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Phase separation of 53BP1 determines liquid-like
behavior of DNA repair compartments
Sinan Kilic1 , Aleksandra Lezaja1,2, Marco Gatti1, Eliana Bianco1,2,†, Jone Michelena1, Ralph Imhof1 &

Matthias Altmeyer1,*

Abstract

The DNA damage response (DDR) generates transient repair
compartments to concentrate repair proteins and activate signal-
ing factors. The physicochemical properties of these spatially con-
fined compartments and their function remain poorly understood.
Here, we establish, based on live cell microscopy and CRISPR/Cas9-
mediated endogenous protein tagging, that 53BP1-marked repair
compartments are dynamic, show droplet-like behavior, and
undergo frequent fusion and fission events. 53BP1 assembly, but
not the upstream accumulation of cH2AX and MDC1, is highly
sensitive to changes in osmotic pressure, temperature, salt concen-
tration and to disruption of hydrophobic interactions. Phase sepa-
ration of 53BP1 is substantiated by optoDroplet experiments,
which further allowed dissection of the 53BP1 sequence elements
that cooperate for light-induced clustering. Moreover, we found
the tumor suppressor protein p53 to be enriched within 53BP1
optoDroplets, and conditions that disrupt 53BP1 phase separation
impair 53BP1-dependent induction of p53 and diminish p53 target
gene expression. We thus suggest that 53BP1 phase separation
integrates localized DNA damage recognition and repair factor
assembly with global p53-dependent gene activation and cell fate
decisions.
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Introduction

Detection of DNA double-strand breaks (DSBs) and their faithful

repair is crucial to avoid loss of genetic information and counter

chromosome translocations and genomic instability. Consequently,

defects in the DNA damage response (DDR) are associated with

neurodegeneration, cancer, and aging, and genomic instability is a

hallmark of most tumors (Jackson & Bartek, 2009). The DDR is

initiated at DNA break sites by the ATM kinase, which phosphory-

lates histone variant H2AX to generate cH2AX (Shiloh & Ziv, 2013;

Blackford & Jackson, 2017). The adaptor protein MDC1 binds

cH2AX to assemble the ubiquitin E3 ligases RNF8 and RNF168 and

recruit 53BP1 (Jungmichel & Stucki, 2010; Lukas et al, 2011b; Polo

& Jackson, 2011; Panier & Boulton, 2014; Pellegrino & Altmeyer,

2016; Schwertman et al, 2016; Wilson & Durocher, 2017). 53BP1

generates sizeable chromatin domains, which scaffold the assembly

of downstream effectors and shield DNA lesions against excessive

nucleolytic digestion. Restrained resection is achieved by 53BP1-

dependent recruitment of RIF1, REV7, and the Shieldin complex

(Dev et al, 2018; Findlay et al, 2018; Ghezraoui et al, 2018; Gupta

et al, 2018; Mirman et al, 2018; Noordermeer et al, 2018; Setiapu-

tra & Durocher, 2019). Additionally, 53BP1 promotes cell cycle

checkpoint signaling in response to DNA damage (DiTullio et al,

2002; Fernandez-Capetillo et al, 2002; Wang et al, 2002; Brum-

melkamp et al, 2006; Cuella-Martin et al, 2016). How 53BP1 inte-

grates local DNA damage recognition with global checkpoint

responses and why such a multilayered multi-protein assembly at

DNA break sites is required to safeguard genome stability is not

well understood.

Liquid–liquid phase separation has recently emerged as mecha-

nism to dynamically sub-divide the intracellular space (Hyman et al,

2014; Alberti, 2017; Banani et al, 2017; Shin & Brangwynne, 2017).

Phase separation relies on multivalent weak interactions, often

through intrinsically disordered protein sequences. Such interac-

tions retain a larger conformational flexibility compared to interac-

tions through complementary protein domain surfaces and induced

fit (Aguzzi & Altmeyer, 2016; Boeynaems et al, 2018). Besides the

nucleolus, nuclear speckles, and RNA granules, also silent hete-

rochromatin domains were recently shown to phase separate within

the nucleus (Larson et al, 2017; Strom et al, 2017). Moreover, phase

separation occurs at gene promoters and super-enhancers (Boehning

et al, 2018; Boija et al, 2018; Lu et al, 2018; Sabari et al, 2018). To

which extent other chromatin domains rely on phase separation for
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their spatio-temporal confinement and for their biological functions

is a matter of intense investigation.

Although the key upstream signals for 53BP1 recruitment to sites

of DNA damage are well defined, 53BP1 assembly can also be

uncoupled from upstream events indicating that the hierarchical

cascade of the DDR allows regulation at intermediate levels. For

instance, 53BP1 assembly is precluded during mitosis, when CDK

activity is high and chromosomes are heavily condensed, even

though the upstream signaling and the recruitment of MDC1 are

unaffected (Giunta et al, 2010; Orthwein et al, 2014). Conversely,

53BP1 can be uncoupled from upstream recruitments under condi-

tions of deregulated RNF168 stability (Gudjonsson et al, 2012;

Altmeyer & Lukas, 2013a,b). Impaired RNF168 turnover leads to

greatly enlarged 53BP1 compartments, which occupy nuclear

territories of several square-micrometers, reaching far beyond the

cH2AX/MDC1 domain (Gudjonsson et al, 2012). These findings

raise the possibility that, despite the hierarchical cascade of DDR

factor recruitment, 53BP1 assembly into nuclear compartments may

differ from the upstream recruitment of MDC1, and they prompted

us to investigate the physicochemical properties of 53BP1 assem-

blies at sites of DNA lesions and how they affect 53BP1 functions.

Results

Multivalent weak interactions underlying phase separation are

sensitive to changes in temperature, salt concentration, pH, and

osmotic pressure. In order to assess how DNA repair compartments

A

B

C D

Figure 1. The 53BP1 repair compartment is sensitive to hyperosmotic stress.

A Asynchronously growing human U-2 OS cells were treated with 0.5 Gy of IR, allowed to recover for the indicated time periods, and stained for 53BP1 and DNA
content for cell cycle resolved quantification of 53BP1 foci in individual cells by QIBC.

