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Abstract

There is an urgent need to standardize the semantics of biomedical data values, such as

phenotypes, to enable comparative and integrative analyses. However, it is unlikely that all

studies will use the same data collection protocols. As a result, retrospective standardiza-

tion is often required, which involves matching of original (unstructured or locally coded)

data to widely used coding or ontology systems such as SNOMED CT (clinical terms), ICD-

10 (International Classification of Disease) and HPO (Human Phenotype Ontology). This

data curation process is usually a time-consuming process performed by a human expert.

To help mechanize this process, we have developed SORTA, a computer-aided system for

rapidly encoding free text or locally coded values to a formal coding system or ontology.

SORTA matches original data values (uploaded in semicolon delimited format) to a target

coding system (uploaded in Excel spreadsheet, OWL ontology web language or OBO open

biomedical ontologies format). It then semi-automatically shortlists candidate codes for

each data value using Lucene and n-gram based matching algorithms, and can also learn

from matches chosen by human experts. We evaluated SORTA’s applicability in two use

cases. For the LifeLines biobank, we used SORTA to recode 90 000 free text values (includ-

ing 5211 unique values) about physical exercise to MET (Metabolic Equivalent of Task)

codes. For the CINEAS clinical symptom coding system, we used SORTA to map to HPO,

enriching HPO when necessary (315 terms matched so far). Out of the shortlists at rank 1,

we found a precision/recall of 0.97/0.98 in LifeLines and of 0.58/0.45 in CINEAS. More
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importantly, users found the tool both a major time saver and a quality improvement be-

cause SORTA reduced the chances of human mistakes. Thus, SORTA can dramatically

ease data (re)coding tasks and we believe it will prove useful for many more projects.

Database URL: http://molgenis.org/sorta or as an open source download from http://

www.molgenis.org/wiki/SORTA

Introduction

Biobank and translational research can benefit from the

massive amounts of phenotype data now being collected

by hospitals and via questionnaires. However, heterogen-

eity between datasets remains a barrier to integrated ana-

lysis. For the BioSHaRE (1) biobank data integration

project, we previously developed BiobankConnect (2), a

tool to overcome heterogeneity in data structure by map-

ping data elements from the source database onto a target

scheme. Here, we address the need to overcome heterogen-

eity of data contents by coding and/or recoding data val-

ues, i.e. mapping free text descriptions or locally coded

data values onto a widely used coding system. In this

‘knowledge-based data access’, data is collected and stored

according to local requirements while information ex-

tracted from the data is revealed using standard representa-

tions, such as ontologies, to provide a unified view (3).

The (re)coding process is essential for the performance

of three different kinds of functions:

I. Search and query. The data collected in a research

and/or clinical setting can be described in numerous

ways with the same concept often associated with

multiple synonyms, making it difficult to query distrib-

uted database systems in a federated fashion. For ex-

ample, using standard terminologies, the occurrence

of ‘cancer’ written in different languages can be easily

mapped between databases if they have been anno-

tated with same ontology term.

II. Reasoning with data. Ontologies are the formal repre-

sentation of knowledge and all of the concepts in an

ontology have been related to each other using differ-

ent relationships, e.g. ‘A is a subclass of B’. Based on

these relationships, the computer can be programmed

to reason and infer the knowledge (4). For example,

when querying cancer patients’ records from hospitals,

those annotated with ‘Melanoma’ will be retrieved be-

cause ‘Melanoma’ is specifically defined as a descend-

ant of ‘Cancer’ in the ontology.

III. Exchange or pooling of data across systems.

Ontologies can also be used to describe the informa-

tion model, such as the MGED (Microarray Gene

Expression Data) ontology describing microarray ex-

periments or hospital information coded using the

ICD-10 (International Classification of Diseases) cod-

ing system, so that the data can easily flow across sys-

tems that use the same model (4).

The data (re)coding task is essentially a matching problem

between a list of free text data values to a coding system, or

from one coding system to another. Unfortunately, as far as

we know, there are only a few software tools available that

can assist in this (re)coding process. Researchers still mostly

have to evaluate and recode each data value by hand, match-

ing values to concepts from the terminology to find the most

suitable candidates. Not surprisingly, this is a time-consum-

ing and error-prone task. Based on our previous success in

BioSHaRE, we were inspired to approach this problem using

ontology matching and lexical matching (2). We evaluated

how these techniques can aid and speed-up the (re)coding

process in the context of phenotypic data. In particular, we

used our newly developed system, SORTA, to recode 5210

unique entries for ‘physical exercise’ in the LifeLines biobank

(5) and 315 unique entries for ‘physical symptoms’ (includ-

ing terms that are similar, but not the same) in the Dutch

CINEAS (www.cineas.org) (6) and HPO (Human Phenotype

Ontology) coding systems for metabolic diseases.

Requirements

Several iterations of SORTA-user interviews resulted in the

identification of the following user requirements:

1. Comparable similarity scores, e.g. scores expressed as a

percentage, so users can easily assess how close a sug-

gested match is to their data, and decide on a cut-off to

automatically accept matches.

2. Support import of commonly used ontology formats

(OWL/OBO) for specialists and Excel spread sheets for

less technical users.

3. Fast matching algorithm to accommodate large input

datasets and coding systems.

