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ABSTRACT

Analysis of bisulfite sequencing data usually
requires two tasks: to call methylated cytosines
(mCs) in a sample, and to detect differentially
methylated regions (DMRs) between paired
samples. Although numerous tools have been
proposed for mC calling, methods for DMR detec-
tion have been largely limited. Here, we present
Bisulfighter, a new software package for detecting
mCs and DMRs from bisulfite sequencing data.
Bisulfighter combines the LAST alignment tool for
mC calling, and a novel framework for DMR detec-
tion based on hidden Markov models (HMMs).
Unlike previous attempts that depend on empirical
parameters, Bisulfighter can use the expectation-
maximization algorithm for HMMs to adjust param-
eters for each data set. We conduct extensive
experiments in which accuracy of mC calling and
DMR detection is evaluated on simulated data with
various mC contexts, read qualities, sequencing
depths and DMR lengths, as well as on real data
from a wide range of biological processes. We dem-
onstrate that Bisulfighter consistently achieves
better accuracy than other published tools,
providing greater sensitivity for mCs with fewer
false positives, more precise estimates of mC
levels, more exact locations of DMRs and better
agreement of DMRs with gene expression and
DNase I hypersensitivity. The source code is avail-
able at http://epigenome.cbrc.jp/bisulfighter.

INTRODUCTION

Cytosine methylation is an epigenetic modification that
affects a wide range of biological processes such as gene

expression, cell differentiation and carcinogenesis (1).
Traditionally, methylation measurements have been
focused on CpG dinucleotides in preselected sites
(e.g. CpG islands). More recently, genome-wide profiling
of methylation patterns including non-CpG contexts has
been enabled by bisulfite sequencing, where unmethylated
cytosines are converted and sequenced as thymines (2).
Analysis of bisulfite sequencing data usually requires

two tasks: to call methylated cytosines (mCs) in a
sample, and to detect differentially methylated regions
(DMRs) between paired samples. The former involves
alignment of bisulfite-converted reads to a reference
genome, and estimation of the mC level (the ratio of
mCs in a cell population) at each cytosine. The latter
involves comparison of alignment results between paired
samples, and grouping of differentially methylated cyto-
sines (DMCs) at neighbor positions as a contiguous
DMR. To date, numerous tools have been proposed
for mC calling (3), whereas methods for DMR detection
have been largely limited. In fact, it is only recently that
BSmooth (4) has been reported as the first software
package applicable to both mC calling and DMR
detection.
Previous studies have attempted DMR detection by

determining individual DMCs with statistical tests, and
then chaining DMCs within a user-specified distance
(4,5). However, such strategies depend on the choice of
distance parameters, hindering automated analysis and
possibly leading to biased conclusions. Moreover, fixed-
length chaining criteria may be problematic for detecting
DMRs whose lengths range from hundreds of base pairs
as in small CpG islands, to millions of base pairs as in
cancer aberrations (6).
BSmooth has been designed to deal with biological vari-

ability inferred from biological replicates (4). Although
this strategy is expected to improve DMR detection,
BSmooth always requires biological replicates, and
thus cannot be applied to data sets without biological
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replicate information. Because current protocols for
bisulfite sequencing are costly, it is prohibitively expensive
to obtain sufficient biological replicates for both of two
conditions to be compared. Even when many biological
replicates are obtained in tissue preparation, some of them
are often combined into one sample before library gener-
ation for sequencing experiments (5–8). This makes it
impossible to establish the one-to-one correspondence
between biological replicates and database entries
[e.g. the SRX identifiers in the Sequence Read Archive
(SRA)]. Additionally, there are cases where biological rep-
licates are in principle difficult to obtain, such as retro-
spective studies using archival samples (9).
Another problem in previous studies has been the lack

of experiments to benchmark mC calling and DMR de-
tection in a systematic manner. For example, performance
of existing methods has not been extensively evaluated for
various mC contexts, read qualities, sequencing depths
and DMR lengths. Furthermore, it is common that
some methods are not included as competitors even
though their implementations are publicly available.
Here, we present Bisulfighter, a new software package

for analyzing bisulfite sequencing data. Bisulfighter uses
LAST (10) for alignment procedures in mC calling, and a
novel framework for DMR detection based on hidden
Markov models (HMMs) that enable automated adjust-
ment of DMC chaining criteria. Bisulfighter does not
require biological replicates for DMR detection, and
thus maintains applicability to data sets without biological
replicate information. We conduct extensive experiments
on simulated data as well as on real data, and demonstrate
that Bisulfighter consistently achieves better accuracy than
other published tools.