B Representative images from the QIBC analysis in (A). Scale bars, 10 lm.
C Cells were treated with 0.5 Gy of IR in absence or presence of 0.4 M sorbitol, fixed 1 h later, and 53BP1 assembly at DSBs was analyzed by QIBC.
D Treatments as in (C); RIF1 accumulation at DSBs was analyzed by QIBC.
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would react to changes in osmolarity, we monitored the 53BP1

response to ionizing radiation (IR) by quantitative image-based

cytometry (QIBC), a high-content microscopy approach that allows

for cell cycle resolved profiling of DNA damage responses (Altmeyer

et al, 2013; Toledo et al, 2013; Ochs et al, 2016; Pellegrino et al,

2017; Michelena et al, 2018). As observed previously, we measured

a strong IR-induced increase in nuclear 53BP1 foci in G1, which

gradually declined in S-phase when increasing amounts of repli-

cated chromatin promote DSB repair by homologous recombination

(Chapman et al, 2012; Saredi et al, 2016; Pellegrino et al, 2017),

and which rose again in late G2 (Fig 1A). Consistent with prior

work (Giunta et al, 2010; Orthwein et al, 2014), 53BP1 accumula-

tion was blocked when chromosomes condensed in mitosis

(Fig 1B). Sorbitol-induced osmotic stress expectedly resulted in

rapid formation of cytoplasmic stress granules (Appendix Fig S1A–

C). Strikingly, however, sorbitol addition completely abolished the

formation of nuclear 53BP1 compartments at sites of DNA damage

(Fig 1C and Appendix Fig S1D). The sorbitol-induced suppression of

53BP1 assembly was comparable to siRNA-mediated depletion of

the upstream 53BP1-regulator RNF168 (Appendix Fig S1E and F)

and also entailed a complete abrogation of downstream RIF1 assem-

bly at DNA break sites (Fig 1D). Similarly, addition of sucrose or

elevated salt concentrations mitigated 53BP1 assembly upon DNA

damage (Appendix Fig S2A and B). Live cell experiments using

GFP-53BP1 cells confirmed that osmotic stress severely impaired

53BP1 assembly at DNA break sites and also disassembled

preformed 53BP1 nuclear bodies at sites of spontaneous DNA

lesions (Appendix Fig S2C). We observed very similar effects in

non-transformed human epithelial RPE-1 and canine MDCK cells

(Appendix Fig S3A and B). The osmotic challenge-induced inhibi-

tion of 53BP1 accumulation was fully reversible and was quickly

restored when sorbitol was removed after DNA damage induction

(Appendix Fig S3C and D). Surprisingly, neither cH2AX nor MDC1

lost their ability to accumulate around DSBs in the presence of

osmotic stress, suggesting that the osmosensitivity is specific to the

53BP1 compartment (Fig EV1A and B). Furthermore, 53BP1 assem-

bly, different from cH2AX foci formation, was sensitive to changes

in temperature (Fig EV1C and D), and the salt sensitivity was also

highly specific for 53BP1 compared to cH2AX (Fig EV1E and F).

While the initial accumulation of cH2AX/MDC1 at sites of DNA

damage is essential for the ensuing assembly of 53BP1, MDC1 foci

induced by low, sub-lethal doses of IR or neocarzinostatin (NCS) are

more transient than 53BP1 foci (Fig 2A and Appendix Fig S4A–D).

Indeed, most MDC1 foci had disappeared 2–4 h after damage induc-

tion, whereas 53BP1 foci were bright and clearly visible at these later

time-points (Fig 2A). Live cell experiments with cells stably express-

ing either GFP-MDC1 or GFP-53BP1 confirmed the transient nature

of MDC1 foci formation and the more long-lived nature of 53BP1

assemblies (Fig 2B). Moreover, and consistent with previous work

describing clustering of DNA breaks (Aten et al, 2004; Krawczyk

et al, 2006; Neumaier et al, 2012; Roukos et al, 2013; Aymard et al,

2017; Sollazzo et al, 2018), we observed signs of coalescence of

53BP1 compartments over time upon DNA damage (Fig 3A).

Comparing 53BP1 and MDC1 foci intensity and area suggested that

this was more pronounced for 53BP1 (Fig 3A and B, and

Appendix Fig S5A). In time-lapse microscopy experiments, DNA

damage-induced 53BP1 compartments showed droplet-like behavior

and underwent frequent fusion and occasional fission events

(Fig 3C, and Appendix Fig S5B and C). Moreover, addition of the

aliphatic alcohol 1,6-hexanediol, which disrupts weak hydrophobic

interactions that are favorable for liquid–liquid phase separation

(Molliex et al, 2015; Strom et al, 2017; Wegmann et al, 2018),

resulted in disassembly of 53BP1 foci (Appendix Fig S5D and E).

Next, in light of the concentration dependency of phase separation

and to exclude potential bias from ectopic 53BP1 expression, we

employed CRISPR/Cas9 to engineer the endogenous 53BP1 locus

and integrate an in-frame sequence encoding for the small mono-

meric red fluorescent protein mScarlet (Appendix Fig S6A and B).

The resulting fusion protein could be visualized by fluorescence

microscopy (Appendix Fig S6C), did not affect the cell cycle

(Appendix Fig S6D), localized to cH2AX-positive sites of DNA

damage (Appendix Fig S6E), showed the typical cell cycle-regulated

pattern of 53BP1 accumulation (Appendix Fig S6F), and was sensi-

tive to siRNA treatment targeted against 53BP1 (Appendix Fig S6G).

Consistent with our prior results, a short hyperosmotic challenge led

to disassembly of 53BP1-mScarlet compartments without affecting

cH2AX accumulation (Appendix Fig S6H and I). More importantly,

however, live cell experiments with endogenously tagged 53BP1

expressed from its native promoter confirmed the dynamic, droplet-

like nature of 53BP1 assemblies, their spherical shape, and their

frequent fusions and fissions (Fig 3D and Movie EV1).

Besides clastogen-induced DNA breaks, 53BP1 also assembles at

replication stress-induced inherited DNA lesions (Harrigan et al,

2011; Lukas et al, 2011a). These 53BP1 nuclear bodies, occurring

spontaneously and at enhanced frequency upon mild replication

stress by low-dose aphidicolin (APH) and ATR inhibitor (ATRi)

treatment, showed droplet-like behavior as well, and underwent

frequent fusion events (Fig 3E). Finally, and consistent with the

transient nature of MDC1 accumulation upon low levels of DNA

damage (Fig 2 and Appendix Fig S4), we observed in dual labeling

live cell experiments that 53BP1 fusions and fissions typically

occurred after discernible foci of MDC1 had disappeared

(Appendix Fig S6J). Taken together, we conclude that 53BP1 repair

compartments at sites of clastogen-induced DSBs and at heritable

DNA lesions show key features of liquid–liquid phase separation.

In order to directly test whether 53BP1 possesses the capacity to

phase separate, we turned to a system based on mCherry-labeled

Arabidopsis photoreceptor cryptochrome 2 (Cry2) fusion proteins to

measure target protein optoDroplet formation in living cells (Taslimi

et al, 2014; Shin et al, 2017). As observed before, strong optoDro-

plet formation occurred for the amino-terminal prion-like domain of

FUS, an established model for intracellular phase separation (Shin

et al, 2017, 2018) and for an oligomerization-prone Cry2 E490G

mutant (Taslimi et al, 2014), but not for the negative Cry2 wild-type

control (Fig EV2A). A Cry2-53BP1 fusion, however, resulted in

rapid, light-induced optoDroplet formation (Fig 4A top panel,

Fig EV2B for additional examples, and Movie EV2). Introducing a

single amino acid exchange (W1495A) within the 53BP1 tandem

tudor domain (TTD) to abrogate potentially confounding effects

from TTD chromatin and protein interactions (Drane et al, 2017),

and to assess the intrinsic capacity of 53BP1 to phase separate,

further enhanced light-induced optoDroplet formation (Fig 4A

middle panel and Movie EV3). Different from 53BP1, Cry2-MDC1

did not show considerable optoDroplet formation (Fig 4A bottom

panel and Movie EV4), even though the construct was functional

and efficiently accumulated at sites of DNA damage (Fig EV2C). We
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A

B

Figure 2. 53BP1 compartments are more long-lived than MDC1 foci.