4. Online availability so users can recode/code data dir-

ectly and share with colleagues without need to down-

load/install the tool.

5. Maximize the sensitivity to find candidate matches and

let users decide on which one of them is the ‘best’ match.
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6. Enable complex matching in which not only a text

string is provided but also associated attributes such as

labels, synonyms and annotations, e.g. [label: Hearing

impairment, synonyms:(Deafness, Hearing defect)].

Approaches

Two types of matching approaches have been reported in

the literature: lexical matching and semantic matching.

Lexical matching is a process that measures the similarity

between two strings (7). Edit-distance (8), n-gram (9) and

Levenshtein distance (10) are examples of string-based algo-

rithms that focus on string constituents and are often useful

for short strings, but they do not scale up for matching large

numbers of entity pairs. Token-based techniques focus on

word constituents by treating each string as a bag of words.

An example of these techniques is the vector space model al-

gorithm (11), in which each word is represented as a dimen-

sion in space and a cosine function is used to calculate the

similarity between two string vectors. Lexical matching is

usually implemented in combination with a normalization

procedure such as lowering case, removing stop words (e.g.

‘and’, ‘or’, ‘the’) and defining word stems (e.g. ‘smoking’!
‘smoke’). Semantic matching techniques search for corres-

pondences based not only on the textual information associ-

ated to a concept (e.g. description) but also on the

associative relationships between concepts (e.g. subclass, ‘is-

a’) (7). In these techniques, for example, ‘melanoma’ is a

good partial match for the concept called ‘cancer’. Because

our goal is to find the most likely concepts matching data

values based on their similarity in description, lexical-based

approaches seem most suitable.

One of the challenges in the (re)coding task is the vast

number of data values that need to be compared, which

means that the matcher has to find correspondences be-

tween the Cartesian product of the original data values and

the codes in the desired coding system. High-throughput

algorithms are needed to address this challenge and two

methods have been developed to deal with the matching

problem on a large scale. The Early Pruning Matching

Technique (12) reduces search space by omitting irrelevant

concepts from the matching process, e.g. the ontology con-

cept (label:hearing impairment, synonyms[deafness, hearing

defect, congenital hearing loss]) that does not contain any

words from the search query ‘protruding eye ball’ are elimi-

nated. The Parallel Matching Technique (12) divides the

whole matching task into small jobs and the matcher then

runs them in parallel, e.g. 100 data values are divided into

10 partitions that are matched in parallel with ontologies.

Existing tools

We found several existing tools that offered partial solu-

tions, see Table 1. Mathur and Joshi (13) described an

ontology matcher, Shiva, that incorporates four string-

matching algorithms (Levenshtein distance, Q-grams, Smith

Waterman and Jaccard), any of which could be selected by

users for particular matching tasks. They used general re-

sources like WordNet and Online Dictionary to expand the

semantics of the entities being matched. Cruz (14) described

a matcher, Agreement Maker, in which lexical and semantic

matchers were applied to ontologies in a sequential order

and the results were combined to obtain the final matches.

At the lexical matching stage, Cruz (14) applied several

different kinds of matchers, string-based matches (e.g. edit

distance and Jar-Winkler) and an internally revised token-

based matcher, then combined the similarity metrics from

these multiple matchers. Moreover the philosophy behind

this tool is that users can help make better matches in a

semi-automatic fashion that are not possible in automatic

matching (14). Jiménez-Ruiz and Cuenca Gra (15) described

an approach where: (i) they used lexical matching to com-

pute an initial set of matches; (ii) based on these initial

matches, they took advantage of semantic reasoning

Table 1. Comparison of existing tools with SORTA

SORTA BioPortal annotator ZOOMA Shiva Agreement maker LogMap Peregrine

Comparable similarity score Y N N N Y Y N

Import code system in ontology format Y Y Y Y Y Y Y

Import code system in excel format Y N N N N N N

Uses lexical index to improve performance Y Y Y N N Y Y

Code/Recode data directly in the tool Y N N N Y N N

Tool available as online service Y Y Y N/A N/A N/A N

Support partial matches Y N N Y Y Y N

Match complex data values Y N N Y Y Y N

Learns from curated dataset Y N Y N N N N

Y represents Yes; N represents No; N/A represents unknown

ZOOMA and BioPortal Annotator were the closest to our needs.
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methods to discover more matches in the class hierarchy

and (iii) they used indexing technology to increase the effi-

ciency of computing the match correspondences between

ontologies. Peregrine (16) is an indexing engine or tagger

that recognizes concepts within human readable text, and if

terms match multiple concepts it tries to disambiguate

BioPortal (17), the leading search portal for ontologies, pro-

vides the BioPortal Annotator that allows users to annotate

a list of terms with pre-selected ontologies. While it was use-

ful for our use cases, it was limited because it only retrieves

perfect matches and terms with slightly different spellings

cannot be easily matched (e.g. ‘hearing impaired’ vs. ‘hear-

ing impairment’) (18). In addition, BioPortal Annotator’s

500-word limit reduces its practical use when annotating

thousands of data values. Finally, ZOOMA (19) enables

semi-automatic annotation of biological data with selected

ontologies and was closest to our needs. ZOOMA classifies

matches as ‘Automatic’ or ‘Curation required’ based on

whether or not there is manually curated knowledge that

supports the suggested matches. ZOOMA does not meet

our requirements in that it does not provide similarity scores

for the matches, does not prioritize recall over precision (i.e.

