resistance within the diversity panel.

We subsequently conducted GWAS using a combined dataset that
included both the diversity panel and three RIL populations. The
phenotypic data for the three RIL populations was the same as that
analyzed by Singh et al. (2016). Ten SNPs were found to be significant
at a FDR of 0.10 in this analysis; these SNPs were on chromosomes 1, 2,
and 5 (Table 1, Figure 2b). Each of the SNPs identified in the combined
dataset explained a small amount of phenotypic variation for Goss’s
wilt resistance, ranging from 1 to 3%. Physical positions of the signif-
icant SNPs found in GWAS of the combined dataset were compared
to the QTL intervals of QTL mapping conducted using only the
bi-parental families with fewer SNPs by Singh et al. (2016). Significant
SNPs in GWAS on chromosome 2 co-localized with QTL peak from
joint-linkage mapping and on chromosome 5 co-localized with QTL
peak of the B73 xHP301 bi-parental population reported by Singh et al.
(2016) (Figure 3). However, certain QTL were not detected, in-
cluding QTL detected in both joint linkage mapping and within
individual families (e.g., chromosome 4, 9, and 10). Other QTL
specific to one bi-parental family were not detected in GWAS as well
(e.g., chromosome 6, and 7).

Identification of candidate genes could contribute to an enhanced
understanding of the biology underlying resistance to Goss’s wilt and
provide a starting point for future gene confirmation studies. A candi-
date gene analysis was performed by extending a window around

n Table 1 Information about significant SNPs associated with Goss’s wilt resistance in the diversity panel and combined dataset

Chrom†

Physical Positon
of SNP (bp)‡ P-valuex q-value¶ R2# SNP effect¥ Candidate Gene£ Gene Function‡‡

Diversity panel
5 46,455,199 7.01 x 1028 0.02 0.05 0.28 GRMZM2G057459 Glutamate receptor
5 210,554,445 4.25 x 1027 0.10 0.03 0.26 GRMZM2G368206 PHD finger domain, Zinc ion binding
5 210,554,466 4.25 x 1027 0.10 — 0.26

Combined dataset (diversity panel and bi-parental families)
1 182,307,976 9.49 x 1027 0.09 0.02 0.23 NA
1 182,307,992 2.34 x 1026 0.08 0.02 0.22 NA
1 187,675,076 1.59 x 1026 0.09 0.01 0.20 GRMZM2G132704 Nucleotide/RNA binding

GRMZM2G132607 Ribokinase activity
GRMZM2G132623 Constituent of ribosome

2 198,101,869 1.72 x 1026 0.09 0.01 0.20 GRMZM2G048582 Response to Nitrogen
GRMZM2G048551 Zinc ion binding
GRMZM2G512469 Unknown

2 198,101,827 3.18 x 1026 0.09 0.01 0.20
2 198,101,829 3.18 x 1026 0.09 — 0.20
2 198,101,830 3.18 x 1026 0.09 — 0.20
2 200,227,875 1.86 x 1026 0.09 0.01 0.21
5 210,554,445 1.07 x 1026 0.09 0.03 0.19 GRMZM2G368206 Protein binding, zinc ion binding
5 210,554,466 1.07 x 1026 0.09 — 0.19

† Chromosome.
‡ Physical position of the SNPs in base pairs.
x P-value of the SNPs associated with Goss’s wilt from GWAS.
¶ False discovery rate or q-value of the SNPs, calculated from p-value.
# Variance explained by each SNP (R2)
¥ Additive effect of the SNP from GWAS.
£ Potential candidate genes in the region of significant SNPs.
‡‡ Annotated function of the potential candidate gene.
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a given significant SNP until the average LD decayed to 0.20 on both
sides of the significant SNP. If the defined window around the signif-
icant SNPs overlapped with the position of a gene, the gene was de-
clared as a potential candidate. Several protein coding genes were
identified within these windows with notable functions such as nucleic
acid binding, zinc ion binding, electron transport, and a glutamate
receptor protein (Table 1). In each of the regions with significant SNPs,
the number of candidate genes ranged from zero to three (Table 1). One
candidate gene on chromosome 5 was found to have a function directly
related to plant defense. This gene codes for glutamate receptor protein
and is a member of the glutamate receptor-like gene family (GRLs) that
has been reported to play a role in plant defense response (Forde and
Roberts 2014). Other candidate genes did not have an apparent direct
role in defense to pathogens (Table 1).