A U-2 OS cells were treated with 0.5 Gy of IR, allowed to recover for the indicated time periods, stained for 53BP1 and MDC1, and analyzed by QIBC. 53BP1 foci
intensities are plotted against MDC1 foci intensities, and representative images are shown.

B U-2 OS cells stably expressing GFP-MDC1 or GFP-53BP1 were treated with 1 Gy of IR and analyzed by live cell microscopy at 15-min intervals. Representative images
are provided, and kinetics of GFP-MDC1 and GFP-53BP1 foci formation and dissolution are shown as single-cell tracks. Bold lines represent averages from n = 29 for
GFP-MDC1 and n = 18 for GFP-53BP1 cells.

Data information: Scale bars, 10 lm.
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C
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B

Figure 3. 53BP1 repair compartments show droplet-like behavior with fusion and fission events.

A U-2 OS cells were treated with 1 Gy of IR and fixed at the indicated time-points. Mean 53BP1 foci intensity was analyzed from more than 1,500 cells per time-point.
Mean (solid line) and standard deviation from the mean (dashed lines) are indicated.

B The same cells as in (A) were analyzed for mean MDC1 foci intensity. Mean (solid line) and standard deviation from the mean (dashed lines) are indicated.
C GFP-53BP1 cells were treated with 25 ng/ml NCS to induce DNA breaks and imaged at 30-min intervals. Examples of GFP-53BP1 fusions (green arrowheads and

magnified regions) and fissions (blue arrowheads and magnified regions) are shown.
D 53BP1-RFP cells, in which the endogenous 53BP1 gene locus had been engineered by CRISPR/Cas9 to express 53BP1-mScarlet from the natural promoter, were treated

with NCS (25 ng/ml) and imaged at 30-min intervals. Examples of 53BP1 fusions (green arrowheads and magnified regions) and fissions (blue arrowheads and
magnified regions) are shown on the left and in higher magnification on the right.

E GFP-53BP1 cells were left untreated, or treated with APH (0.5 lM) or ATRi (1 lM) to induce replication stress-associated heritable DNA lesions, and cells were imaged
at 30-min intervals. Examples of 53BP1 fusions (green arrowheads and magnified regions) are shown.

Data information: (C–E) Scale bars, 10 lm.
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Figure 4.
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noticed that a pH shift from 7.4 to 5.5 rapidly induced FUS optoDro-

plet formation without light induction (Fig EV2D) and that also

53BP1, but not MDC1, formed optoDroplets under acidic pH

(Fig EV2E). Similar to 53BP1 assembly around DNA lesions, 53BP1

optoDroplet fusions could be readily observed, demonstrating their

liquid-like behavior (Fig 4B).

Next, we generated a series of deletion mutants to identify the

sequence elements driving 53BP1 phase separation. This revealed

that the C-terminus, comprising amino acids 1140–1972, was suffi-

cient for optoDroplet formation and that the oligomerization domain

(OD) was critically involved (Figs 4C and EV2F). Interestingly, the

largely unstructured N-terminus of 53BP1 was dispensable for

optoDroplet formation, suggesting that the presence of disordered

sequence stretches alone may not be a good predictor for phase

separation. Recent work on the FET (FUS, EWSR1, TAF15) protein

family identified multivalent interactions between tyrosines (Y) and

arginines (R) to promote phase separation (Wang et al, 2018). The

53BP1 C-terminus is highly enriched for these amino acids

(Appendix Fig S7A), providing a potential explanation for the prefer-

ential optoDroplet formation of this region. The OD alone showed

strong clustering inside the nucleus yet with abrogated light respon-

siveness (Fig 4C). When combined with unstructured sequence

stretches further toward the C-terminus, however, light-inducible

clustering was restored (Figs 4C and EV2F). Surprisingly, we also

observed a positive contribution of the C-terminal BRCT domains

(Fig 4C), whose function for recruitment and DNA repair by NHEJ

has remained ambiguous (Morales et al, 2003; Ward et al, 2006;

Kilkenny et al, 2008; Lee et al, 2010; Noon et al, 2010; Bothmer

et al, 2011; Lottersberger et al, 2013; Knobel et al, 2014; Baldock

et al, 2015; Kleiner et al, 2015; Cuella-Martin et al, 2016). Multiple

sequence elements within the Y/R-rich 53BP1 C-terminus thus seem

to cooperate for 53BP1 self-assembly. We focused our further analy-

ses on a construct with the most pronounced light-inducible

optoDroplet formation (aa 1203–1972 W1495A). Also with this

construct, we observed droplet fusions (Fig 5A), as well as concen-

tration-dependent droplet induction (Fig 5B). In support of the

reversibility of 53BP1 assembly, acidic pH-induced optoDroplets

were quickly resolved upon buffer exchange back to neutral pH

(Appendix Fig S7B) and upon addition of 1,6-hexanediol

(Appendix Fig S7C). In fluorescence recovery after photobleaching

(FRAP) experiments, individual 53BP1 optoDroplets, 53BP1 nuclear

bodies, and IR-induced foci (IRIF) all showed similar recovery kinet-

ics, suggesting a comparable degree of protein mobility (Fig EV3A–

D).

In vitro, the purified 53BP1 C-terminus showed condensation into

lm-sized droplets in presence of Ficoll (Fig EV4A and B), and

53BP1 condensates co-assembled DSB-mimicking fluorescently

labeled DNA (Fig EV4C and D). In vivo, the W1495A construct,

despite being impaired in DNA damage recognition when multiple

breaks were induced at random genomic regions by NCS

(Appendix Fig S8A), accumulated within seconds after light activa-

tion at FokI-induced DNA damage at a single genomic region

(Fig 5C and Appendix Fig S8B and C), consistent with a seeding-

dependent yet self-assembly amplified accrual of 53BP1 to generate

the DNA repair compartment. Similar conclusions were recently

reached when liquid phase behavior was analyzed by global versus

local activation of photo-oligomerizable nucleation centers (Bracha

et al, 2018).