MATERIALS AND METHODS

Overview of Bisulfighter

Bisulfighter consists of the two modules that perform mC
calling and DMR detection, respectively. The mC calling
module in Bisulfighter aligns bisulfite-converted reads
using LAST. Unlike most existing aligners, LAST can
assess probability (or reliability) of each aligned read by
taking into account information of read quality and
multilocus mapping (11). We use these probabilities for
filtering out unreliable alignments, and for weighting mC
level estimates (Figure 1a). The DMR detection module in
Bisulfighter uses a novel framework named ‘ComMet’
(a shortening of ‘comparative methylomics’), which is
based on HMMs that capture probability distributions
of distances among neighbor DMCs (Figure 1b). Unlike
previous attempts that depend on empirical distance
parameters, Bisulfighter can use the expectation-
maximization algorithm for HMMs to adjust DMC
chaining criteria automatically for each data set.
Bisulfighter pools all biological replicates from one con-

dition as one sample, and detects DMRs between two
conditions by comparing a pair of two samples. Even if
biological replicates are not available (i.e. only one meas-
urement is available) from one condition, a sample can
still be prepared from that measurement. Therefore,

Bisulfighter is applicable to data sets without biological
replicate information. Bisulfighter can address either
single- or paired-end reads, produced from either whole-
genome bisulfite sequencing (WGBS) or reduced represen-
tation bisulfite sequencing (RRBS).

mC calling

For the read mapping procedure in Bisulfighter, we use a
local alignment program, LAST, as Frith et al. (10) have
recently reported that LAST maps bisulfite-converted
reads more accurately in shorter computation time
compared with other alignment programs. However,
they have focused only on binary classification of mCs,
and have not addressed estimation of mC levels (10)
(See the ‘Accuracy measure for mC calling’ section for

Figure 1. Overview of Bisulfighter. (a) mC calling. Bisulfite-converted
reads are aligned to a reference genome, and the mC level is estimated
as a ratio of C–C matches. A major feature is the utilization of align-
ment probability for filtering out unreliable alignments, and for
weighting mC level estimates. (b) DMR detection. Neighbor cytosines
differentially methylated between paired samples are grouped as a
DMR (UP or DOWN). A novel HMM-based framework enables auto-
matic learning of chaining criteria, and detection of DMRs using like-
lihood ratio scores. Colors in the state transition track correspond to
those in the state transition diagram at the top. NoCh: no change of
methylation between paired samples.
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the definitions of these two problem settings). Therefore,
in this study, we aim to advance Frith et al. (10) by
proposing a new LAST-based method applicable to esti-
mation of mC levels. After mapping reads followed by
removing unreliable alignments with probability <0.9,
we estimate the mC level for each cytosine by dividing
the count of C–C matches (supporting mCs) by the
count of all reads mapped at the same position.

LAST has several program options that might improve
accuracy of mC calling. First, to equalize the sensitivity
between C–C matches (mCs) and C–T mismatches
(unmethylated cytosines), all Cs in reads might be virtually
treated as Ts during alignment procedures. Second, in
estimation of mC levels, the count of C–C matches
might be weighted by alignment probability and/or read
quality. To determine the default setting for Bisulfighter,
we compared eight combinations of options: with or
without equal treatment of Cs and Ts, with or without
weighting by alignment probability and with or without
weighting by read quality. We found that equal treatment
of Cs and Ts improved accuracy, while the weighing
schemes did not substantially contribute to accuracy
(Supplementary Figure S1). Considering these results, we
determined the method with the all options turned on as
the Bisulfighter’s default setting.