Haplotype block analysis of Goss’s wilt resistance QTL
A haplotype block analysis was conducted on each genomic region
harboring significant SNPs to assess local LD decay rate and distri-
bution of haplotype alleles among subpopulations. The haplotype
blocks at the chromosome 1 and 5 regions were smaller in size due to
low LD in these regions, while chromosome 2 had larger haplotype
blocks (Supplementary Figure 3). Four of the five significant SNPs on
chromosome 2 were located in block 1 (5 kb), while the fifth SNP
(1,977,875 bp away) was excluded from the haplotype block analysis

in this region (Supplementary Figure 3b). The chromosome 2 region
was investigated further to look at the haplotype allele frequency in the
diversity panel as a whole as well as within individual subpopulations.
Multiple alleles were observed at each haplotype block within the
region of interest on chromosome 2. The allelic effects were small, as
theWMDof the lines carrying each of the haplotype allele ranged from
2.3 to 3.0 (Table 2). Allele A1 had the lowest mean Goss’s wilt WMD,
and it was the most common allele in all subpopulations except for
popcorn in which it had a frequency of only 0.02. Allele A2 had a higher
Goss’s wiltWMDand a high frequency among the popcorn lines (93.8%
of lines). The allele with the highest Goss’s wilt WMD, A3, had a rela-
tively high frequency in the stiff stalk (29% of lines) and non-stiff stalk
(20% of lines) subpopulations compared to the popcorn subpopulation
(4.2% of lines), indicating there may be an allele carried by many stiff
stalk and non-stiff stalk inbred lines that confers higher susceptibility
than the allele common in the popcorn subpopulation (Table 2).

A module of co-expressed genes showed
responsiveness to inoculations with CMN
In addition to allelic variation, expression variation can contribute
significantly to trait variation. To identify genes with expression vari-
ation thatmay be contributing to resistance toGoss’s wilt, a time course
RNA sequencing experiment of a relatively resistant inbred line
(N551) and susceptible inbred line (B14A) under control and infected

Figure 2 Manhattan plots showing results from
genome-wide association mapping. (a) GWAS re-
sults on the diversity panel (N =555) displayed in
a Manhattan plot where the y-axis is the negative
log10 of p-values for the SNPs from model [2]. Asso-
ciations that passed the false-discovery rate of
0.10 are colored green; (b) genome-wide association
mapping results on the combined dataset (N =1005)
displayed in a Manhattan plot where the y-axis is
the -log10(P) for the SNPs from model [2]. Associa-
tions that passed the false-discovery rate of 0.10
are colored green.
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conditions was performed. These lines were chosen for this experiment
because they showed different levels of resistance to Goss’s wilt, and
they are highly related to one another, reducing confounding genetic
background effects (Figures 1b and 1c). Weighted gene co-expression
network analysis identified eight modules of co-expressed genes in the
time course experiment. The number of genes included in eachmodule
ranged from 30 in module eight to 1,557 in module 1, with 7,373 genes
not clustering with any other genes. A heatmap of the eigen genes of the
modules provides a high-level overview of each module, allowing iden-
tification of trends in gene expression changes of possible biological
importance. We did not find any modules showing changes in gene
expression in response to infection that were specific to a genotype
(Figure 4a). However, module two showed changes in gene expression
in both lines in response to Cmn (Figure 4a). In both N551 and B14A,
the 141 genes that clustered into module two showed a decrease in
expression at eight hpi, and an even further decrease in expression at
15 hpi (Figure 4a). Further evaluation of genes inside the second mod-
ule from parallel coordinate plots revealed that most genes were down-
regulated in B14A and N551 at eight and 15 hpi with Cmn (Figure 4b).
Module one was genotype specific module and rest of the modules
appear to indicate variation at the sample level.