ZOOMA matches are too strict for our needs), and does

not handle partial/complex matches. For example, in

ZOOMA, the OMIM (Online Mendelian Inheritance in

Man) term ‘Angular Cheilitis’ could not be partially

matched to the HPO term ‘Cheilitis’ and ‘Extra-Adrenal

Pheochromocytoma’ could not be matched to the HPO

term ‘Extraadrenal pheochromocytoma’ because of the hy-

phen character.

Method

Based on our evaluation of existing tools, we decided to

combine a token-based algorithm, Lucene (20), with an n-

gram-based algorithm. Lucene is a high-performance search

engine that works similarly to the Early Pruning Matching

Technique. Lucene only retrieves concepts relevant to the

query, which greatly improves the speed of matching. This

enables us to only recall suitable codes for each value and

sort them based on their match. However, the Lucene

matching scores are not comparable across different queries

making it unsuitable for human evaluation. Therefore, we

added an n-gram-based algorithm as a second matcher,

which allows us to standardize the similarity scores as per-

centages (0–100%) to help users understand the quality of

the match and to enable a uniform cut-off value.

We implemented the following three steps. First, coding

systems or ontologies are uploaded and indexed in Lucene

to enable fast searches (once for each ontology). Second,

users create their own coding/recoding project by uploading

a list of data values. What users get back is a shortlist of

matching concepts for each value that has been retrieved

from the selected coding system based on their lexical rele-

vance. In addition, the concepts retrieved are matched with

the same data values using the second matcher, the n-gram-

based algorithm, to normalize the similarity scores to values

from 0 to 100%. Finally, users apply a %-similarity-cut-off

to automatically accept matches and/or manually curates

the remaining codes that are assigned to the source values.

Finally, users download the result for use in their own re-

search. An overview of the strategy is shown in Figure 1.

We provide a detailed summary below.

Users upload coding sources such as ontologies or ter-

minology lists to establish the knowledge base. Ontologies

are the most frequently used source for matching data val-

ues, but some of the standard terminology systems are not

yet available in ontology formats. Therefore, we allow

users to not only upload ontologies in OWL and OBO for-

mats, but also import a ‘raw knowledge base’ stored in a

simple Excel format which includes system ID, concept ID

and label (see Table 2). The uploaded data is then indexed

and stored locally to enable rapid matching.

To match data values efficiently, we used the Lucene

search index with the default snowball stemmer and a

standard filter for stemming and removing stop words. A

code/ontology concept is evaluated as being a relevant

match for the data value when it or its corresponding syno-

nyms (if available) contain at least one word from the data

value. The assumption in this strategy is that the more

words a concept’s label or synonyms contain, the more

relevant Lucene will rank it, and therefore the top concepts

on the list are most likely to be the correct match.

However, the snowball stemmer could not stem some of

the English words properly, e.g. the stemmed results for

‘placenta’ and ‘placental’ were ‘placenta’ and ‘placent’, re-

spectively. To solve this problem, we enabled fuzzy match-

ing with 80% similarity and this allowed us to maximize

the number of relevant concepts retrieved by Lucene.

Lucene also provides matching scores that are calcu-

lated using a cosine similarity between two weighted vec-

tors (21), which takes the information content of words

into account, e.g. rarer words are weighted more than

common ones. However, after our first user evaluations we

decided not to show Lucene scores to users for two rea-

sons. First, Lucene calculates similarity scores for any

indexed document as long as it contains at least one word

from the query. Documents that have more words that

match the query, or contain words that are relatively rare,

will get a higher score. Second, the matching results pro-

duced by different queries are not comparable because the

scales are different (22) making it impossible to determine

the ‘best’ cut-off value above which the suggested matches

can be assumed to be correct.
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We therefore decided to provide an additional similarity

score that ranges from 0 to 100% by using an n-gram cal-

culation between the data value and the relevant concepts

retrieved by Lucene. In this n-gram-based algorithm, the

similarity score is calculated for two strings each time. The

input string is lowercased and split by whitespace to create

a list of words, which are then stemmed by the default

snowball stemmer. For each of the stemmed words, it is

appended with ‘^’ at the beginning and ‘$’ at the end, from

which the bigram tokens are generated, e.g. ^smoke$ !
[^s, sm, mo, ok, ke, e$]. All the bigram tokens are pushed

to a list for the corresponding input string with duplicated

tokens allowed. The idea is that the more similar two

strings are, the more bigram tokens they can share. The

similarity score is the product of number of shared bigram

tokens divided by the sum of total number of bigram

tokens of two input strings as follows,

Similarity ¼ Number of shared bigram tokens� 2

Number of bigram tokensS1þ
Number of bigram tokensS2

Because we were only interested in the constituents of

the strings being compared, the order of the words in strings

does not change the score. We also considered only using

the n-gram calculation, but that would require calculation

of all possible pairwise comparisons between all data values

and codes, which would greatly slow down the process.

Ultimately both algorithms were combined because

Lucene is very efficient in retrieving relevant matches while

our users preferred n-gram scores because they are easier

to compare. Combining Lucene with the n-gram-based al-

gorithm is an optimal solution in which the advantages of

both methods complement each other while efficiency, ac-

curacy and comparability of scores are preserved.