DMR detection

For the DMR detection module in Bisulfighter, we
designed ComMet, an HMM-based framework that
captures distance distributions among neighbor DMCs.
The motivation for using HMMs came from our observa-
tions of several real data sets (6–9,12–17) covering a wide
range of biological processes and sequencing protocols
summarized in Supplementary Table S1b. For most of
the data sets, DMCs showed distance distributions
distinct from the other cytosines whose methylation was
not changed (Supplementary Figures S2a–j). Moreover,
the differences between distance distributions were statis-
tically significant (P < 1� 10�15), even for the data set
where the differences were not apparent from visual in-
spection (Supplementary Figure S2k). We therefore took
advantage of these distributions to adjust DMC chaining
criteria.

ComMet has pairs of states for CpG positions and their
interval positions (named ‘gap’), each of which has three
types for the directions of differential methylation:
hypermethylation (UP), hypomethylation (DOWN) and
no change (NoCh). Supplementary Figure S3 shows the
state transition diagram. Transition probabilities among
UP, DOWN and NoCh states represent distinct distance
distributions among DMCs. We implemented two
variants of HMM architectures: the naive model and the
dual model. The naive model has only one gap state,
approximating a distance distribution by a single geomet-
ric distribution (Supplementary Figure S3a, also shown in
Figure 1b). On the other hand, the dual model uses two
gap states per direction, and thus can capture a complex
distance distribution by a two-component geometric
mixture (Supplementary Figure S3b). It is well known
that there are at least two types of DMRs with high and

low CpG densities, and they are expected to be modeled
by two components in a geometric mixture, respectively.
Emission probabilities at CpG states represent how

likely each CpG is differentially methylated or not.
Given the alignment results of bisulfite-converted reads,
we can observe at each CpG position the count of reads
supporting mCs in each of two samples. If a CpG is dif-
ferentially methylated, the counts can be considered to be
taken from separate probability distributions that reflect
the difference in mC levels between two samples. On the
other hand, if CpG methylation is not changed, the counts
should be the consequence of the common mC level.
Therefore, we designed emission functions for CpG
states as follows:

eUt ¼ Binðm1tjn1t,�
U
1tÞBinðm2tjn2t,�

U
2tÞ,

eDt ¼ Binðm1tjn1t,�
D
1tÞBinðm2tjn2t,�

D
2tÞ,

eNt ¼ Binðm1tjn1t,�
N
0tÞBinðm2tjn2t,�

N
0tÞ,

where Bin() is a binomial distribution, and mst and nst
(s=1,2) are the count of reads supporting mCs and the
count of all aligned reads at the t-th CpG position in the
s-th sample, respectively. � is the occurrence probability
of mC-supporting reads, which is computed by the
maximum a posteriori estimation with pseudocount regu-
larization (18):

�U1t ¼ ðm1t+�Þ=ðn1t+�Þ,

�U2t ¼ m2t=ðn2t+�Þ,

�D1t ¼ m1t=ðn1t+�Þ,

�D2t ¼ ðm2t+�Þ=ðn2t+�Þ,

�N0t ¼ ðm1t+m2tÞ=ðn1t+n2tÞ,

where � is the strength of regularization (fixed as a=8
throughout this study). For gap states, we currently use no
emission function.
ComMet enables us to use well-established learning al-

gorithms for optimizing parameters in HMMs. ComMet
first computes �, and fixes emission probabilities.
Then, transition probabilities are trained by the standard
expectation-maximization algorithm (18). As observed in
Supplementary Figure S2, distance distributions among
DMCs are highly data-dependent, possibly reflecting
underlying epigenetic modifiers for differential methyla-
tion. Additionally, sequencing protocols may impact
distance distributions; we observed some features of
distance distributions possibly specific to RRBS
(Supplementary Figure S2ij). Therefore, we execute the
learning procedure for each data set to be analyzed,
rather than seeking a general training data set.
After parameter learning, ComMet detects DMRs

based on log-likelihood ratio scores. The score for detect-
ing a certain region as a DMR directed to dir (=UP or
DOWN) is defined as follows:

