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Abstract
Rho GTPases are molecular switches that play an important role in regulating the behavior of a variety of tumor cells. RhoA 
GTPase-activating protein 26 (ARHGAP26) is a GTPase-activating protein and inhibits the activity of Rho GTPases by 
promoting the hydrolytic ability of Rho GTPases. It also affects tumorigenesis and progression of various tumors through 
several methods, including formation of abnormal fusion genes and circular RNA. This review summarizes the biological 
functions and molecular mechanisms of ARHGAP26 in different tumors, proposes the potential clinical value of ARHGAP26 
in cancer treatment, and discusses current issues that need to be addressed.
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Introduction

RhoA GTPase-activating protein 26 (ARHGAP26) was 
first discovered in avian tissues by Hildebrand et al. in 1996 
when they studied focal adhesion kinase (FAK) in integrin-
mediated signaling. As such, this protein was initially named 
as GTPase regulator associated with FAK (GRAF) [1]. As 
a type of GTPase-activating protein (GAP), ARHGAP26 
enhances the hydrolysis of GTPases and converts GTPases 
from an active form to an inactive form, thereby inhibiting 
signaling transduction [2]. Numerous studies have dem-
onstrated that ARHGAP26 expression and involvement in 
tumorigenesis and tumor progression are not the same in 
different tumors. For example, ARHGAP26 expression is 
significantly reduced in acute myeloid leukemia (AML) [3], 
chronic myeloid leukemia (CML) [3, 4], and ovarian cancer 
[5], while the transcription factor activity of ARHGAP26 
is significantly increased and expression of ARHGAP26 is 
upregulated in prostate cancer [6]. In gastric cancer, ARH-
GAP26 is fused with claudin-18 gene (CLDN18), and the 

translated abnormal fusion protein regulates the develop-
ment of gastric cancer [7–9], while circular RNA ARH-
GAP26 (circ-ARHGAP26) modulates microRNA through a 
“sponge” mechanism to affect the progression of gastric can-
cer [10–12]. In glioblastoma, ARHGAP26 acts as an impor-
tant executive molecule downstream of the integrin com-
plex to promote tumor invasion [13]. This article reviews 
the biological functions, molecular mechanisms, and clinical 
characteristics of ARHGAP26 in different tumors (Table 1), 
proposes its potential clinical applications, and explores the 
research directions and unsolved issues in related fields.

Role of ARHGAP26 in tumors and its 
potential clinical value

ARHGAP26 in gastric cancer

A study of 295 cases of gastric cancer in The Cancer Genome 
Atlas (TCGA) sample database showed that gastric cancer 
can be divided into four subtypes based on the molecular 
characterization. Expression of the CLDN18-ARHGAP26 
fusion gene was present in patients with a genomically 
stable subtype (Fig. 1) [7], which is the first report of the 
ARHGAP26 fusion gene. Since then, multiple studies have 
shown the existence of this abnormal fusion gene [9, 14–16]. 
Based on research data, 151 out of 1908 (7.9%) patients with 
gastric cancer had this gene fusion [17]. Analysis of clinical 
characteristics showed that the CLDN18-ARHGAP26 fusion 
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gene is more common in female patients [9], young patients, 
and patients with diffuse-type gastric cancer (Lauren’s clas-
sification) [15] and is associated with poor prognosis [9, 14]. 
In vitro experiments have shown that the presence of the 
CLDN18-ARHGAP26 fusion gene increases the migration 
and invasion ability of gastric cancer cells [8, 9, 15], as well 
as the resistance of tumor cells to chemotherapy drugs [9].

It is noteworthy that the high affinity of the CLDN18-
ARHGAP26 fusion protein for the cell membrane, as well as 
its exclusive expression in gastric cancer cells provide new 
opportunities for targeted therapies [16]. CLDN18 protein is 
involved in the formation of tight junctions in epithelial cells 
[18]. A CLDN18 protein subtype, CLDN18.2, is the spe-
cific CLDN18 expressed in the stomach and is an important 
component of the gastric acid barrier [19–22]. Zolbetuxi-
mab, formerly ideal monoclonal antibody 362 (IMAB362), 
is a new type of immunoglobulin G1 antibody that is highly 
specific for the CLDN18.2 protein [22–24]. Thus, it has the 
potential to be used in targeted therapy for gastric cancer 
patients with the CLDN18-ARHGAP26 fusion gene. This 
drug is currently undergoing clinical trials to evaluate its 
efficacy and safety [25, 26].