Our finding that besides the OD also the BRCT domains of 53BP1

contribute to its phase separation was unexpected in light of the

ambiguous role of the BRCT domains for 53BP1 recruitment to sites

of DNA damage. Of note, however, both the OD and the BRCT

domains were recently shown to be required for stabilization of the

tumor suppressor p53 and to promote global p53 target gene expres-

sion (Cuella-Martin et al, 2016). Yet how 53BP1 transmits a local

DNA damage signal to promote global p53 activation had remained

unclear. Inspired by this conundrum, we revisited the 53BP1/p53

interaction using light-induced optoDroplet formation. While the

53BP1 antagonist BRCA1 showed no significant enrichment in

53BP1 optoDroplets, p53 showed an accumulation in light-induced

53BP1 condensates (Fig 6A). Also, the p53 co-activator USP28

(Cuella-Martin et al, 2016; Fong et al, 2016; Lambrus et al, 2016;

Meitinger et al, 2016) was enriched in 53BP1 optoDroplets

(Appendix Fig S9A), and both p53 and USP28 were found to localize

to a fraction of endogenous 53BP1 nuclear bodies (Appendix Fig

S9B–D). Enrichment of p53 at DNA break sites was previously

observed in ChIP experiments upon cross-linking (Roy et al, 2010),

and the partial co-localization with 53BP1 nuclear bodies may thus

reflect the transient nature of the interaction needed for p53 to exert

its gene regulatory functions outside the 53BP1 compartment and/

or the oscillatory mode of p53 activation (Reyes et al, 2018). We

found the assembly of p53 into optoDroplets to be partially depen-

dent on the 53BP1 BRCT domains (Fig 6B), consistent with prior

structural and functional studies (Derbyshire et al, 2002; Joo et al,

2002; Cuella-Martin et al, 2016) and, based on our optoDroplet

results, indicating that phase-separated 53BP1 compartments might

play a role to dynamically assemble and stabilize p53 upon DNA

damage. Indeed, when we used sorbitol to disrupt 53BP1 assembly

upon DNA damage, without affecting the initial DNA damage recog-

nition and accumulation of cH2AX and MDC1 (Fig EV1), we

observed that damage-induced 53BP1/p53 interaction and 53BP1

self-association were impaired (Fig EV5A). Consistently, p53 stabi-

lization after DNA damage was blunted (Figs 6C and EV5B). More-

over, induction of the p53 target gene p21 was abrogated, resulting

◀ Figure 4. 53BP1 phase separates into optoDroplets.

A Light-induced optoDroplet formation of Cry2-mCherry-53BP1, Cry2-mCherry-53BP1 W1495A, and Cry2-mCherry-MDC1. Cells were imaged at 15-s intervals.
Representative images of optoDroplet formation before and 6 min after light induction are shown. Quantifications from single-cell QIBC analysis of 2–3 independent
experiments are shown with mean (solid line) and standard deviation from the mean (dashed lines) indicated.

B Cry2-mCherry-53BP1 W1495A optoDroplet fusion at 15 s time resolution. Fusing optoDroplets are highlighted by green arrowheads and in the magnified insets.
C Light-induced optoDroplet formation of the indicated Cry2-mCherry-53BP1 constructs. Cells were imaged at 15-s intervals. Representative images and quantifications

of optoDroplet formation before and 6 min after light induction are shown. Quantifications from single-cell QIBC analysis of 2–3 independent experiments are shown
with mean (solid line) and standard deviation from the mean (dashed lines) indicated. Red bars indicate the part of 53BP1 that was expressed as Cry2-mCherry
fusion.

Data information: Scale bars, 10 lm.
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in reduced p21 mRNA (Fig 6D) and protein levels (Fig 6E). In agree-

ment with previous work (Wang et al, 2002; Cuella-Martin et al,

2016), efficient p53 and p21 induction upon DNA damage was

dependent on 53BP1 (Fig EV5C–E). Finally, cell cycle analysis by

two-dimensional QIBC based on DNA content (DAPI) and nuclear

Cyclin A levels revealed a cell cycle checkpoint defect when 53BP1

assembly and p53 stabilization were blocked by sorbitol (Fig 6F).

Accordingly, a checkpoint defect could also be observed in 53BP1-

A

C

B

Figure 5. 53BP1 self-assembles at nucleation centers in a concentration-dependent manner.

A Cry2-mCherry-53BP1 1203–1972 W1495A optoDroplets undergo fusion events upon light induction. Fusing optoDroplets are highlighted by green arrowheads and in
the magnified insets.

B Concentration-dependent optoDroplet formation exemplified by two neighboring cells that differ in their Cry2-mCherry-53BP1 1203–1972 W1495A expression level.
Cells were imaged at 15-s intervals. Quantifications of optoDroplet formation in lowly expressing cells (mClow) and highly expressing cells (mChigh) from single-cell
QIBC analysis of three independent experiments are shown with mean (solid line) and standard deviation from the mean (dashed lines) indicated.

C Cry2-mEGFP-53BP1 1203–1972 W1495A assembles into FokI-induced DNA repair compartments within seconds after light induction. FokI was induced for 1 h where
indicated before cells were light-activated and imaged at 15-s intervals. Red arrowheads mark the FokI-induced lesion with mCherry accumulation.

Data information: Scale bars, 10 lm.
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deficient cells (Fig EV5F), and impaired p53 and p21 induction upon

DNA damage was evident upon disruption of 53BP1 assembly by

elevated salt concentration or 1,6-hexanediol (Fig EV5G).

Taken together, our results demonstrate that 53BP1 undergoes

DNA damage-induced liquid–liquid phase separation (featuring

dynamic self-assembly, droplet-like behavior, and frequent fusions

of DNA repair compartments) and suggest that 53BP1 phase separa-

tion integrates DNA damage detection and shielding of break sites

with effector protein activation, including p53 stabilization, thereby

coordinating local DNA damage recognition with global alterations

in gene expression and checkpoint activation (Figs 7 and EV5H).

Discussion

Previous work had provided first evidence for liquid demixing at

sites of DNA damage (Altmeyer et al, 2015; Patel et al, 2015).

Seeded by the DNA damage-induced polyanionic molecule poly

(ADP-ribose) (PAR), multiple intrinsically disordered proteins

(IDPs), including the FET proteins FUS, EWSR1, and TAF15, tran-

siently assemble at DNA break sites, preceding the accumulation of

53BP1 (Altmeyer et al, 2015; Teloni & Altmeyer, 2016). Extended

PAR-mediated assembly of IDPs appeared incompatible with

concurrent accumulation of 53BP1 (Altmeyer et al, 2015),

A

C F

E

D

B

Figure 6. 53BP1 phase separation promotes p53 induction upon DNA damage.

A Cry2-mCherry-53BP1 1203–1972 W1495A optoDroplets were induced as indicated and fixed 5 min later. Endogenous BRCA1 and p53 were co-stained.
B As in (A), comparing Cry2-mCherry-53BP1 constructs with and without the BRCT domains. Quantifications of p53 assembly into 53BP1 optoDroplets from single-cell

QIBC analysis of 500–600 cells per condition are shown below with mean (solid line) and standard deviation from the mean (dashed lines) indicated. Red bars
indicate the part of 53BP1 that was expressed as Cry2-mCherry fusion.