Score ¼ log
Pðregion,dirÞ

Pðregion,NoChÞ
,
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where Pðregion,dirÞ and Pðregion,NoChÞ are probabilities
of the region with the corresponding state transitions in
HMMs. The region that maximizes this score can be
computed by a simple dynamic programming (DP) algo-
rithm. It should be noted that, in the DP algorithm,
DMRs are extended by chaining CpGs, as long as their
scores increase, even if the gains are fairly small.
Therefore, small differences in distance distributions
(Supplementary Figure S2) can still have a significant con-
tribution to DMR detection, especially for determining
boundaries of DMRs. As will be shown in the ‘Results’
section, this strategy successfully detects DMRs that re-
ciprocally overlap with various lengths of true DMRs.
ComMet controls the number of output DMRs by itera-
tive procedures in which the portion of DP tables for
previous DMRs is masked, and the next maximum-
scoring region is detected from the remaining portion of
DP tables.
In some cases, analysis may be focused on individual

DMCs rather than chained DMRs. For this purpose,
ComMet also assesses posterior probabilities that each
CpG is directed to UP, DOWN or NoCh by the
standard forward-backward algorithm (18).

Benchmark

Summary
To evaluate accuracy of mC calling and DMR detection
extensively, we used both simulated and real data sets as
summarized in Supplementary Table S1. In the bench-
mark for mC calling, we simulated bisulfite-converted
reads with various mC contexts, read qualities and
sequencing depths, and evaluated accuracy of detected
mCs using the information of true mCs. In the benchmark
for DMR detection, we used simulated data with various
DMR lengths and sequencing depths, and evaluated
accuracy of detected DMRs for their overlap with true
DMRs. Furthermore, we applied Bisulfighter to real
data sets, and evaluated agreement of detected DMRs
with gene expression, and DNase I hypersensitivity.
These data sets were collected from a wide range of bio-
logical processes including pathogenesis and normal devel-
opment, and consist of both single- and paired-end reads
with various lengths (Supplementary Table S1b). We note
that there are no gold standards (i.e. true biological mCs
and DMRs) to benchmark mC calling and DMR detec-
tion, which is a limitation common to this and all previous
studies. We attempt to address this problem to the extent
possible by using multilateral evaluation based on a series
of simulated and real data sets.

Simulation of bisulfite-converted reads
To generate bisulfite-converted reads for benchmark data,
we used the human chromosome X (chrX) as a reference.
Using DNemulator (10), we randomly assigned an mC
level to each cytosine in the chrX with respect to its
context (CpG, CHG or CGG where H stands for non-G
nucleotide). We also assigned polymorphisms (substitu-
tions and indels) in the chrX by referring to real allele
frequencies obtained from ‘snp132Common.txt’ in the
UCSC Genome Browser (http://genome.ucsc.edu/). We

then randomly extracted sequence fragments from the
chrX with unmethylated cytosines converted to
thymines. To evaluate the effects of sequencing depth,
we varied the number of generated reads to 1 million
(M), 3M, 5M, 7M, 10M, 20M and 50M. We also varied
read quality by simulating quality values in ‘SRR019072’
(Data set A; low quality) and ‘SRR094461’ (Data set B;
high quality), which are files for bisulfite sequencing with
Illumina platforms obtained from the SRA (http://www.
ncbi.nlm.nih.gov/sra). These reads were single-end, 85 or
87 bp in length, and generated by a WGBS-like procedure
(Supplementary Table S1a). In total, we prepared 42 data
sets to benchmark mC calling (three mC contexts, seven
sequencing depths and two read qualities).

Accuracy measure for mC calling
We evaluated accuracy of mC calling in two problem
settings: binary classification of mCs, and estimation of
mC levels. In binary classification, cytosines with
non-zero mC levels were positives, while unmethylated
cytosines were negatives. We evaluated the true-positive
rate (TPR) and the false discovery rate (FDR) defined as
TPR ¼ TP=ðTP+FNÞ and FDR ¼ FP=ðTP+FPÞ, where
TP, FN and FP are the numbers of true positives, false
negatives and false positives, respectively. Accuracy was
considered to be good if a high TPR was obtained at a
small FDR. In estimation of mC levels, we evaluated
errors between estimated mC levels and simulated true
values. Accuracy was considered to be good if the distri-
bution of errors was concentrated at zero.