A gene ontology (GO) enrichment analysis revealed that the genes of
the secondmodule were not enriched for defense functions.Most of the
significant Biological Process related GO terms pointed toward regu-
lation of metabolism (Supplementary Table 2). Checking the functional
annotations of genes inside the secondmodule revealed several protein
coding genes including protease inhibitor, wound induced proteins,
Thiazole biosynthetic enzyme, aquaporin, DRE-binding protein, etc.
(Supplementary Table 3).

We wanted to test whether SNPs within and flanking (up to one kb
on either side) the genes in module two explained a disproportionate
amount of the variance inGoss’swilt resistance observed in the diversity
panel to help determine if these genes are important contributors to
genetic variance for quantitative disease resistance. The physical posi-
tions of the SNPs used in the GWAS were aligned with the physical
positions of the genes that clustered into module two. Twenty genes in
module two had at least one SNP within or flanking them, with the
remaining 121 genes having no SNPs within or flanking them. The total
number of SNPs found was 83. These 83 SNPs were used to calculate a
GRM, which was then fit into a linear mixed model to estimate the
variance in WMD explained by these SNPs (Yang et al. 2010; Gusev
et al. 2014). The SNPs of module two explained 13.3% of the pheno-
typic variation for WMD, which is higher than the total percent vari-
ation explained by the significant GWAS SNPs. To determine if the
variance explained by the SNPs of genes included in module two was
greater than expected by a random set of genes, additional GRMs were
calculated using SNPs inside and flanking 1,000 random samples of
20 genes. The number of SNPs in the 1,000 random samples ranged
from 0 to 199 with a mean of 39 SNPs. The percent variation explained
by the SNPs among the 1,000 random gene samples ranged from 0.0
to 64.8%. Only 8.6% of the 1,000 random samples explained more
variation than the module two SNPs (Figure 4c), providing suggestive,
but not strong nor statistically significant evidence for a role of these
genes in Goss’s wilt resistance at the field level. A similar analysis was
performedwhere 1000 random sets of SNPs were sampled in which the
number of SNPs inside and flanking genes (83) was held constant
rather than the number of genes. The variation explained by these
1000 sets of SNPs ranged from 5 to 20%, with 9.4% of the random

Figure 3 Comparison of physical positions of QTL detected in bi-parental linkage mapping and GWAS. Bi-parental linkage mapping was
conducted by Singh et al. (2016), and significant SNPs from GWAS in the combined dataset co-located on chromosomes 1, 2, and 5. The x-axis of
each plot represents the physical position of each SNP, and the y-axis displays the negative log10 of p-values for each SNP included in the GWAS.
Gray colored solid points represent all SNPs used in GWAS. Significant SNPs in the GWAS are indicated by green dots, and 2-LOD support
interval of QTL detected by Singh et al. (2016) are shown by the red or blue windows.
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samples explaining more variation than the 83 SNPs implicated by the
gene expression analysis. These results led to the same conclusion as the
results obtained where the gene was considered as the sampling unit.

DISCUSSION
Genome-wide associationmapping,madepossibleby thewidest screen-
ing of Goss’s wilt resistance reported to-date, and gene co-expression
network analysis were used to increase our knowledge of the genetic
basis of resistance to Goss’s wilt of maize. Goss’s wilt is an important
disease of maize that has not been studied extensively using modern
technologies of molecular genetics as compared to other maize diseases
such as NCLB, SCLB, and gray leaf spot (Kump et al. 2011; Poland et al.
2011; Benson et al. 2015), only three published studies have used mo-
lecular markers to study the genetic basis of Goss’s wilt resistance
(Schaefer and Bernardo 2013; Singh et al. 2016; Cooper et al. 2018).
Both GWAS and gene co-expression network analysis approaches
pointed toward a complex nature of resistance to Goss’s wilt, which
is in agreement with the complex nature of plant signaling and defense
processes as studied using model organisms (Jones and Dangl 2006;
Bonardi and Dangl 2012) and hypothesized to be the case for Goss’s
wilt based on initial genetic studies (Martin et al. 1975; Rocheford et al.
1989; Treat et al. 1990).