Through circular RNA microarrays, Shao et al. showed 
that the top ten upregulated circular RNAs in gastric cancer 
tissues included hsa_cirs_0074362, i.e., circ-ARHGAP26 
(7.58-fold change, p = 0.01156) [27]. Normally, the ARH-
GAP26 mRNA is transcribed from 46 kb of the genomic 
DNA at chromosome region 5q31.3, containing 23 exons. 
However, the circ-ARHGAP26 only contains the transcript 
from exon 5 to exon 11 in this chromosome region. Due 
to its structure, Xie et al. used divergent primers for circ-
ARHGAP26 amplification and showed by RT-PCR that the 
expression of circ-ARHGAP26 was significantly lower in 
gastric cancer tissues than in paired normal adjacent tissues 

Table 1  The molecular mechanisms, functions, and clinical features of ARHGAP26 in human cancers

CLDN18 claudin 18; ARHGAP26 RhoA GTPase-activating protein 26, ECM extracellular matrix, OS overall survival, AML acute myeloid leu-
kemia, MLL mixed lineage leukemia, SP1 specificity protein 1

Cancer type Molecular mechanism Role Biologic function Clinical feature Reference

Gastric cancer CLDN18-ARHGAP26 
fusion gene

Cancer promotor Cell-ECM adhesion, 
proliferation, invasion, 
migration, stress fiber 
formation and clathrin-
independent endocytosis

Pathological subtype, age, 
sex, tumor stage, OS, 
resistance to oxaliplatin 
and 5-fluorouracil

[7–9, 14–17]

Circle ARHGAP26 RNA Cancer promotor Proliferation and cell 
apoptosis

Lymphatic metastasis [11, 12, 27]

Myeloid malignancies Low Expression of ARH-
GAP26

Unknown Unknown Complete remission rate, 
incidence of primary 
resistance disease, deaths 
in induction therapy, OS

[3, 4]

Methylation of the ARH-
GAP26 promotor

Unknown Unknown Early event of AML devel-
opment

[28, 29]

MLL/ARHGAP26 fusion 
gene

Unknown Unknown Better response to treat-
ment

[30–32]

Glioblastoma Key downstream effector 
of CD151-α3β1 integrin 
complex signaling

Cancer promotor Motility and invasion Unknown [13]

Prostate cancer Transcription factor SP1 
overactive

Unknown Unknown Unknown [6]

Ovarian cancer Low Expression of ARH-
GAP26

Cancer suppressor Proliferation, migration, 
and invasion

OS [5]

Fig. 1  Schematic diagram of CLDN18-ARHGAP26 fusion gene and 
fusion protein. In the upper panel, the CLDN18 gene is fused with 
the ARHGAP26 gene, which initiates the translation of the fusion pro-
tein CLDN18-ARHGAP26 at a cryptic splice site. In the lower panel, 
the CLDN18-ARHGAP26 fusion protein contains the transmembrane 
domain of CLDN18 and the GAP and SH3 domains of ARHGAP26. 
CLDN18, claudin 18; ARHGAP26, RhoA GTPase-activating pro-
tein 26; GAP GTPase-activating protein, SH3 src homology 3, UTR  
untranslated region
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[12]. The expression of circ-ARHGAP26 was also lower 
in five gastric cancer cell lines (AGS, BGC-823, HGC-27, 
MGC-803, and SGC-7901) than that in the normal gastric 
epithelial GES-1 cell line. In addition, the expression of 
circ-ARHGAP26 in gastric tissues of patients with mild 
and moderate gastritis was also significantly lower than that 
of the normal gastric tissues, but higher than that of gas-
tric cancer tissues [12]. In view of the contradictory results 
of these studies [12, 27], Lv et al. assessed the levels of 
circ-ARHGAP26 in gastric cancer cells and normal gastric 
epithelial cells and showed that circ-ARHGAP26 level was 
significantly lower in gastric cancer cell lines than in nor-
mal gastric epithelial cells [11]. In functional experiments, 
downregulation of circ-ARHGAP26 resulted in a decline 
in the proliferation of gastric cancer epithelial cells and 
an increase in apoptosis. Based on the above results, the 
expression of circ-ARHGAP26 in gastric cancer should be 
verified further. Meanwhile, more investigations are war-
ranted to explore the underlying mechanism through which 
circ-ARHGAP26 affects tumorigenesis and progression of 
gastric cancer.