Simulation of DMRs
DMRs were simulated by preparing a pair of data sets,
each of which has different assignments of mC levels for
generating bisulfite-converted reads. We first generated
reads using the chrX and DNemulator as mentioned in
the above section. Then, we defined a certain genomic
region as a DMR, and coordinately changed mC levels
of all CpGs in the region to the maximum (UP) or the
minimum (DOWN). After locating 200 DMRs for UP
and DOWN, we again generated reads from changed as-
signments of mC levels, and made a pair of data sets before
and after the change. To evaluate performance on various
DMR lengths, we produced four versions: 50bp, 500bp,
5 kb and 50kb. (Note that actual lengths were not exactly
the same as these values, as we required the ends of a DMR
to be closed by CpGs.) To investigate the negative influence
of the smoothness assumption, we prepared another type
of DMRs with independence of neighbor positions.
Specifically, we changed mC levels of 10% of all CpGs
independently to random directions (UP or DOWN).
DMRs were defined as regions where neighbor CpGs
were occasionally changed to the same direction. This pro-
cedure produced DMRs with the median length of 58bp.
For both types of DMRs, we generated reads with quality
values in ‘SRR094461’, and sequencing depth was varied
from 1M to 50M as in the above section.

Accuracy measure for DMR detection
We evaluated accuracy of DMR detection by the number
of true positives among the top 100 detected DMRs.
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A true positive was defined as a true DMR that recipro-
cally overlapped with a detected DMR in a certain pro-
portion of their lengths. For example, a true positive with
50% reciprocal overlap was counted only if the length of
the overlapping region was larger than half the length of
the true DMR, and half the length of the detected DMR.
Similarly, we also defined true positives for 90 and 99%
reciprocal overlaps.

Experiments on real data—gene expression
To validate the effectiveness of Bisulfighter for real data,
we conducted experiments similar to the previous study (4)
that evaluated agreement between gene expression and
detected DMRs. For this purpose, we searched the SRA
for studies in which both transcriptome profiling (RNA-
Seq) and WGBS were performed on paired samples.
We collected data from (6) (Carcinogenesis data set;
breast cancer versus normal breast), and from (5)
(Adipogenesis data set; mature fat cells versus adipose-
derived stem cells). RNA-Seq reads were mapped to the
human genome by TopHat (19), and gene expression
was measured by fragments per kilobase of transcript
per million mapped reads (FPKM) as computed by
Cufflinks (20). Differential gene expression was
measured by the fold change in FPKM. Differentially ex-
pressed genes (DEGs) were determined by the threshold of
5-fold FPKM change. The agreement between DEGs and
detected DMRs was evaluated according to the previous
study (4). Specifically, we focused on DEGs whose±5kb
regions around transcription start sites (TSSs) contained
detected DMRs. The number of these overlapped
DEGs was counted for the top 1000 or 3000 detected
DMRs, and used as a measure of the agreement. For
the baseline of accuracy, we calculated the expected
number of overlapped DEGs when DMRs were
randomly placed in the TSS windows (denoted by
‘random guessing’).

Experiments on real data—DNase I hypersensitivity
Although agreement with gene expression is useful
to evaluate DMRs detected around TSSs, it neglects
DMRs detected at regulatory elements distal to TSSs.
Thus, we conducted additional experiments to evaluate
agreement between DNase I hypersensitivity and
detected DMRs. We collected WGBS data from (7)
(Hematopoiesis data set; mature B cells versus hematopoi-
etic stem cells), and from (8) (Fibroblast development data
set; foreskin fibroblasts versus embryonic stem cells). For
these cell types, the genome-wide information of DNase
I hypersensitivity is available from the ENCODE project
(http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/inte
gration_data_jan2011/byDataType/openchrom/jan2011).
The file for each cell type provides the genomic loca-
tions of 150 bp regions that show the local maxima of
DNase I hypersensitivity. We defined ‘differentially sensi-
tive sites’ (DSSs) as those 150 bp regions present in only
one side of paired cell types. The agreement between DSSs
and detected DMRs was evaluated similarly to the experi-
ment for DEGs. We focused on DSSs whose ±5kb
regions around the midpoints contained detected DMRs.
The number of these overlapped DSSs was counted for the

top 1000 or 3000 detected DMRs, and used as a measure
of the agreement. We note that the 150 bp regions provided
by the ENCODE project are just the fixed-length
windows, and thus do not necessarily indicate exact
boundaries of DSSs. Therefore, we did not use the
150 bp regions directly, but evaluated whether their
extended regions contained the entire lengths of detected
DMRs. This agreement measure is designed to penalize a
method that outputs irrelevantly long or short DMRs.
For example, when an irrelevantly long DMR is inferred
producing overlaps with many DSSs, it does not contrib-
ute to the agreement measure because any DSS cannot
contain its entire length. Moreover, when one true DMR
is wrongly split into short segments producing multiple
overlaps with one DSS, the agreement measure is not
biased since each DSS is counted only once.