To code the data values, the data can be uploaded as a

simple comma separate value file or copy/pasted into the

text area directly in SORTA. The uploaded data is usually

a list of simple string values, however in some cases it also

can be complex data values containing information other

than a simple label.

For these cases, SORTA allows inclusion of descriptive

information such as synonyms and external database iden-

tifiers to improve the quality of the matched results shown

in Table 3.

Table 2. Example of how to upload a coding system and a

coding/recoding target

Concept ID Concept Label System ID

02060 cardio training MET

02020 bodypump MET

18310 swimming MET

15430 kung fu MET

15350 hockey MET

12150 running MET

This example shows an Excel file with MET (Metabolic Equivalent of

Task), a system developed to standardize physical activity, in which each con-

cept ID includes a list of different sports representing specific amounts of en-

ergy consumption.

Figure 1. SORTA overview. The desired coding system or ontology can be uploaded in OWL/OBO and Excel and indexed for fast matching searches.

Data values can be uploaded and then automatically matched with the indexed ontology using Lucene. A list of the most relevant concepts is

retrieved from the index and matching percentages are calculated using the n-gram algorithm so that users can easily evaluate the matching score.

Users can choose the mappings from the suggested list.
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For each of the data values, a suggested list of matching

concepts is retrieved and sorted based on similarity. Users

can then check the list from the top downwards and decide

which of the concepts should be selected as the final match.

However, if the first concept on the list is associated with a

high similarity score, users can also choose not to look at

the list because they can confidently assume that a good

match has been found for that data value. By default, 90%

similarity is the cut-off above which the first concept on the

retrieved list is automatically picked as the match for the

data value and stored in the system. Below 90% similarity,

users are required to manually check the list to choose the

final match. The cut-off value can be changed according to

the needs of the project, e.g. a low cut-off of 70% can be

used if the data value was collected using free text because

typos are inevitably introduced during data collection.

Results

We evaluated SORTA in various projects. Here we report

two representative matching scenarios where the original

data values were either free text (case 1) or already coded,

but using a local coding system (case 2). In addition, as a

benchmark, we generated matches between HPO, NCIT

(National Cancer Institute Thesaurus), OMIM (Online

Mendelian Inheritance in Man) and DO (Disease

Ontology) and compared the matches with existing cross

references between these two (case 3)

Case 1: Coding unstructured data in the
LifeLines biobank

Background

LifeLines is a large biobank and cohort study started by the

University Medical Centre Groningen, the Netherlands.

Since 2006, it has recruited 167 729 participants from the

northern region of the Netherlands (5). LifeLines is involved

in the EU BioSHaRE consortium and one of the joint data

analyses being conducted by BioSHaRE is the ‘Healthy

Obese Project’ (HOP) that examines why some obviously

obese individuals are still metabolically healthy (23). One of

the variables needed for the HOP analysis is physical activ-

ity but, unfortunately, this information was collected using

a Dutch questionnaire containing free text fields for types of

sports. Researchers thus needed to match these to an exist-

ing coding system: the Ainsworth compendium of physical

activities (24). In this compendium each code matches a

metabolic equivalent task (MET) intensity level correspond-

ing to the energy cost of that physical activity and defined as

the ratio of the metabolic rate for performing that activity

to the resting metabolic rate. One MET is equal to the meta-

bolic rate when a person is quietly sitting and can be equiva-

lently expressed as:

1 MET � 1
kcal

kg� h
� 4:184

kJ

kg� h

A list of 800 codes has been created to represent all

kinds of daily activities with their corresponding energy

consumption (24). Code 1015, for example, represents

‘general bicycling’ with a MET value of 7.5. The process of

matching the physical activities of LifeLines data with

codes is referred to as coding.

Challenges and motivation

There were two challenges in this task. First, the physical

activities were collected in Dutch and therefore only re-

searchers with a good level of Dutch could perform the

coding task. Second, there were data for more than 90 000

participants and each participant could report up to four

data values related to ‘Sport’ that could be used to calcu-

late the MET value. In total, there were 80 708 terms

(including 5211 unique terms) that needed to be coded.

We consulted with the researchers and learned that they

typically coded data by hand in an Excel sheet or by syntax

in SPSS, and for each entry they needed to cross-check the

coding table and look up the proper code. While this ap-

proach is feasible on a small scale (<10 000 participants),

it became clear it would be too much work to manually

code such a massive amount of data. Hence, we used our

SORTA coding system.

To train SORTA, we reused a list of human-curated

matches between physical activities described in Dutch and

the codes that were created for a previous project. We used

this as the basis to semi-automatically match the new data

from LifeLines. An example of the curated matches is

shown in Table 2 and the complete list can be found at

Table 3. Example of how to upload data values and coding/

recoding source)

Name (required) Synonym_1

(optional)

OMIM

(optional)

2,4-dienoyl-CoA

reductase deficiency

DER deficiency 222745

3-methylcrotonyl-CoA

carboxylase deficiency

3MCC 210200

Acid sphingomyelinase

deficiency

ASM 607608

At minimum, one column of values should be provided: the first column

with the header ‘Name’. Additional optional columns that start with

‘Synonym_’ can contain the synonyms for input values. Other optional col-

umn headers can contain other identifiers, e.g. in this example OMIM.
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Supplementary material: Lifelines_MET_mappings.xlsx.