ARHGAP26 in myeloid malignancies

Previous studies have shown that the expression of ARH-
GAP26 in AML was significantly lower than that in the con-
trol group [3, 4]. Further studies showed that AML patients 
with relatively high expression of ARHGAP26 have a longer 
overall survival. The expression of ARHGAP26 has no sig-
nificant correlation with clinical characteristics, the French-
American-British (FAB) classification, or cytogenetic risk 
subgroups of AML patients [3]. Similarly, the expression of 
ARHGAP26 in CML was also significantly lower than that 
in the controls. In addition, the expression of ARHGAP26 
significantly decreased with the progression of CML. No 
significant difference in the expression of ARHGAP26 was 
found between CML patients in the remission phase and 
chronic phase [4]. In terms of the mechanism, a significant 
increase in the methylation ratio of the ARHGAP26 pro-
moter in patients is an important reason for the decrease in 
ARHGAP26 expression [28]. Another study showed that the 
transcription level of ARHGAP26 was significantly lower in 
AML patients compared with the normal population, regard-
less of whether the ARHGAP26 promoter was methylated. In 
addition, patients with a methylated ARHGAP26 promoter 
had a lower ARHGAP26 transcription level, indicating that 
hypermethylation of the ARHGAP26 promoter was an early 
event in AML progression [29].

Gene fusion is a common chromosomal structural abnor-
mality in patients with acute leukemias. The majority of 
translocations that occur at 11q23 disrupt mixed lineage 
leukemia gene (MLL) and fuse it to many different partner 
genes [30]. Studies have shown that the MLL/ARHGAP26 

fusion is a chromosomal abnormality in infants and young 
children with AML. Through case summary analysis, it 
was found that infants with the MLL/ARHGAP26 fusion 
responded well to treatment [30–32].

ARHGAP26 in glioblastoma

Studies have shown that the integrin complex CD151-α3β1 
significantly promotes the invasion and migration of glio-
blastoma, and ARHGAP26 is a key molecule downstream of 
the complex [13]. Moreover, antibodies against ARHGAP26 
were first discovered in patients with subacute cerebellar 
ataxia [33, 34]. Subsequent studies have shown that these 
antibodies are related to cognitive impairment and dyslexia 
[35–38]. Interestingly, researchers also detected other sys-
temic tumors in patients with such neurological diseases 
who were positive for ARHGAP26 antibodies, suggesting 
that anti-ARHGAP26 antibodies may be a potential tumor 
predictor in such patients [38, 39]. Nevertheless, the role that 
these antibodies play in the tumorigenesis of other cancers 
remains unclear. Large-scale clinical trials should be car-
ried out to investigate the value of using anti-ARHGAP26 
antibodies to identify patients with the aforementioned 
characteristics.

ARHGAP26 in prostate cancer

An analysis of different genes in a cohort from the Gene 
Expression Omnibus (GEO) database, which contained 
18 prostate cancer tissues and 21 normal tissues, showed 
that the activity of transcription factor specificity protein 
1 (SP1), which significantly upregulates the expression 
of ARHGAP26, was significantly upregulated in prostate 
cancer [6]. However, no further in vivo or in vitro studies 
were conducted to clarify the impact of ARHGAP26 on the 
phenotype of prostate cancer. In addition, the correlation 
between the clinicopathological characteristics of prostate 
cancer patients and upregulation of ARHGAP26 expression 
is also worth exploring.

ARHGAP26 in ovarian cancer

A previous study showed that expression of ARHGAP26 in 
ovarian cancer tissues was significantly reduced and related 
to poor prognosis of the patients [5]. Cytological experi-
ments have shown that upregulation of ARHGAP26 leads 
to a decrease in cell proliferation, migration, and invasion 
and downregulation of the downstream molecules, includ-
ing GTP-RhoA, β-catenin, vascular endothelial growth fac-
tor (VEGF), matrix metallopeptidase (MMP)2, and MMP7, 
whereas downregulation of ARHGAP26 leads to the oppo-
site cellular phenotypes—all of which can be inhibited by 
the β-catenin inhibitor, DKK1. Animal experiments have 
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shown that upregulation of ARHGAP26 reduces the lung 
metastasis of ovarian cancer cells. Interestingly, upregula-
tion of ARHGAP26 in SKOV3 ovarian carcinoma cells was 
shown to effectively inhibit the migration and invasion of 
tumor cells due to the upregulation of smad ubiquitination 
regulatory factor 1 (SMURF1). As an E3 ubiquitination 
ligase, SMURF1 degrades ARHGAP26 through the ubiqui-
tination pathway. Thus, researchers believe that SMURF1-
dependent regulation of ARHGAP26 ubiquitination pro-
motes the invasion and migration of ovarian cancer cells 
through the β-catenin pathway [5].