RESULTS

mC calling

We compared accuracy of mC calling between Bisulfighter
and the comprehensive list of published tools whose
implementations are publicly available: BatMeth (21),
Bismark (22), BRAT (23), BS_Seeker (24), BSMAP (25),
BSmooth (4), Lister (5), MethylCoder (26), RMAP (27)
and Novoalign (http://www.novocraft.com). To ensure a
fair comparison between Bisulfighter and the other tools,
we optimized the options provided by these competitors
(Supplementary Notes S1 and S2 for details). Typical
results for CpG context and low-quality reads are shown
in Figure 2.
At varying sequencing depth, Bisulfighter exhibited a

greater true-positive rate than the other tools compared
at the same number of false-positive mC calls (Figure 2a).
The difference in true-positive rates was especially remark-
able when only a small number of false positives were
allowed. Because current protocols for bisulfite sequencing
are expensive (2), performance on limited sequencing
depth is of practical interest. Figure 2b shows that
Bisulfighter maintained sensitive mC calling even when
the mean CpG coverage was only 2.4. Again, the trade-
off between sensitivity and specificity was superior to the
other tools. For example, Bismark attained a true-positive
rate comparable with Bisulfighter, but the number of false-
positive mC calls for Bismark were about twice those for
Bisulfighter. In Supplementary Table S2, we showed the
computation time of each tool for simulated reads. The
speed of Bisulfighter was comparable with the other tools.
Bisulfighter produced precise estimates of mC levels

with small errors from simulated true values (Figure 2c).
It is notable that Bisulfighter achieved the best accuracy,
both in estimation of mC levels and in binary classification
of mCs (Figure 2ab). Among the other tools, there were
preferences such that BatMeth and RMAP performed
better than Bismark in binary classification of mCs,
but worse in estimation of mC levels. These results
demonstrated the versatility of Bisulfighter. In
Supplementary Figure S4, we evaluated estimation of
mC levels at selected CpG sites above coverage threshold
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of 3�, 5� and 10�. We confirmed that our conclusion
was largely consistent over the different choices of
coverage threshold; Bisulfighter achieved better accuracy
than the other tools, or at least comparable accuracy
among the best-performing tools (Supplementary
Figure S4a–c). In addition, for given coverage threshold,
Bisulfighter achieved the larger number of captured CpG
sites than the other tools (Supplementary Figure S4d).
In other conditions with non-CpG contexts and high-

quality reads, Bisulfighter stably provided good perform-
ance (Supplementary Figures S5–S7). Consequently, we
concluded that Bisulfighter is a promising tool for mC
calling.

DMR detection

We compared accuracy of DMR detection between
Bisulfighter and other methods found in previous
studies: Smoothing (4) and Fisher (5). As mentioned in

Introduction, BSmooth cannot be directly applied
to data sets without biological replicate information,
including those used in this study (5–8). To make a com-
parison with Bisulfighter, we implemented a modified
version of BSmooth, named Smoothing, that pools all
biological replicates as one sample, and thus does not
require biological replicate information (Supplementary
Note S1 for details).

For simulated data, Bisulfighter consistently achieved
the best accuracy, while the performance of the other
methods critically depended on various DMR lengths
(Figure 3a). The superior accuracy was also seen
under varying sequencing depths (Figure 3b and
Supplementary Figure S8). As expected, the dual model
achieved slightly better accuracy than the naive model in
most cases. To further validate the ComMet framework in
Bisulfighter, we asked how well the other methods
determined individual DMCs before chaining them as
DMRs. For comparison, DMCs for Bisulfighter were
determined based on posterior probabilities computed
by HMMs (the ‘Materials and Methods’ section). We
observed that the difference in accuracy was not so large
when determining individual DMCs (Supplementary
Figure S9). Thus, the improvements in DMR detection
were confirmed to be due to the DMC chaining phase
by the ComMet framework.