Moreover, we have enhanced SORTA with an upload

function to support multiple ‘Sport’-related columns in one

harmonization project. This can be done as long as the col-

umn headers comply with the standard naming scheme,

where the first column header is ‘Identifier’ and other col-

umn headers start with string ‘Sport_’, e.g. ‘Sport_1’ and

‘Sport_2’.

Figure 2 shows an example of manually coding the

physical activity ‘ZWEMMEN’ (Swimming) with MET

codes, in which a shortlist of candidates were retrieved by

SORTA and the first item of the list selected as the true

match. Each time the manual curation process produced a

new match, this new knowledge could be added to the

knowledge base to be applied to all future data values.

This is an optional action because data values (especially

those filled in by participants of the study) sometimes con-

tain spelling errors that should not be added to the know-

ledge base.

Evaluation

With the assistance of SORTA, all of the data values have

been coded by the researcher who is responsible for

releasing data about physical activity in the LifeLines pro-

ject. The coding result containing a list of matches was

used as the gold standard for the following analysis, in

which we evaluated two main questions: (i) How far could

the previous coding round improve the new matching re-

sults? (ii) What is the best cut-off value above which the

codes selected by SORTA can be confidently assumed to

be correct matches to a value?

SORTA’s goal is to shortlist good codes for the data

values so we first evaluated the rank of the correct manual

matches because the higher they rank, the less manual

work the users need to perform. Our user evaluations sug-

gested that as long as the correct matches were captured in

the top 10 codes, the researchers considered the tool useful.

Otherwise, based on their experience, users changed the

query in the tool to update the matching results.

Re-use of manually curated data from the previous cod-

ing round resulted in an improvement in SORTA’s per-

formance with recall/precision at rank 1st increasing from

0.59/0.65 to 0.97/0.98 and at rank 10th from 0.79/0.14 to

0.98/0.11 (see Figure 3 and Table 4). At the end of the cod-

ing task, about 97% of correct matches were captured at

rank 1st with users only needing to look at the first candi-

date match.

Figure 2. Example of coding a physical activity. A list of MET codes was matched with input and sorted based on similarity scores, from which the

proper code can be selected to recode the input. If none of the candidate codes is suitable, users can either search for codes manually or decide to

use ‘Unknown code’. If the button ‘Code data’ is clicked, the input is recoded only with the selected code. If the button ‘Code and add’ is clicked, the in-

put is recoded and the input gets added to the code as a new synonym. The example is a typo of the Dutch word for ‘swimming’.

zwemmen¼ swimming, zwemmen 2x¼ twice a week, soms zwemmen¼occasional swimming, gym-zwemmen¼water gym.
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We included use of an n-gram-based algorithm to pro-

vide users with an easily understood metric with which to

judge the relevance of the proposed codes on a scale of 1–

100%, based on the n-gram match between value and code

(or a synonym thereof). Supplementary Table S1 suggests

that, in the LifeLines case, 82% similarity is a good cut-off

for automatically accepting the recommended code be-

cause 100% of the matches produced by the system were

judged by the human curator to be correct matches.

Because LifeLines data is constantly being updated (with

new participants, and with new questionnaire data from

existing participants every 18 months), it would be really

helpful to recalibrate the cut-off value when the tool is

applied anew.

Case 2: Recoding from CINEAS coding
system to HPO ontology

Background

CINEAS is the Dutch centre for disease code development

and its distribution to the clinical genetics community

(www.cineas.org) (6). This centre was initiated by the eight

clinical genetics centres responsible for genetic counselling

and diagnostics in the Netherlands in 1992 (25). CINEAS

codes are used in daily practice by Dutch clinical geneti-

cists and genetic counsellors to assign diseases and clinical

symptoms to patients. The 63rd edition of CINEAS now

lists more than 5600 diseases and more than 2800 clinical

symptoms. The challenge was to match and integrate (or

recode) the CINEAS clinical symptom list with HPO in

order to use one enriched standardized coding system for

future coding of patients’ symptoms and to obtain inter-

operability for CINEAS codes already registered in local

systems all over the country. The metabolic diseases ob-

tained from CINEAS disease list, which has become an in-

dependent project called The Dutch Diagnosis Registration

Metabolic Diseases (DDRMD, https://ddrmd.nl/) (25), will

be matched with Orphanet ontology in the future.

Challenge and motivation

The previous strategy of CINEAS curators was to search

HPO via BioPortal, however, tracking possible candidate

terms meant making written notes or keeping a digital

registry on the side, tracking methods that are time-

consuming, prone to human errors and demand a lot of

switching between tools or screens. Therefore, SORTA

was brought into the project. Figure 4 shows an example

of a data value ‘external auditory canal defect’ and a list of

Figure 3. Receiver operating characteristic (ROC) curves evaluating performance on LifeLines data. Blue represents the performance before the re-

searcher recoded all the LifeLines data. During coding, the researcher introduced new knowledge to the database and if a similar dataset was up-

loaded again (e.g. second rounds of the same questionnaire), the coding performance greatly improved as shown by the red curve.
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HPO ontology terms as candidate matches. While none of

them is a perfect match for the input term, the top three

candidates are the closest matches, but are too specific for

the input. Scrutiny by experts revealed that ‘Abnormality

of auditory canal’ could be a good ‘partial’ match because

of its generality.