C Western blot of p53 induction upon DNA damage (10 Gy, 2 h) with and without 0.4 M sorbitol.
D qPCR of p21 induction upon DNA damage (10 Gy, 2 h) with and without 0.4 M sorbitol. Mean � standard deviation is indicated.
E Western blot of p21 induction upon DNA damage (10 Gy, 2 h) with and without 0.4 M sorbitol.
F QIBC cell cycle analysis based on DNA content and nuclear Cyclin A levels upon DNA damage with and without 0.4 M sorbitol. Cells were irradiated with 2 Gy in

absence or presence of 0.4 M sorbitol. After 1 h of recovery, sorbitol-containing medium was exchanged with fresh medium, and cells were allowed to recover for an
additional 7 h. Percentages in G1 and S/G2 are provided.

Data information: (A, B) Scale bars, 10 lm.
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suggesting that these two protein assemblages do not intermix well

and represent distinct, spatiotemporally separated entities. Once

53BP1 gains access upon termination of the PAR signal, we envision

an inner core of 53BP1 assembly in the vicinity of DNA lesions,

dependent on cooperative interactions between the TTD and

H4K20me2 and between the UDR motif and RNF168-mediated, DNA

damage-induced H2AK15 ubiquitin marks, surrounded by an outer

layer of 53BP1 assembly via multivalent interactions through the

OD and additional disordered sequence stretches within the Y/R-

rich C-terminus of 53BP1, including a low complexity glycine/argi-

nine-rich GAR/RGG motif (Thandapani et al, 2013) as well as the C-

terminal tandem BRCT domain. A somewhat similar multiphase

buildup was recently described for sub-compartmentalization of the

nucleolus (Feric et al, 2016). While the function of the inner core

would primarily be to keep broken DNA ends together and protect

them from excessive nucleolytic degradation by recruitment of

downstream effectors, the outer shell could provide a mechanical

buffer zone between repair compartments and undamaged areas of

the genome. Along these lines, it was recently demonstrated that

phase-separated compartments exert mechanical forces that can

rearrange chromatin (Shin et al, 2018), and it is tempting to

speculate that 53BP1 condensation might push undamaged chro-

matin regions away from break sites, and organize damaged chro-

matin into larger repair compartments. While such repair centers

may be beneficial to concentrate repair enzymes and exclude inter-

fering protein machineries, clustering of multiple break sites in close

proximity within a single compartment comes with the risk of

promoting chromosomal translocations. Indeed, 53BP1 promotes

telomere fusions and mis-rejoining of DSBs in BRCA1-deficient cells

(Bunting et al, 2010; Lottersberger et al, 2015). Further studies will

be needed to elucidate how cells balance the benefits and risks of

generating large phase-separated compartments around DNA break

sites and to link 53BP1 droplet fusion and fission events with repair

outcome. Upon growth of the 53BP1 compartment around DNA

break sites, the enlarged surface area will increase the chances for

signaling molecules such as p53 to become activated in a DNA

damage-dependent manner, yet without having to directly interact

with the broken DNA ends or with the molecular machinery

involved in DSB repair. Of note, such 53BP1-mediated p53 stabiliza-

tion might even persist after the homologous recombination (HR)

factor BRCA1 has displaced 53BP1 from the inner core to the outer

shell in S/G2 cells to initiate HR (Chapman et al, 2012), and is in

Figure 7. Model of 53BP1 phase separation upon DNA damage.
In accordance with current models on biomolecular condensation and liquid–liquid phase separation (Banani et al, 2016; Shin & Brangwynne, 2017; Erdel & Rippe, 2018),
upon nucleation by upstream events triggered at sites of DNA damage (cH2AX formation, MDC1 recruitment, activation of RNF8 and RNF168), 53BP1 accumulates and phase
separates, acting as scaffold for client molecules such as p53, which transiently interact with the 53BP1 compartment, where they find an environment permissive for their
activation. As clients, with lower relative enrichment and higher mobility, they can dissociate again upon activation to carry out effector functions at distant sites in the
nucleus. Phase separation of 53BP1 may also promote compartment fusions and clustering of break sites, with potential implications for mis-rejoining of DNA breaks and
generation of chromosomal translocations.
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line with p53 being detected in APEX-based proximity labeling of

53BP1, but not of BRCA1 or MDC1 (Gupta et al, 2018). The gradual

dilution of DSB-induced chromatin modifications away from the

break site would thus establish functional divergence within the

53BP1 domain, with direct chromatin interactions governing the

initial 53BP1 recruitment, and 53BP1 self-assembly-driven interac-

tions toward the periphery. Such a multiphase buildup may recon-

cile why certain sequence domains of 53BP1 play controversial roles

in 53BP1 foci formation, yet are required for transmitting the DNA

damage signal to the cell cycle checkpoint machinery. In accor-

dance, we found that the W1495A TTD mutation abolished foci

formation when multiple DNA lesions were induced, but allowed

for damage recruitment when a strong singular nucleation event

was provided by FokI induction (Appendix Fig S8B and C). Such

findings highlight the need to consider the number of nucleation

centers, i.e., DNA break sites, that are present at any given point in

time, and provide a theoretical framework to revisit seemingly con-

flicting results on the contribution of individual 53BP1 protein

domains for its damage-induced assembly.

Finally, while the critical role of the 53BP1 OD for microscopi-

cally discernible foci formation is difficult to reconcile with stoichio-

metric recruitment to RNF168-ubiquitylated histones, this

requirement can be rationalized by a self-assembly process that

allows the 53BP1 compartment to grow beyond the initial seed site,

in particular when the number of nucleation centers is low. Such an

expanded layer of the 53BP1 scaffold can function as reaction hub

to transiently assemble client molecules, including p53 and p53-acti-

vatory proteins, and to relay the signal from locally confined repair

compartments to global activation of p53 target genes to control

checkpoint functions and regulate cell fate decisions.

Materials and Methods

Cell culture

Human U-2 OS cells (authenticated by STR profiling), U-2 OS

derived stable cell lines expressing GFP-53BP1, GFP-MDC1, or

53BP1-mScarlet, U-2 OS cells harboring an array of the lac operator

sequence and stably expressing ER-mCherry-LacI-FokI (Tang et al,

2013), hTERT-RPE1 cells, MCF7 wild-type, MCF7 53BP1 knockout,

and canine MDCK cells were grown under standard sterile cell

culture conditions (37°C, humidified atmosphere, 5% CO2) in Dulbecco’s

modified Eagle’s medium (DMEM, Thermo Fisher) containing 10%

fetal bovine serum (GIBCO) and penicillin–streptomycin antibiotics.

All cell lines were routinely tested for mycoplasma contamination

by PCR and scored negative. FokI in ER-mCherry-LacI-FokI cells

was induced with 300 nM 4-OHT (Sigma-Aldrich) and 1 lM Shield

(Takara) for 1–2 h. Sorbitol, sucrose, sodium chloride (NaCl), and

1,6-hexanediol (all from Sigma-Aldrich) were prepared freshly in

DMEM prior to cell treatments. Neocarzinostatin (NCS) and aphidi-

colin were from Sigma-Aldrich; the ATR inhibitor AZ-20 was from

Tocris.