Another feature of Bisulfighter is that it does not
assume smoothness of mC levels along a genomic
sequence. In BSmooth, mC levels are preprocessed by
smoothing techniques, assuming that mC levels at
neighbor positions do not vary sharply (4). To evaluate
to what extent accuracy depends on the smoothness
assumption, we simulated DMRs with independence
of neighbor positions (See the ‘Simulation of DMRs’
section). We observed that Bisulfighter maintained
moderate accuracy, whereas the other methods did not
(Figure 3a, Ind.). In addition, the performance of
Smoothing was worse for shorter DMRs. These results
indicate that methods based on the smoothness assump-
tion are not effective when inherent smoothness is absent
(independent DMCs) or weak (short DMRs).

Because the chrX used for simulating bisulfite-
converted reads has a relatively low GC content, we con-
ducted similar experiments with the GC-rich chromosome
19 (Supplementary Figure S10). Bisulfighter maintained
better accuracy than existing methods in both mC
calling and DMR detection. These results suggest that
the performance of Bisulfighter is robust to various GC
contents, as also seen below in our whole-genome evalu-
ation based on real data.

Bisulfighter detected reasonable DMRs not only in
simulated data but also in real data (Figure 3c). In the
Carcinogenesis data set, Bisulfighter achieved better agree-
ment between DEGs and detected DMRs than the other
methods. In the Adipogenesis data set, Bisulfighter was
similar to Fisher in accuracy, whereas Smoothing was
no more accurate than random guessing. To validate
that these results did not depend on the selected threshold
of 5-fold expression change for determining DEGs,
we varied the threshold from 2 to 10 (Supplementary
Figure S11). We confirmed that our conclusion was

Figure 2. Benchmark for mC calling. (a and b) Binary classification of
mCs. CpGs were called as mCs if nonzero mC levels were estimated.
(a) Trade-off between the true-positive rate and the number of false
positives for varying sequencing depths. (b) The true-positive rate and
the FDR at the limited sequencing depth of 3M reads (shown as dots in
a). For Bisulfighter, 3M reads were equivalent to the mean coverage of
2.4 among those CpGs with at least one aligned read. True-positive
rates plateaued around 0.9 due to low quality of simulated reads.
(c) Estimation of mC levels. Distributions of errors between estimated
and true mC levels are shown as box plots (top; 25th–75th percentile),
and histograms for BatMeth, RMAP and Bisulfighter (bottom). The
complete results including non-CpG contexts, high-quality reads and
higher sequencing depths are found in Supplementary Figures S5–S7.
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largely consistent over the different choices of expression
fold change; Bisulfighter achieved better agreement than
the other methods in the Carcinogenesis data set, and
similar accuracy to Fisher in the Adipogenesis data set.
We note that the Adipogenesis data set seems to be a real
example where the smoothness assumption is not fully
satisfied, due to a number of short DMRs. The median
length of the top 10 000 DMRs detected by Bisulfighter
was much shorter in the Adipogenesis data set (234 bp),
compared with that in the Carcinogenesis data set
(5587 bp). Bisulfighter is free from the smoothness as-
sumption, and therefore applicable to various lengths of
DMRs occurred in a wide range of biological processes.

DMRs detected by Bisulfighter were further supported
by agreement with DNase I hypersensitivity (Figure 3d).
For both the Hematopoiesis data set and the Fibroblast
development data set, Bisulfighter achieved better agree-
ment than the other methods. In addition, we increased
the resolution of DSSs from±5kb to±500 bp, and
evaluated their agreement with detected DMRs separately
for TSS-proximal and TSS-distal regions (Supplementary
Figure S12). For the various definitions of DSSs,
Bisulfighter achieved better agreement than the other
methods for both the Hematopoiesis data set and the
Fibroblast development data set. These results
demonstrated that Bisulfighter can detect reasonable
DMRs not only around TSSs but also at distal regulatory
elements. We note that agreement for the Hematopoiesis
data set was worse compared with that for the Fibroblast
development data set, which might be due to imperfect
matching of cell samples between DNase I hypersensitivity

data and WGBS data; the ENCODE project and (7) have
used slightly different subpopulations of hematopoietic
stem cells. We emphasize that Bisulfighter consistently
achieved the best accuracy among the other methods, in
each of the Hematopoiesis data set and the Fibroblast
development data set. Therefore, our conclusion is still
valid even though the agreement measure involves some
data set dependency.