Evaluation

In an evaluation study, the first 315 clinical symptoms out

of 2800 were re-coded by a human expert, in which 246

were matched with HPO terms while 69 could not be

matched. In addition, we performed the same matching

task using BioPortal Annotator and ZOOMA because

these existing tools seemed most promising (see Table 5).

We further investigated which cut-off value can be confi-

dently used to assume that the automatic matches are

correct by calculating precision and recall for all possible

n-gram cut-offs (0–100%). Supplementary Table S2 shows

89% to be a good cut-off value for future CINEAS match-

ing tasks because above this value all of the suggested

matches are correct with 100% precision.

Case 3: Benchmark against existing matches
between ontologies

We downloaded 700 existing matches between HPO and

DO concepts, 1148 matches between HPO and NCIT con-

cepts, and 3631 matches between HPO and OMIM concepts

from BioPortal. We used the matching terms from DO,

NCIT and OMIM as the input values and HPO as the target

coding system and generated matches using SORTA,

BioPortal Annotator and ZOOMA. Supplementary Table S3

shows that all three tools managed to reproduce most of the

existing ontology matches with SORTA slightly outperform-

ing the other two by retrieving all of the ontology matches.

Scrutiny revealed that SORTA was able to find the complex

matches, where data values and ontology terms consist of

multiple words, and some of which are concatenated, e.g.

matching ‘propionic acidemia’ from DO with

‘Propionicacidemia’ from HPO. We also noticed that beyond

the first rank, precision in SORTA is lower than the other

two (with the highest precision in ZOOMA). In addition, we

investigated what proportion of data values could be auto-

matically matched at different cut-offs. Supplementary Table

S4 shows that at similarity score cut-off of 90%, SORTA re-

called at least 99.6% of the existing matches with 100% pre-

cision across all three matching experiments.

Discussion

In RESULTS section, we have evaluated SORTA in three

different use cases that demonstrated that SORTA can in-

deed help human experts in performing the (re)coding

tasks in terms of improving the efficiency. While user

evaluations of SORTA were very positive, there was still

much debate among co-authors on the need to combine

Lucene-based matching with n-gram post-processing and if

we can make better use of ontology relationships. Below

we will discuss these issues as basis for future directions to

improve algorithm performance while retaining usability.

As mentioned in the Method section, Lucene scores

were not really informative for users, but the order in

which the matching results were sorted by Lucene seemed

better thanks to the cosine similarity function that takes

information content into account. After applying the

n-gram-based algorithm, this order was sometimes

changed. To evaluate this issue we performed the same

matching tasks using Lucene and Lucene þ n-gram. In the

case of coding LifeLines data, the performances were quite

similar and the inclusion of n-gram did not change the

order of the matching results, see Supplementary material:

PrecisionRecallLifeLines.xlsx. However, in the case of

matching HPO terms, there was a large difference in preci-

sion and recall as shown in Figure 5 and Supplementary

Table 4. Precision and recall for the LifeLines case study

Rank

cut-off

Before coding After coding

Recall Precision F-measure Recall Precision F-measure

1 0.59 0.65 0.62 0.97 0.98 0.97

2 0.66 0.39 0.49 0.97 0.50 0.66

3 0.71 0.29 0.41 0.97 0.34 0.50

4 0.74 0.24 0.36 0.97 0.26 0.41

5 0.76 0.21 0.33 0.97 0.21 0.35

6 0.77 0.19 0.30 0.97 0.18 0.30

7 0.78 0.17 0.28 0.97 0.15 0.26

8 0.78 0.16 0.27 0.98 0.14 0.25

9 0.78 0.14 0.24 0.98 0.12 0.21

10 0.79 0.14 0.24 0.98 0.11 0.20

11 0.79 0.13 0.22 0.98 0.10 0.18

12 0.79 0.12 0.21 0.98 0.09 0.16

13 0.79 0.12 0.21 0.98 0.09 0.16

14 0.79 0.12 0.21 0.98 0.08 0.15

15 0.79 0.11 0.19 0.98 0.08 0.15

16 0.79 0.11 0.19 0.98 0.07 0.13

17 0.79 0.11 0.19 0.98 0.07 0.13

18 0.80 0.11 0.19 0.98 0.06 0.11

19 0.80 0.10 0.18 0.98 0.06 0.11

20 0.80 0.10 0.18 0.98 0.06 0.11

30 0.80 0.10 0.18 0.98 0.04 0.08

50 0.80 0.09 0.16 0.98 0.03 0.06

In total, 90 000 free text values (of which 5211 were unique) were recoded

to physical exercise using MET coding system. The table shows recall and pre-

cision per position in the SORTA result before coding (using only the MET

score descriptions) and after coding (when a human curator had already pro-

cessed a large set of SORTA recommendations by hand).
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Figure 4. Example of matching the input value ‘external auditory canal defect’ with HPO ontology terms. A list of candidate HPO ontology terms was

retrieved from the index and sorted based on similarity scores. Users can select a mapping by clicking the ‘v’ button. If none of the candidate map-

pings are suitable, users can choose the ‘No match’ option.