Cloning

Cloning was done using chemically competent bacteria generated

in-house, derived from Library EfficiencyTM DH5aTM Competent Cells

(ThermoFisher). Correct cloning and integration into target vectors

were confirmed by sequencing.

Cloning of components for endogenous 53BP1 tagging
The mScarlet-P2A-NeoR construct was generated from three-piece

Gibson assembly. The pUC18 vector was generated by linearization

with primers 1 and 2. The mScarlet gene was initially amplified

from the pmScarlet-i_C1 plasmid (Bindels et al, 2017; Addgene

85044) with primers 6 and 7 followed by amplification of the

product with primers 5 and 7. The Neo resistance gene was ampli-

fied from the same plasmid with primers 3 and 4. After Gibson

assembly of these components, the product was transformed and

plasmids isolated and verified by sequencing. pX459 targeting the C-

terminal of 53BP1 was generated as previously described (Ran et al,

2013) by T4 PNK (NEB)-mediated phosphorylation and annealing of

primers 10 and 11 at 10 lM. The product was diluted and assem-

bled into the vector by golden gate assembly using BBsI (NEB) and

T4 DNA ligase (NEB) through 12 cycles between 5 min at 37°C and

5 min at 16°C followed by transformation and isolation of plasmids

to identify the correct product. The repair template for tagging of

endogenous 53BP1 by homology-directed repair was amplified by

PCR of the mScarlet-NeoR pUC18 plasmid generated above, using

Q5 (NEB) polymerase amplification with primers 8 and 9 followed

by PCR purification with a QIAquick PCR purification column

according to the manufacturer’s instruction.

Cloning of Cry2-mCherry-fusion constructs
The E490G mutation in Cry2olig-mCherry (Taslimi et al, 2014)

(Addgene 60032) was reverted with primers 14 and 15 using Q5

site-directed mutagenesis to generate Cry2WT-mCherry. To gener-

ate a W1495A TTD mutant of 53BP1, N-Myc-53BP1 pLPC-Puro

(Dimitrova et al, 2008; Addgene 19836) was mutated using Q5

site-directed mutagenesis with primers 12 and 13. The Cry2WT-

mCherry-53BP1 fusion constructs were generated by Gibson

assembly of the desired 53BP1 fragments into the Cry2WT-

mCherry vector linearized with primers 16 and 17. Full-length and

truncated versions of 53BP1 were generated by amplification of

the desired insert with forward and reverse primer sets from the

primer list (18 + 19, 24–33) or by Q5 site-directed deletion from

already cloned products with primers 34–37. The products were

DpnI digested and gel extraction purified followed by isothermal

Gibson assembly into the linearized vector and transformation into

competent DH5a. The N terminus of FUS and MDC1 was similarly

amplified with primer sets 20 + 21 and 22 + 23, respectively,

followed by Gibson assembly into the linearized vector. Exchange

of the mCherry fluorescent protein with mEGFP in the Cry2

constructs was performed by PCR amplification on the Cry2WT-

mCherry empty vector with primers 16 + 38 and on the corre-

sponding Cry2WT-mCherry-53BP1(1203–1972) vector with primers

16 + 27, followed by inserting mEGFP (Addgene 18696) amplified

with primers 39 + 40 or 39 + 41 by Gibson assembly into the line-

arized backbones.

Cloning of MDC1-mScarlet
The mScarlet-i-C vector was linearized by Q5 polymerase amplifi-

cation with primers 42 + 43, and MDC1 was amplified from the

GFP-MDC1 construct with Q5 polymerase with primers 44 + 45

followed by insertion by Gibson assembly into the linearized vector.
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Cloning of GST-tagged mCherry-53BP1 (1203–1972) and 53BP1
(1203–1972)
pGEX6 was linearized with primers 46 and 47 followed by DpnI

digestion and gel extraction purification. The inserts harboring parts

of 53BP1 with or without mCherry were amplified with primers 48–

50 followed by DpnI digestion and gel extraction purification. The

inserts were cloned into the vector by isothermal Gibson assembly

and the products transformed into DH5a.

Engineering of the endogenous 53BP1 locus

400,000 U-2 OS cells were seeded into wells of a 6-well plate

1 day before transfection. 1 lg of the repair template and 1 lg of

the 53BP1 targeting pX459 were diluted in 250 ll OptiMEM

(Thermo Fisher) and prepared for transfection with 6 ll TransIT-
LT1 (Mirus Bio) followed by 15 min incubation. The same trans-

fection mix was prepared without the repair template as control.

The transfection mixtures were added to the cells at a confluence

of 80–90%. On the next day, the cells were transferred to 16-cm

plates. Selection was initiated 2 days after transfection by incuba-

tion with 400 lg/ml G418 (Thermo Fisher). Medium was

exchanged every 3–4 days for the next 20–25 days until colonies

were obtained and when clear signs of cell death were observed

for the cells transfected without repair template. Individual clones

were picked by trypsin detachment in cloning cylinders and trans-

ferred to a 24-well plate for subsequent expansion for the next

10 days under continued selection. Cells were then transferred to

6-well plates, expanded further, and characterized by QIBC for

expression and functionality and by PCR-based analysis of

genomic DNA to confirm the correct insertion of the mScarlet-P2A-

NeoR module with primers 51 and 52.

Fluorescence and brightfield microscopy

GE IN Cell Analyzer 2500HS
IN Cell Analyzer 2500HS was equipped with two filter sets for

multi-wavelength acquisitions: BGOFR_1, blue (ex BP 390/18, em

BP 432/47), green (ex BP 475/28, em BP 511/23), orange (ex BP

542/27, BP 587/48), and far-red (ex BP 632/22, em BP 676/48),

and BGFFR_2, blue (ex BP 390/18, em BP 432/47), green (ex BP

475/28, em BP 526/52), red (ex BP 575/25, BP 607/19), and far-

red (ex BP 632/22, em BP 676/48). The associated objectives

used were a 20× NA 0.75 CFI Plan Apo lambda and a 40× NA

0.95 CFI Plan Apo lambda objective. Images were acquired with

a 16-bit 2,048 × 2,048 pixel PCO sCMOS camera with a pixel size

of 6.5 lm.

Olympus ScanR
The Olympus ScanR imaging system based on an inverted motor-

ized Olympus IX83 microscope was equipped with one set of band-

pass filters for multi-wavelength acquisition: DAPI (ex BP 395/25,

em BP 435/26), FITC (ex BP 470/24, em BP 511/23), TRITC (ex BP

550/15, BP 595/40) and Cy5 (ex BP 640/30, em BP

705/72). The associated objectives used were a 20× NA 0.75

UPLSAPO and a 40× NA 0.90 UPLSAPO air objective. Images were

acquired with 12-bit dynamics on a 16-bit 2,048 × 2,048 pixel

Hamamatsu ORCA-FLASH 4.0 V2 sCMOS camera with pixel size of

6.5 lm.

