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Abstract: Inflammatory activation and intestinal flora imbalance play an essential role in the devel-
opment and progression of colorectal cancer (CRC). Berberine (BBR) has attracted great attention in
recent years due to its heath-related benefits in inflammatory disorders and tumors, but the intricate
mechanisms have not been fully elucidated. In this study, the effects and the mechanism of BBR on
colon cancer were investigated in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced
colitis-associated carcinogenesis mice model. Our results showed that pre-administration of BBR
showed a decrease in weight loss, disease activity index (DAI) score, and the number of colon tumors
in mice, compared with the model group. The evidence from pathological examination indicated that
the malignancy of intestinal tumors was ameliorated after pre-administration of BBR. Additionally,
pre-administration with BBR suppressed the expression of pro-inflammatory factors (interleukin
(IL)-6, IL-1β, cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)-α) and the cell-proliferation
marker Ki67, while expression of the tight junction proteins (ZO-1 and occludin) were increased in
colon tissue. Moreover, the levels of critical pathway proteins involved in the inflammatory process
(p-STAT3 and p-JNK) and cell cycle regulation molecules (β-catenin, c-Myc and CylinD1) exhibited
lower expression levels. Besides, 16S rRNA sequence analysis indicated that pre-administration of
BBR increased the ratio of Firmicutes/Bacteroidetes (F:M) and the relative abundance of potentially
beneficial bacteria, while the abundance of cancer-related bacteria was decreased. Gavage with
Lactobacillus rhamnosus can improve the anti-tumor effect of BBR. Overall, pre-administration of
BBR exerts preventive effects in colon carcinogenesis, and the mechanisms underlying these effects
are correlated with the inhibition of inflammation and tumor proliferation and the maintenance of
intestinal homeostasis.

Keywords: berberine; colitis-associated carcinogenesis; inflammation; intestinal microbiota;
chemoprevention

1. Introduction

Colorectal cancer (CRC) is one of the most frequent malignant tumors in the digestive
tract with a complex etiology and high fatality rate, and it is correlated to lifestyle factors,
including low physical activity, high-fat diets, alcohol consumption, smoking tobacco and
sedentary behavior [1,2]. Several studies have demonstrated that inflammatory bowel
disease (IBD) caused by chronic inflammatory conditions can increase the risk of CRC, such
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as ulcerative colitis (UC) and Crohn’s disease (CD) [3,4]. Multiple interrelated pathways
were considered to be involved in the pathogenesis of IBD-associated CRC, including
inflammatory response, oxidative stress, and intestinal microbiota [3,5]. Inflammatory
response is driven by inflammatory cytokines, which are generated by tumor cells and the
immune cells from tumor microenvironment. Among the secreted factors identified are
prostaglandin (PG), nitric oxide (NO), cyclooxygenase (COX)-2, tumor necrosis factor-alpha
(TNF-a), interleukin (IL)-1β and IL-6, which ultimately contribute to the development of
tumors [6,7]. Accumulating evidence has demonstrated that inflammatory cytokines can
enhance cancer cell growth rates and invasiveness through activating inflammatory signal-
ing pathways, including NF-κB and STATs [8,9]. Additionally, Wnt/β-catenin signaling
has been considered to be an indispensable player in tumorigenesis with its regulatory role
on the inflammatory cascade [10].

Importantly, the interactions between resident micro-organisms and the intestinal tract
are essential for maintaining gut homeostasis. Accordingly, alterations of the gut microbiota
composition have been demonstrated to be involved in CRC progression [11]. Indeed,
intestinal microbiota has been divided into three categories based on their effects in the
intestinal tract, including physiologic bacteria, conditional pathogens, and pathogens [12].
Changes of the enteral and external environments can cause a diminish in the proportion of
intestinal-dominant microbiota, while conferring a survival advantage upon pathogens or
conditional pathogens [13,14]. Available evidence has demonstrated that the immune sys-
tem acts as a crucial link in the interactions between gut microbiota and CRC. A dysbiotic
microbial community with pro-carcinogenic features is considered to be a major contributor
to colorectal carcinogenesis by influencing the inflammatory signals [15–17]. In this sce-
nario, several potentially beneficial (Lactobacillus, Bifidobacterium, Faecalibacterium prausnitzii,
Roseburia, and Enterococcus) and harmful (Enterococcus, Enterotoxigenic bacteroides fragilis,
Streptococcus, and Helicobacter) bacterial species have been identified, and demonstrated to
be important in CRC progression [11–13]. Therefore, the pathogenesis of CRC is closely
correlated with the intestinal microbiota, and gut microbiota dysbiosis plays a significant
role in the manifestation of CRC.

Continuing inflammatory conditions could account for the development of CRC, thus
numerous anti-inflammatory agents have been regarded as potential chemopreventive agents,
particularly food-derived and herb-derived multifunctional natural products [18–21]. Cur-
rently, numerous natural products have been extensively used in traditional and modern
medicine due to the anti-inflammatory, anti-oxidative, anti-apoptotic, and anti-tumorigenic
effects, which provide significant promise for cancer prevention and therapy, especially
in inflammatory cancers [10]. However, the mechanisms underlying these effects exerted
by natural products remain unclear. Therefore, much work should dedicated to exploring
natural products, and simultaneously the precise mechanisms of therapeutic action need to
be elucidated.