Table 5. Comparison of SORTA, BioPortal and ZOOMA

Rank cut-off SORTA BioPortal ZOOMA

Recall Precision F-measure Recall Precision F-measure Recall Precision F-measure

1 0.58 0.45 0.51 0.34 0.54 0.42 0.17 0.63 0.27

2 0.69 0.27 0.39 0.35 0.44 0.39 0.17 0.60 0.26

3 0.73 0.19 0.30 0.35 0.44 0.39 0.18 0.60 0.28

4 0.76 0.15 0.25 N/A N/A N/A N/A N/A N/A

5 0.78 0.13 0.22 N/A N/A N/A N/A N/A N/A

6 0.81 0.11 0.19 N/A N/A N/A N/A N/A N/A

7 0.81 0.09 0.16 N/A N/A N/A N/A N/A N/A

8 0.83 0.08 0.15 N/A N/A N/A N/A N/A N/A

9 0.83 0.08 0.15 N/A N/A N/A N/A N/A N/A

10 0.85 0.07 0.13 N/A N/A N/A N/A N/A N/A

11 0.85 0.06 0.11 N/A N/A N/A N/A N/A N/A

12 0.85 0.06 0.11 N/A N/A N/A N/A N/A N/A

13 0.86 0.06 0.11 N/A N/A N/A N/A N/A N/A

14 0.86 0.05 0.09 N/A N/A N/A N/A N/A N/A

15 0.87 0.05 0.09 N/A N/A N/A N/A N/A N/A

16 0.87 0.05 0.09 N/A N/A N/A N/A N/A N/A

17 0.87 0.05 0.09 N/A N/A N/A N/A N/A N/A

18 0.88 0.04 0.08 N/A N/A N/A N/A N/A N/A

19 0.88 0.04 0.08 N/A N/A N/A N/A N/A N/A

20 0.88 0.04 0.08 N/A N/A N/A N/A N/A N/A

30 0.89 0.03 0.06 N/A N/A N/A N/A N/A N/A

50 0.92 0.02 0.04 N/A N/A N/A N/A N/A N/A

N/A not applicable

Evaluation based on the CINEAS case study in which 315 clinical symptoms were matched to Human Phenotype Ontology. The table shows the recall/preci-

sion per position in SORTA, BioPortal Annotator and ZOOMA. N.B. both BioPortal Annotator and ZOOMA have a limitation that they can only find exact

matches and return a maximum of three candidates.

Page 10 of 13 Database, Vol. 2015, Article ID bav089



material PrecisionRecallCINEAS.xlsx. Lucene alone out-

performed the combination of the two algorithms. We hy-

pothesize that this may be caused by Lucene’s use of word

inverse document frequency (IDF) metrics, which are cal-

culated for each term (t) using the following formula:

idf tð Þ ¼ 1þ log
total Numberdocs

docFreqþ 1

� �

where docFreq is the number of documents that contain

the term.

We checked the IDFs for all the words from input val-

ues for the HPO use case and Supplementary Figure S1

shows the large difference in the information carried by

each word. This suggested that, to improve the usability of

the tool, we should allow users to choose which algorithm

they wish to use to sort the matching results, an option

that we will add in the near future. We also explored if we

could simply add information content to the n-gram

scoring mechanism to make the ranks consistent by redis-

tributing the contribution of each of the query words in the

n-gram score based on the IDF. For example, using n-gram

the contribution of the word ‘joint’ in the query string

‘hyperextensibility hand joint’ is about 18.5% because

‘joint’ is 5/27 letters. However, if this word is semantically

more important, results matching this word should have a

higher score. We therefore adapted the n-gram algorithm

to calculate the IDF for each of the words separately, cal-

culate the average and reallocate the scores to the more im-

portant words as follows:

Scorereallocate ¼
lengthcommon word

lengthall words

� IDFaverage � IDFcommon word

IDFaverage

Scorecommon word ¼
lengthcommon word

lengthall words

� Scorereallocate

Scoreimportant word ¼
lengthimportant word

lengthall words

þ
X

Scorereallocate

�
IDFimportant wordP
IDFimportant words

where common_word is defined as having an IDF that is

lower than IDFaverage and important_words is defined as

the IDF that is higher than IDFaverage.

This resulted in an improvement of recall compared to

naive n-gram scoring at rank 10th from 0.79 to 0.84 (for

details see Supplementary material: comparision_ngram_

lucene.xlsx), and the summarized comparison is

provided via receiver operating characteristic (ROC) curve

in Figure 5. However, Lucene still outperforms this metric

and we speculate that this can be explained by the

Figure 5. Performance comparison for matching HPO terms among three algorithms. Lucene (blue line), combination of Lucene þ n-gram (red) and

combination of Lucene þ n-gram þ inverse document frequency (green).
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fundamental difference between the underlying scoring

functions. The n-gram score is more sensitive to the length

of input strings than Lucene and it is quite possible that

two strings do not share any of the words but share similar

bigram tokens, especially when dealing with long strings.

Consequently, the n-gram-based algorithm might find

more false positives than Lucene. However, in practice, the

number of data values to be coded/recoded is quite large

and the benefit of using an n-gram score cut-off value

above which all the suggested matches are automatically

selected outweighs this drawback.