DISCUSSION

In this article, we described Bisulfighter, a new software
package for analyzing bisulfite sequencing data. In
contrast to existing methods developed solely for mC
calling or DMR detection, Bisulfighter is successfully ap-
plicable to both of these essential tasks. We presented the
first systematic benchmark in which accuracy of mC
calling and DMR detection was evaluated for various
mC contexts, read qualities, sequencing depths and
DMR lengths, as well as for real data from a wide range
of biological processes including pathogenesis and normal
development. Bisulfighter consistently outperforms
existing methods.
We demonstrated that Bisulfighter can take full advan-

tage of bisulfite sequencing, which, in contrast to micro-
array platforms, produces methylation measurements at
whole-genome scale and single nucleotide resolution.
Bisulfighter can identify DMRs even when their genomic
locations and lengths are not prespecified. Moreover,
Bisulfighter does not rely on the smoothness assumption,
and thus it can detect biological events involving short

Figure 3. Benchmark for DMR detection. (a and b) Experiments on simulated data. (a) For various DMR lengths and the fixed sequencing depth of
50M reads, true positives with 50 (left), 90 (center) or 99% (right) reciprocal overlap are shown. Ind: simulation with independence of neighbor
positions. (b) For varying sequencing depths and the fixed DMR length of 500 bp, true positives with 50% reciprocal overlap are shown. (c and d)
Experiments on real data. (c) Agreement between detected DMRs and gene expression. Carcino: Carcinogenesis data set. Adipo: Adipogenesis data
set. See the ‘Experiments on real data—gene expression’ section for details. (d) Agreement between detected DMRs and DNase I hypersensitivity.
Hemato: Hematopoiesis data set. Fibro: Fibroblast development data set. See the ‘Experiments on real data—DNase I hypersensitivity’ section for
details. dual, naive: results for the corresponding HMM architectures in Bisulfighter.
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DMRs and independent DMCs. As previously implied by
the authors of BSmooth (4), our results suggest that
smoothing techniques may collapse rich information of
methylation signals obtained at single nucleotide reso-
lution. There is increasing evidence that short DMRs
and independent DMCs have biological significance, espe-
cially in regions whose methylation status has not been
well-studied (e.g. gene bodies) (28). Bisulfighter will con-
tribute to accelerating such studies, and expanding our
knowledge of methylomes.
As a future direction, we are planning to improve

Bisulfighter in the following aspects. First, since the
weighting schemes did not substantially contribute to
mC calling, the variations of the estimation formula in
Figure 1a should be investigated. For example, mC
calling may be improved by weighting the denominator
n using pi and qi. Second, while the transition functions
well captured distance distributions among neighbor
DMCs, the emission functions still have room for im-
provement, especially in the handling of pseudocounts.
The pseudocount terms can be removed by using beta-
binomial distributions instead of binomial distributions.
The parameters of a beta mixture used in beta-binomial
distributions may be estimated by using a nonparametric
Bayesian approach similar to that used in (29). Third,
since the dual model achieved better accuracy than the
naive model, more complex HMM architectures may
further improve DMR detection. To determine optimal
HMM architectures, it is useful to use a model selection
approach such as factorized asymptotic Bayesian HMMs
(30), instead of standard HMMs. Finally, although
Bisulfighter was designed not to require biological repli-
cates, the current approach has a limitation that it pools
replicates even when they are available. It is thus desirable
to extend Bisulfighter so that it incorporates biological
variability inferred from available replicates, while main-
taining its applicability to data sets without biological rep-
licate information. For this purpose, it will be convenient
to use existing frameworks developed for extending
replicate-free methods to replicate-aware versions (31).
The source code and the binaries of Bisulfighter are avail-
able at http://epigenome.cbrc.jp/bisulfighter.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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