A great degree of variation for Goss’s wilt resistance was found
within subpopulations, with relatively little variation between subpop-
ulations in most cases. Our expectation was that inbred lines within
certain subpopulations would be more resistant on average as com-
pared to inbred lines from other subpopulations. This was, however,
not observed in this study as resistant and susceptible lines were dis-
tributed among all the groups (Figure 1c). The popcorn subpopulation
was more susceptible overall, but relatively resistant popcorn inbred
lines were still found. Lines related to inbred line B14 tended to be
susceptible whereas the lines related to Mo17 were found to be gener-
ally resistant, as has been reported in previous studies (Schuster et al.
1972; Calub et al. 1974).

The GWAS and calculated proportion of variance explained by all
genotyped SNPs points toward a highly polygenic genetic architecture
underlyingGoss’s wilt resistance. Similar to our previous QTLmapping
study (Singh et al. 2016), each of the significant SNPs associated with
Goss’s wilt resistance in the GWAS explained a small amount of the
phenotypic variation. For other important leaf diseases of maize in-
cluding southern corn leaf blight, northern corn leaf blight, and gray
leaf spot several small effect SNPs have been associated with resistance
(Kump et al. 2011; Poland et al. 2011; Benson et al. 2015). Thirty-two
QTLwith small additive effects that together explained 80% and 93% of
the phenotypic and genotypic variation, respectively, for southern corn
leaf blight were reported in a GWAS of maize NAMpopulation (Kump
et al. 2011). Similarly, 29 QTL were identified for northern corn leaf
blight in the NAM population that explained 77% and 96% of the
phenotypic and genetic variance, respectively, for northern corn leaf
blight, with each QTL being of small effect (Poland et al. 2011). The
studies using the NAM population explained greater total phenotypic
variation because of the nested linkage mapping design of the NAM
population combined with a much larger population size. Nevertheless,
the polygenic variance accounted for 64% of the phenotypic variation
for Goss’s wilt resistance in the diversity panel and thus a genomic
selection approach may be more effective in breeding for Goss’s wilt
resistance compared to selecting for individual QTL. A similar conclu-
sion was reported in a Fusarium ear rot study in maize in which the
GRM explained nearly 50% of the variation for Fusarium ear rot and
only 1.3–3% of the variation was explained by individual significant
SNPs (Zila et al. 2013).

Combined GWAS (diversity panel and bi-parental populations
together) increased the power of GWAS and more genomic regions
were associated withGoss’s wilt resistance as compared toGWASof the
diversity panel only. However, there were some QTL regions that were
detected in joint-linkage and linkage mapping of individual bi-parental
populations conducted by Singh et al. (2016) that were not detected by
combined GWAS. One possible cause of not detecting certain QTL in

n Table 2 Haplotype allele frequency in the diversity panel as a whole, and within individual subpopulations (stiff stalk, non-stiff stalk,
popcorn, and unclassified). Haplotype blocks 1-4 are those at the chromosome 2 QTL region detected in the combined analysis of the
diversity panel and RILs as shown in supplementary figure 2. Mean weighted mean disease (WMD) of the lines carrying each haplotype
allele are presented

Block† Haplotype Allele‡ Allele No.x
Haplotype Allele Frequency¶

Mean WMD¥Panel Stiff Non-stiff Popcorn Unclassified

BLOCK1 (5 kb) ATGG A1 0.65 0.66 0.80 0.02 0.72 2.38
AGGT A2 0.17 0.05 0.01 0.94 0.10 2.73
CGAG A3 0.18 0.29 0.20 0.04 0.18 2.89