Another issue was whether we could make better use

of all the knowledge captured in ontologies. We noticed

in some matching examples that related terms that come

from the same ontological cluster tend to show up to-

gether in the matching results. For example, Figure 4

shows that the input term ‘external auditory canal defect’

is not matched to any of the top three candidates because

they are too specific and hence we have to take the more

general ontology term ‘Auditory canal abnormality’,

which is actually ranked 11th, as the match even though

this term is in fact the parent of the three top candidates.

This indicates that if the input value is not matched by

any of the candidates with a high similarity score and the

candidates contain clusters of ontology terms, the parent

ontology term should probably be selected as the best

match (which is similar to the way human curators make

decisions on such matches). However, translating this

knowledge into an automatic adaptation of matching a

score is non-trivial and something we plan to work on in

the future.

Conclusions

We developed SORTA as a software system to ease data

cleaning and coding/recoding by automatically shortlisting

standard codes for each value using lexical and ontological

matching. User and performance evaluations demonstrated

that SORTA provided significant speed and quality im-

provements compared to the earlier protocols used by bio-

medical researchers to harmonize their data for pooling.

With increasing use, we plan to dynamically update the

precision and recall metrics based on all users’ previous se-

lections so that users can start the matching tasks with con-

fident cut-off values. In addition, we plan to include

additional resources such as WordNet for query expansion

to increase the chance of finding correct matches from

ontologies or coding systems. Finally, we also want to pub-

lish mappings as linked data, for example as nanopublica-

tions (26) (http://nanopub.org), so they can be easily

reused. SORTA is available as a service running at http://

molgenis.org/sorta. Documentation and source code can

be downloaded from http://www.molgenis.org/wiki/

SORTA under open source LGPLv3 license.

Supplementary data

Supplementary data are available at Database online.
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15. Jiménez-Ruiz,E. and Cuenca Grau,B. (2011) LogMap: logic-

based and scalable ontology matching. Lecture Notes in

Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics).

Springer, 7031 LNCS, pp. 273–288.

16. Schuemie,M.J., Jelier,R. and Kors,J. (2007) Peregrine:

Lightweight gene name normalization by dictionary lookup. In:

Proceedings of the Second BioCreative Challenge Evaluation

Workshop. pp. 131–133.

17. Whetzel,P.L., Shah,N.H., Noy,N.F. et al. (2009) BioPortal:

ontologies and integrated data resources at the click of a mouse.

Nucleic Acids Res., 37, 170–3.

18. Funk,C., Baumgartner,W., Garcia,B. et al. (2014) Large-scale

biomedical concept recognition: an evaluation of current auto-

matic annotators and their parameters. BMC Bioinformatics,

15, 59.

19. Burdett,T., Jupp,S., Malone,J. et al. (2012) Zooma2—a repository

of annotation knowledge and curation API. http://www.ebi.ac.uk/

spot/zooma/index.html. (26th June 2015, date last accessed).

20. The Apache Software Foundation (2006) Apache Lucene.

Agenda, 2009. https://lucene.apache.org/core/. (5th May 2015,

date last accessed).

21. Apache Software Foundation (2001) Lucene Similarity Score.

https://lucene.apache.org/core/4_6_0/core/overview-summary.html.

(26th June 2015, date last accessed).

22. ElasticSearch (2015) ElasticSearch: Lucene’s Practical Scoring

Function. https://www.elastic.co/guide/en/elasticsearch/guide/

master/practical-scoring-function.html#query-norm. (26th June

2015, date last accessed).

23. Van Vliet-Ostaptchouk,J.V, Nuotio,M.-L., Slagter,S.N. et al.

(2014) The prevalence of Metabolic Syndrome and metabolically

healthy obesity in Europe: a collaborative analysis of ten large

cohort studies. BMC Endocr. Disord., 14, 1–13.

24. Ainsworth,B.E., Haskell,W.L., Leon,A.S. et al. (1993)

Compendium of physical activities: Classification of energy

costs of human physical activities. Med. Sci. Sports Exer., 25,

71–80.

25. Sollie,A., Sijmons,R.H., Lindhout,D. et al. (2013) A new coding

system for metabolic disorders demonstrates gaps in the interna-

tional disease classifications ICD-10 and SNOMED-CT, which

can be barriers to genotype-phenotype data sharing. Hum.

Mutat., 34, 967–973.

26. Sernadela,P., Horst,E., Thompson,M. et al. (2014) A nanopub-

lishing architecture for biomedical data. In: 8th International

Conference on Practical Applications of Computational Biology

& Bioinformatics (PACBB 2014). pp. 277–284.

Database, Vol. 2015, Article ID bav089 Page 13 of 13

http://www.ebi.ac.uk/spot/zooma/index.html
http://www.ebi.ac.uk/spot/zooma/index.html
https://lucene.apache.org/core/
https://lucene.apache.org/core/4_6_0/core/overview-summary.html
https://www.elastic.co/guide/en/elasticsearch/guide/master/practical-scoring-function.html#query-norm
https://www.elastic.co/guide/en/elasticsearch/guide/master/practical-scoring-function.html#query-norm

	bav089-TF1
	bav089-TF2
	bav089-TF3
	bav089-TF4
	bav089-TF5
	bav089-TF6
	bav089-TF7