Molecular devices IXM-C
The IXM-C system used for spinning disk confocal imaging was

equipped with bandpass filters for multi-wavelength acquisition:

DAPI (ex BP 377/25, em BP 447/30), FITC (ex BP 480/15, em BP

535/20), TRITC (ex BP 542.5/7.5, BP 642.5/32.5), Texas Red (ex BP

560/20, BP 630/30) and Cy5 (ex BP 624/20, em BP 692/20), and

with lasers at 405, 488, 532, and 633 nm. The objectives used were

a 20× NA 0.75 Apo lambda and a 40× NA 0.95 Plan Apo Lambda air

objective. Images were acquired with a 16-bit 2,048 × 2,048 pixel

Andor sCMOS camera with pixel size of 6.5 lm.

Leica SP5 UV-VIS
The Leica SP5 was equipped with an Argon laser for 453, 476, 488,

496, and 514 nm, and a diode laser for 561 nm. The filters for fluo-

rescence imaging were GFP (ex BP 470/40, em BP 525/50) and N3

(ex BP 546/12, 600/400). Confocal images were acquired with an

HCX PL APO Leica 63× oil immersion objective with PMT detectors.

EVOS Floid Cell Imaging Station
An EVOS Floid Cell Imaging Station allowed for transmission light

and fluorescence imaging with filters for blue (ex BP 390/40, em BP

446/33), green (ex BP 482/18, em BP 532/59), and red (ex BP 586/

15, em 646/68). The system was equipped with a 20× NA 0.45 Plan

Fluorite air objective and a digital camera for acquisition with

1,296 × 964 pixel resolution.

Micrographs are displayed with adjusted brightness and contrast

settings, with identical settings being used to compare conditions

within the same experiment.

Immunostaining

Cells were grown in imaging multi-well plates or on sterile 12-

mm glass coverslips, fixed in 3% formaldehyde in PBS for

15 min at room temperature, washed once in PBS, permeabilized

for 5 min at room temperature in PBS supplemented with 0.2%

Triton X-100 (Sigma-Aldrich), and washed twice in PBS. All

primary (detailed below) and secondary antibodies (Alexa Fluor

488, 568, and 647 anti-rabbit and anti-mouse IgGs from Thermo

Fisher) were diluted in filtered DMEM containing 10% FBS and

0.02% sodium azide. Antibody incubations were performed for 1–

2 h at room temperature. Following antibody incubations, cells

were washed once with PBS and incubated for 10 min with PBS

containing 4’,6-diamidino-2-phenylindole dihydrochloride (DAPI,

0.5 lg/ml) at room temperature to stain DNA. Following three

washing steps in PBS, cells in multi-well plates were kept in PBS

for the imaging, whereas cells on coverslips were briefly washed

with distilled water and mounted on glass slides with 5 ll
Mowiol-based mounting media (Mowiol 4.88 (Calbiochem) in

Glycerol/TRIS).

Quantitative image-based cytometry (QIBC)

Automated multichannel wide-field microscopy for quantitative

image-based cytometry (QIBC) was performed on the Olympus

ScanR Screening System described above as done previously

(Pellegrino et al, 2017; Lezaja & Altmeyer, 2018; Michelena et al,

2018). Images were analyzed with the Olympus ScanR Image

Analysis Software version 3.0.0, a dynamic background
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correction was applied, nuclei segmentation was performed using

an integrated intensity-based object detection module using the

DAPI signal, and foci segmentation was performed using an

integrated spot-detection module. All downstream analyses were

focused on properly detected interphase nuclei containing a

2C–4C DNA content as measured by total and mean DAPI inten-

sities. Fluorescence intensities were quantified and are depicted

as arbitrary units. Color-coded scatter plots of asynchronous cell

populations were generated with Spotfire data visualization soft-

ware version 7.0.1 (TIBCO). Within one experiment, similar cell

numbers were compared for the different conditions. For visual-

izing discrete data in scatter plots, mild jittering (random

displacement of data points along the discrete data axes) was

applied in order to demerge overlapping data points. Representa-

tive scatter plots, typically containing several thousand cells

each, are shown. Corresponding images, in which individual

color channels have been adjusted for brightness and contrast,

accompany selected quantifications.

Live cell tracking of foci formation in GFP-MDC1 and GFP-53BP1
U-2 OS cells

Live imaging of U-2 OS cells in 96-well ibidi plates was carried

out on the GE InCell microscope described above with controlled

atmosphere (5% CO2 and 20% O2) and temperature (37°C).

Images were acquired every 15 min with 100 ms exposure. After

30 min, the plate was exposed to 1 Gy of ionizing radiation and

returned for imaging the next 8 h. Image stacks were converted

and imported to Olympus ScanR Image Analysis Software version

3.0.0. Nuclei segmentation was done on smoothened GFP signal

to avoid mis-segmentation upon foci formation and foci detection

was carried out with the spot-detection module described above.

Result tables were extracted to include frame numbers and x-y

coordinates of the center of the nuclei. These coordinates were

used as a basis for a script to track cells based on closest prox-

imity in x-y pixel space between consecutive frames (MATLAB

code at https://github.com/SinKilic/Tracking), and the associated

time-dependent development of foci counts was visualized in

Spotfire.

Fluorescence recovery after photobleaching

Fluorescence recovery after photobleaching was carried out on the

Leica SP5 system described above. Bleaching movies were acquired

with photon collection in 128 × 128 pixels at a zoom of 28 with a

speed of 700 Hz and a pinhole set at 210 lm. The argon laser was

turned on to 100%, and images during FRAP were acquired with

the 488 nm laser line at a laser power of 10%, an EV gain of 750

and the PMT detection range set to 495–580 nm for GFP acquisi-

tions and to 585–640 nm for mCherry acquisitions (565 nm laser).

The time to acquire per frame was 389 ms. Five images were

acquired prior to bleaching a circular area with 1 lm diameter using

100% laser power for five cycles, followed by 60 images to monitor

the recovery. Signals were corrected for photobleaching using a

similarly sized unbleached area and then normalizing to the ratio

between the average intensity of the 5-prebleach images and the

lowest post-bleach intensity. Averages � standard deviation from

12 to 20 cells per condition were plotted.

Cry2 light-mediated phase separation

Two days prior to microscopy, 6,000 U-2 OS or 8,000 U-2 OS cells

harboring the lac operator array and stably expressing ER-mCherry-

LacI-FokI were seeded into a 96-well plate (Greiner lclear). Twenty-

four hours prior to microscopy, cells were transfected with 100 ng

plasmid DNA per well using TransIT-LT1. The DNA was diluted in

9 ll OptiMEM per transfection, 0.3 ll LT1 was added, and the

mixture was incubated for 15 min at room temperature. The trans-

fection mix was diluted in 92 ll FluoroBrite DMEM supplemented

with Glutamax and FCS and added to the cells. Microscopy of

optoDroplet formation was carried out using the IN Cell Analyzer

2500HS system. Acquisitions were done with the 20× objective

using the BGRFR_2 filter set with 100 ms red exposures for visual-

ization of the mCherry signal and 25 ms green2 exposures for Cry2

activation. For mEGFP-tagged versions, 100 ms green2 exposures

were used for light activation and detection of the mEGFP-tagged

proteins. Time-lapse image sequences were obtained with 15-s inter-

val acquisitions with green2 exposure after each red exposure for

6 min. OptoDroplet quantification was performed on unprocessed

images using the Olympus ScanR Image Analysis software and the

integrated spot-detection module. Cells with similar expression

levels were compared.