BLOCK2 (79 kb) CCTCAGAAACCACGGCGGA B1 0.38 0.47 0.44 0.00 0.47 2.35
TTCTGGGATATAAAGCCTA B2 0.09 0.01 0.01 0.47 0.07 2.85
TTCTGAGATCCGCGCCGTA B3 0.16 0.28 0.18 0.04 0.17 2.92
CCTCAGATACCACGGCGTC B4 0.11 0.06 0.22 0.00 0.14 2.47
CCTCAGATACCACGGTGTC B5 0.10 0.12 0.16 0.00 0.10 2.28
TTTCGGGATCCGCGGCGTA B6 0.08 0.05 0.00 0.49 0.06 2.57

BLOCK3 (53 kb) GCC C1 0.46 0.51 0.30 0.48 0.50 2.44
ACC C2 0.18 0.28 0.18 0.04 0.17 2.97
GTT C3 0.36 0.21 0.52 0.48 0.33 2.44

BLOCK4 (13 kb) CGGACG D1 0.57 0.81 0.53 0.04 0.63 2.53
TATACG D2 0.11 0.08 0.14 0.11 0.10 2.64
TATACC D3 0.23 0.04 0.31 0.37 0.22 2.56
TATGGG D4 0.10 0.07 0.03 0.48 0.05 2.50

† Haplotype block defined using four gamete rule implemented in software Haploview.
‡ An allele of a multiallelic haplotype.
x Designation for multiple alleles of a haplotype.
¶ Frequency of each allele of a haplotype in the whole panel, stiff stalk, non-stiff stalk, popcorn, and unclassified sub-populations of the diversity panel.
¥ Mean WMD of the lines carrying each haplotype alleles.
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combined GWAS approach could be different predominant linkage
phases between SNPs and causal polymorphisms between bi-parental
populations and the diversity panel, possibly causing effects to be can-
celled out. Also, because the number of markers was much larger for
GWAS, the higher statistical threshold of GWAS needed to keep the
experiment-wise false positive error rate in check likely resulted in
failure to declare significance for smaller effect QTL.

In addition to the variation at the allelic level, differential regulation
of genes in response to pathogen may contribute to the phenotypic
variation. Furthermore, the number of host genes regulated by disease
resistance is a basic systems biology question that has been explored
multiple timeswithdifferentplantpathosystems. Inagene-co-expression
network analysis of response of Citrus to bacterium Candidatus lib-
eribacter spp., 3,507 genes were suggested to play a role in defense

Figure 4 Expression patterns of
eight modules identified using
weighted gene co-expression net-
work analysis (WGCNA) across
different samples. (a) Heatmap
of eigen genes of eight modules.
An eigen gene is representative
of the gene expression pattern
of genes inside that module.
Labels of the columns are in-
bred line_treatment_hours_rep;
(b) Normalized expression of
genes insidemodule two obtained
from WGCNA across all the
samples. This module showed
changes in gene expression in
both susceptible line B14A as
well as resistant line N551 in
response to Cmn; (c) Distribution
of phenotypic variance explained
by SNPs inside and flanking the
1,000 random samples of genes.
As a comparison, phenotypic
variation explained by SNPs in-
side and flanking the genes of
module two is depicted by red
vertical dashed line.
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(Zheng and Zhao 2013). Similarly, gene co-expression network anal-
ysis of genes regulated by immune and hypersensitive resistance re-
sponses to Blumeria graminis f. sp tritici in diploid wheat Triticum
urartu indicated that 3,900 and 4,100 genes may be involved in the
above two types of resistance responses, respectively (Zhang et al.
2016). In the present study, we identified one module that corre-
sponded to response of maize inbred lines to Cmn were identified
consisting of 141 co-related genes. Most of the genes in this module
showed decreased expression in susceptible and resistant inbred lines
at at 8 and 15 hpi. This result corroborates with previous findings
from molecular and co-expression network studies showing that
plant immunity can be controlled by negative regulation of a certain
set of genes (Sato et al. 2010; Segonzac et al. 2014). Particularly, specific
subunits of protein Ser/Thr phosphatases have been involved in neg-
ative regulation of defense signaling at different steps (Segonzac et al.
2014). Negative regulation of certain genes within a plant immune
system are required for effective functioning by preventing over ac-
tivation of the immune system which may cause auto immune re-
sponses such as cell death, thus reducing plant fitness (Sato et al.
2010).