Mechanism of ARHGAP26 in cancers

Rho GTPases are a group of signaling proteins belonging to 
the Ras GTPases superfamily [40, 41]. There are 22 types 
of mammalian Rho GTPases [42]. Among them, RhoA, rac 
family small GTPase 1 (Rac1), and cell division cycle 42 
(Cdc42) are the most commonly studied. Rho GTPases are 
molecular switches that regulate signaling pathways through 
GTP-loading/GTP-hydrolysis (Fig. 2), namely GAPs, gua-
nine nucleotide exchange factors (GEFs), and Rho GDP 
dissociation inhibitors (GDIs) [43]. GAPs promote GTPase 
hydrolysis to inhibit signaling transduction. GEFs catalyze 
the GTPase-loading reaction to stimulate signaling transduc-
tion, and GDIs inhibit the dissociation of GDP by binding 
to GDP-bound Rho GTPase, thereby inhibiting the activa-
tion of signaling pathways [43, 44]. Rho GTPases play an 
important role in cellular processes, including cell adhesion 
and polarity, cell morphology and movement, exchanges 
between vesicles and cell membranes, cell cycle, cell divi-
sion, and cell differentiation (Fig. 2) [44–46]. In addition, 
Rho GTPases are closely related to tumorigenesis and tumor 
progression.

ARHGAP26 is a GAP, and it is specific for only Cdc42 
and Rho A [1, 2]. ARHGAP26 converts both proteins from 
the GTP to GDP forms, which inactivates them, thereby 
regulating downstream molecules [44]. The ARHGAP26 
molecule includes the GAP domain in the central region, 

the src homology 3 (SH3) domain in the C segment, and the 
Bin/amphiphysin/Rvs (BAR) and pleckstrin homology (PH) 
domains at the N-terminal. These domains are highly con-
served among GAPs and GEFs [47, 48]. The GAP domain 
mainly inactivates Rho GTPases by enhancing the hydroly-
sis of GTPases [1, 2]. The SH3 domain is combined by a 
variety of regulatory molecules to regulate the activity of 
the GAP domain of ARHGAP26 [1, 2, 49]. The BAR and 
PH domains of ARHGAP26 regulate endocytosis by bind-
ing and inducing membrane curvature [50–53]. Numerous 
studies have shown that Rho GTPases play important, but 
different roles in a variety of tumors [54–56]. Thus, this 
partly explains the difference in the role of their upstream 
regulatory molecule, ARHGAP26, in different tumors.

Abnormal fusion of ARHGAP26 with other genes was 
first reported in 2000 [30]. ARHGAP26 was fused to MLL 
in a unique t (5; 11) (q31; q23) fusion in infants with myelo-
dysplastic syndrome (MDS) and AML. Since then, several 
cases with similar fusion genes have been reported; however, 
MLL/ARHGAP26 fusion is relatively rare in patients with 
hematological malignancies [31, 32]. In 2014, the fusion 
of ARHGAP26 and CLDN18 (CLDN18-ARHGAP26 fusion) 
was first reported in gastric cancer patients [7]. There are 
many types of CLDN18-ARHGAP26 fusion. Among them, 
CLDN18/exon5-ARHGAP26/exon12 fusion is the most 
common [17]. The CLDN18-ARHGAP26 fusion translates 
into the CLDN18-ARHGAP26 fusion protein by activat-
ing a cryptic splice site within exon 5 of CLDN18 (Fig. 1) 
[14, 15, 18]. The fusion protein retains the GAP domain 
located in the central region of ARHGAP26 and the SH3 
domain located at the C-terminal [8, 17], due to which the 
fusion protein retains some functions, including regulating 
its downstream RhoA pathway and mediating the integrin 
signaling pathway [1, 2, 49]. The N-terminal BAR and PH 
domains of wild-type ARHGAP26 are missing from the 
fusion protein, so the GAP domain activity of the fusion pro-
tein cannot be regulated by its upstream molecules, and the 
ability of wild-type ARHGAP26 to regulate the endocytosis 
pathway is also affected [51, 57–59]. CLND18 protein is 
involved in the formation of tight junctions in epithelial cells 