Live cell imaging of 53BP1 fusions and fissions

Fusions and fissions of 53BP1 using GFP-53BP1 U-2 OS cells were

observed with 2-min intervals in spinning disk confocal mode on

the IXM-C system and with 30-min intervals on the ScanR system.

53BP1 fusions and fissions using genetically engineered endoge-

nously tagged 53BP1-mScarlet cells were observed on the In Cell

2500HS imaging system. Images were continuously acquired for up

to 2 h with 2-min intervals or 24 h with 30-min intervals. Image

stacks were generated and processed with Fiji (ImageJ).

Expression and purification of recombinant 53BP1 1203–1972

Expression of recombinant proteins was performed in BL21 (DE3)

cells from pGEX-6P-1 plasmids harboring 53BP1 W1495A (1203–

1972) or mCherry-53BP1 W1495A (1203–1972). 4 ml from a bacte-

rial pre-culture grown from a single colony was inoculated into

400 ml LB medium with 100 lg/ml ampicillin (Sigma-Aldrich) and

grown at 30°C and 230 rpm until reaching an OD600 of 0.6. The

temperature was then lowered to 16°C, and expression was

induced with IPTG at a final concentration of 0.2 mM followed by

16 h of expression. Bacteria were harvested by centrifugation at

5,000 g for 20 min and resuspended in 20 ml binding buffer

(50 mM Tris pH 7.4, 200 mM NaCl, 0.05% NP-40, 1 mM EDTA,

1 mM DTT, 10% glycerol, 1 mM PMSF, pepstatin, bestatin, and

leupeptin 1 lg/ml each) followed by cell lysis by two passages

through a French press. The supernatant was recovered by

centrifugation at 25,000 g for 30 min. The supernatant was loaded

onto a pre-equilibrated 1 ml GSTrap FF (GE Healthcare Life

Sciences) and washed with 10 column volumes of binding buffer.

Bound proteins were eluted with 10 column volumes of elution

buffer (50 mM Tris pH 7.4, 150 mM NaCl, 0.05% NP-40, 1 mM

EDTA, 1 mM DTT, 10% glycerol, 40 mM glutathione, and 1 tablet

cOmplete protease inhibitor tablet (Roche) per 50 ml buffer). Eluted
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fractions were analyzed by 10% SDS–PAGE. 50 ll glutathione

sepharose 4B beads (GE Healthcare Life Sciences) pre-equilibrated

with binding buffer at 4°C and diluted fractions from the initial puri-

fication were mixed to allow binding for 2 h. After binding, the

beads were collected by centrifugation and washed three times with

1 ml binding buffer. Beads were then washed three times with 1 ml

PBS containing 1 mM DTT and incubated with 50 ll PBS containing

1 mM DTT and 20 lg PreScission protease. Cleaved proteins were

recovered from the supernatant by centrifugation, and the protein

concentration was determined by Bradford assay.

In vitro 53BP1 condensation

A mix of 53BP1 W1495A (1203–1972) and mCherry-53BP1 W1495A

(1203–1972; 9:1 ratio) was diluted with Ficoll 400 (Sigma-Aldrich) to

a final concentration of 1.66 lM protein, 12.5% Ficoll with or with-

out 125 nM FAM-labeled dsDNA (primers 53 and 54) in 20 ll. The
mixtures were transferred to a 384-well plate and analyzed on the

Floid Imaging system and on the Leica SP5 UV-VIS confocal system

equipped for simultaneous brightfield and fluorescence imaging.

siRNA transfections

Individual siRNA transfections were performed for 72 h with

Ambion Silencer Select siRNAs using Lipofectamine RNAiMAX

(Thermo Fisher) according to the manufacturer’s procedures. The

following Silencer Select siRNAs were used: siControl, s813;

siRNF168, s46600; si53BP1, s14313; sip53, s606; siUSP28, s33509.

Irradiation of cells

Irradiation was performed with a Faxitron Cabinet X-ray System

Model RX-650 at IR doses from 0.5 to 10 Gy.

RNA extraction, reverse transcription, and quantitative PCR

RNA was purified with TRIzol reagent (Life Technologies), primed

with random hexamers (11034731001, Roche), and reverse-tran-

scribed using MultiScribe Reverse Transcriptase (4311235, Thermo

Fisher). Quantitative PCR (qPCR) was performed with the KAPA

SYBR FAST qPCR Kit (KAPA Biosystems) on a Rotor-Gene Q system

(Qiagen). Relative transcription levels were obtained by normaliza-

tion to EIF2C2, RPS12, and GAPDH expression. At least two biologi-

cal experiments were conducted with qPCRs performed in

triplicates. Primers 55–62 were used for amplification.

Co-immunoprecipitation

U-2 OS GFP-53BP1 grown in a 10-cm plate was transfected with

5 lg N-Myc-53BP1 WT pLPC-Puro using Lipofectamine 3000.

Twenty-four hours post-transfection cells were treated with IR

(10 Gy) in presence or absence of 0.4 M sorbitol and allowed to

recover for 2 h. Cells were washed with PBS and directly lysed with

500 ll of TNE buffer (50 mM Tris–HCl pH 8.0, 150 mM NaCl, 0.1%

Igepal CA630 (NP-40), 1 mM EDTA, 2 mM MgCl2, complete inhi-

bitor cocktail (Roche), phosphoSTOP (Roche), and 25 U/ml benzo-

nase). Lysates were incubated for 5 min at room temperature and

then centrifuged at 15,000 g for 15 min. 500 lg of lysates was

incubated with protein G-sepharose (15 ll slurry) coupled with 1 ll
of anti-GFP antibody for 3 h at 4°C. Beads were collected by

centrifugation, washed four times with lysis buffer, and eluted by

boiling in 10× SDS–PAGE sample buffer. Samples were then run on

a 7.5% SDS–PAGE for immunoblotting.

Immunoblotting

Proteins were separated by SDS–PAGE and transferred onto PVDF

membranes. Membranes were blocked with 5% milk in PBS-T

(PBS + 0.1% Tween-20) for 1 h at room temperature and incubated

with primary antibodies overnight at 4°C. Membranes were then

washed three times with PBS-T and incubated with HRP-conjugated

secondary antibodies for 1 h at room temperature, washed again

three times with PBS-T, and protein signals were detected using

ECLTM Western Blotting Detection Reagent (AmershamTM).

Data availability

All source data, including high-content imaging data for QIBC analy-

sis, are stored on a secure UZH server and can be made available

upon request. Original Western blot scans have been uploaded to

Mendeley.

Expanded View for this article is available online.
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