A search for overlap between genes implicated by theWGCNA and
variation explained in Goss’s resistance at the field level was performed
to determine the extent to which genes in module two are important to
variation in resistance among inbred lines. None of the eight candidate
genes identified in the GWAS analysis overlapped with the genes inside
of module two. Several reasons could explain this lack of strong corre-
spondence between GWAS and WGCNA. The power of the GWAS
was low such that it could not be expected to detect all the phenotypic
variation due to possible low frequencies of the causal alleles and rapid
LD decay in this panel. Second, failure of WGCNA implicated genes to
explain more variation in Goss’s wilt resistance than random samples
of genes could be because the variation in gene expression of these
genes is not related to polymorphisms within the genes, but rather to
polymorphisms in cis- or trans-acting transcription factors. Third, it is
possible that the gene expression differences between the two chosen
inbred lines, B14A and N551, are not representative of the gene
expression patterns in the diversity panel as a whole. Fourthly, the
genes contributing to quantitative disease resistance in the field,
15 days or more after inoculation may not be the same, or have
little overlap with, genes responding to infection within hours dur-
ing the seedling stages. Finally, while a mixture of five isolates was
used for field inoculations of the GWAS, only one isolate was used to
inoculate B14A and N551 in the lab.

Using a variance component approach, we found that the genes
implicated in theWGCNAdidnot explainadisproportionateamountof
the variance in Goss’s wilt resistance in the diversity panel using a
significance level of P, 0.05. However, only 8% of 1,000 random genes
samples explained more phenotypic variance than those genes impli-
cated by the WGCNA, suggesting a possible role of these genes. More
research is needed to precisely determine the role of these genes in
quantitative Goss’s resistance at the field level. More generally, these
results suggest a possible useful role for combining WGCNA with
quantitative genetic analyses to determine genes underlying variation
for complex disease resistance traits in crops. More research to refine
these methods to attain this overall goal is warranted.

Goss’s wilt and leaf blight of maize is an economically important
disease, yet very few studies have been performed with the aim of
elucidating the genetic basis of host resistance using modern genomic
and transcriptomic techniques. This study explored an extensive
amount of genetic variation for Goss’s wilt resistance and identified
SNPs associated with resistance using a GWAS approach. The amount

of variation attributed to the background polygenic effect through
a genomic relationship matrix was eightfold higher than that explained
by statistically significant QTL alone. These results suggest the genetic
architecture of this disease is highly polygenic, which is consistent with
the findings of our previous linkage mapping study and those using
classical mating designs. Several biological processes may be involved in
quantitative resistance to Goss’s wilt which were revealed by GO anal-
ysis and functional annotations of module two genes. Results from this
study provide important information about the number of QTL, effect
size of QTL, and the candidate genes underlying Goss’s wilt resistance,
and provides a critical step toward further elucidating the geneticmech-
anisms of Goss’s wilt resistance. Due to the presence of several small
effect QTL that together contribute to resistance to Goss’s wilt, a
single QTL likely cannot be targeted for incorporating resistance
into maize germplasm through marker-assisted selection. Rather, a ge-
nome-wide selection approach for population improvement maybe
a better strategy for imparting resistance to Goss’s wilt into maize
breeding programs.
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