Fig. 2  The cycle of the GTP-
binding and GTP-hydrolysis 
and signaling functions of Rho 
GTPases involved in cells. The 
schematic shows how GEFs, 
GAPs, and GDIs regulate the 
cycle of the Rho GTPase signal-
ing pathway and the associated 
cell behaviors. GEF guanine 
nucleotide exchange factor, 
GAP GTPase-activating protein; 
GDI Rho GDP dissociation 
inhibitor
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and plays a crucial role in the gastric acid barrier [19–22]. 
The CLDN18-ARHGAP26 fusion protein only has the trans-
membrane domain of CLDN18 and lacks the cytoplasmic 
part at the C-terminus. Therefore, the adhesion function of 
epithelial cells expressing the fusion protein is impaired, 
which, in turn, leads to dysfunction of the gastric mucosal 
barrier [7, 8, 16, 17, 21]. The two abnormal functions of the 
fusion protein that promote the invasion and migration of 
gastric cancer cells also partly explain the decreased survival 
rates and worse prognosis of patients with diffuse gastric 
cancer with the CLDN18-ARHGAP26 fusion compared with 
those without the CLDN18-ARHGAP26 fusion.

Circ-ARHGAP26 was first discovered in human gastric 
cancer tissues by Shao et al. in 2017 [27]. Circular RNA, 
also known as circRNA, is a long-chain, non-coding pre-
cursor RNA (pre-RNA) formed by non-canonical splicing. 
Its most important biological function is to regulate gene 
expression [60]. Post-transcriptional regulation has been an 
extensively recognized method for circRNA to regulate gene 
expression, (i.e., using circRNA as a “microRNA sponge” 
or “microRNA reservoir” for sequestering and regulating 
microRNA) [61, 62]. Studies have shown that regulation 
of circRNA plays an important role in tumorigenesis and 
tumor progression [60, 63]. Moreover, it has been reported 
that circ-ARHGAP26 is closely related to the expression 
of the tumor marker carbohydrate antigen 19–9 (CA19-9) 
[12], which may provide evidence for the involvement of 
circ-ARHGAP26 in the expression and regulation of tumor-
related proteins.

Issues to be solved

First, the upstream regulators responsible for the abnormal 
expression of ARHGAP26 in tumors are the most important 
issues that need to be addressed. The regulatory mechanisms 
of ARHGAP26 in different tumors vary, including changes 
in the expression level of ARHGAP26, abnormal fusion of 
ARHGAP26 with other genes, and microRNA sponge mech-
anism of circ-ARHGAP26. Understanding the cause of the 
abnormal expression of ARHGAP26 aids in evaluation of 
the tumor risk and implementation of pre-intervention.

Second, downstream mechanisms responsible for the 
abnormal expression of ARHGAP26 in tumors still need 
to be further investigated, including the expression of circ-
ARHGAP26 in gastric cancer patients. The mechanism of 
regulation of microRNAs by circ-ARHGAP26 to alter the 
expression of downstream genes still needs to be explored. 
The underlying mechanism of the effects of CLDN18-ARH-
GAP26 fusion protein on the downstream molecules to cause 
tumorigenesis and progression of gastric cancer also needs 
to be further studied.

Lastly, although the clinical trials using the Zolbetuximab 
monoclonal antibodies against CLDN18.2 have reported 
encouraging results [25, 26], there are still problems that 
need to be resolved. A question worth exploring is whether 
CLDN18-ARHGAP26 fusion has a positive correlation with 
the CLDN18.2 protein expression. The answer to this ques-
tion will determine whether this fusion gene can be used 
as a specific indicator of tumors that would be sensitive to 
Zolbetuximab-targeted therapy [17]. In addition, given the 
differences between the Eastern and Western populations, 
Zolbetuximab in combination with other chemotherapies 
exerts a greater toxicity in Asian people than in other popu-
lations [22]. Therefore, the tolerability and therapeutic effect 
of the combination of Zolbetuximab and other chemothera-
peutics in the Asian population still needs to be evaluated.

Conclusion

ARHGAP26, a GAP regulating the Rho GTPases, plays 
a crucial role in tumorigenesis and progression of human 
cancers. The expression level and pattern of ARHGAP26 in 
various tumors are quite different. However, for a given type 
of cancer, it can be used as a biomarker because of its altered 
expression compared with normal tissues or cells. Moreo-
ver, the CLDN18-ARHGAP26 fusion protein may became 
a novel target for the treatment of gastric cancer patients in 
the future. Notably, although many studies have explored the 
biological functions and molecular mechanisms of ARH-
GAP26, there are still many contradictions and problems 
worth exploring (Fig. 3). Therefore, more basic experiments 
and large-scale clinical trials are needed in this field.
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