Berberine (BBR) is an isoquinoline alkaloid extracted from medicinal plants, such
as Coptidis Rhizoma (Huanglian) and Cortex Phellodendri (Huangbai) [22]. In the last
two decades, BBR has been investigated vigorously due to its manifold biological activities
for anti-tumorigenic, anti-inflammatory, anti-oxidative, anti-microbial, anti-diabetic, and
anti-hyperlipidemia properties [23–26]. Accordingly, the evidence from in vivo studies
has confirmed that BBR exerts enormous therapeutic potential on various diseases, in-
cluding cardiovascular diseases [27], metabolic diseases [28], inflammatory diseases [29]
and cancers [30]. In terms of modern biomedical studies, the anti-cancer activities of BBR
have been demonstrated, which were correlated to inhibit the proliferation, growth, and
metastasis of tumors, including gastric cancer, pancreatic cancer, breast cancer, lung cancer,
liver cancer and colorectal cancer [31]. Liu and colleagues found that BBR can inhibit the
growth, migration/invasion of CRC cells via the COX-2/PGE2 mediated JAK2/STAT3
signaling pathway [32]. Other evidence indicated that BBR suppressed colon epithelial
proliferation and tumorigenesis via AMPK dependent inhibition of mTOR and NF-κB
signaling in mice [33]. Additionally, BBR has been demonstrated to modulate the tumor
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microenvironment by reinstating dysbiotic gut microbiota [34]. Thus, BBR exerts anti-
neoplastic effects involved with multiple targets, and more investigations are required to
reveal the complex mechanisms involved, especially in the anti-inflammatory effect and its
mechanism in intestinal tract. Available data have suggested that the polypharmacology of
BBR is in part explained by its role in modulation of the gut microbiota [35].

Although the effects of BBR on various cancers have been vigorous investigated,
rare evidence has evaluated whether BBR pre-administration could exert the preventive
effects in the development of cancers. In this study, BBR was administrated by the intra-
gastric route prior to model induction, and we evaluated the preventive effects of BBR
pre-administration on AOM/DSS-induced colitis and colorectal carcinogenesis based on
body weight, disease activity index (DAI) score, and colon histology. Furthermore, the
underlying mechanism was elucidated from the modulation of inflammation, cell prolifera-
tion, intestinal barrier function and microbiota.

2. Materials and Methods
2.1. Chemicals and Drugs

Berberine was obtained from Sangon Biotech Co., Ltd. (Shanghai, China). Azoxymethane
(AOM) was purchased from Sigma Aldrich (St. Louis, MO, USA). Dextran sulfate sodium
salt (DSS) was provided by Dalian Meilun Biotech Co., Ltd. (Dalian, China). The AIN-93M
rodent diet was purchased from Trophic Animal Feed High-tech Co., Ltd. (Nantong, China).
All antibodies used in this study, were obtained from Zhengneng Biotechnology Co., Ltd.
(Chengdu, China).

2.2. Animals

C57BL/6 male mice (age: 7-weeks old, weight: 20± 2 g, provided by Chengdu Dashuo
Biological Co., Ltd., Chengdu, China), were acclimated under standard temperature and
humidity conditions with clean water and a standard laboratory rodent diet (AIN-93M
rodent diet, Trophic Animal Feed High-tech Co., Ltd., Nantong, China), and kept in
12:12 light-dark conditions for 5 days. All animal experiments were approved by the
Medical Ethics Committee of Medical College of Sichuan University (authorized facility
No. 2022017001).

2.3. Berberine (BBR) Treatment and Experimental Design

To investigate the preventive effects of BBR on colorectal carcinoma, a DSS-induced
colitis and AOM/DSS-induced colitis-associated carcinogenesis mice model was estab-
lished [19,29,36]. Schematic representation of the animal experiment is shown in Figure 1.
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DSS-induced colitis: Ulcerative colitis was induced chronically in mice by the adminis-
tration of 2.5% DSS in the drinking for 1 week, and then normal drinking for 2 weeks (the
3 weeks period was defined as one DSS cycle, kept in 3 cycles). Animals were randomly
divided into four groups (n = 10 mice/group), including the model group (DSS group), low-
dose BBR group (7.5 mg/kg/day, DSS + BBR(L)), high-dose BBR group (15 mg/kg/day,
DSS + BBR(H)) and control group. BBR was administrated by the intragastric route for
2 weeks prior to model induction in the experimental group.

AOM/DSS-induced colitis-associated carcinogenesis: Mice were injected intraperi-
toneally with AOM (10 mg/kg) at the initial stages of the experiment (day 0) and kept
under normal drinking water for 1 week, and then three DSS cycles were implemented. The
absolute control animals received sterile saline in both injections. Animals were randomly
divided into four groups (n = 8 mice/group), as follows: the model group (AOM/DSS
group), low-dose BBR group (7.5 mg/kg/day, AOM/DSS + BBR(L)), high-dose BBR group
(15 mg/kg/day, AOM/DSS + BBR(H)) and control group. BBR was administrated by the
intragastric route for 1 month prior to model induction in the experimental group.

Throughout the experimental period, the mice were weighed once a week. The disease
activity index (DAI) score was used to monitor the severity of disease in the mice. Briefly,
the changes in physiology (including spirit, activity, coat color, diet, and defecation) were
observed and scored according to diagnostic criteria [36]. Then, 24 h after the final oral
administration, mice were sacrificed by cervical dislocation after blood collection. The
length of colorectal tissues and the number of tumors (diameter larger than or equal to
2 mm) in each group were recorded. In addition, fecal samples were collected in sterile
conical tubes and stored at −80 ◦C.

2.4. Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)

The total RNA was extracted from colon tissue by using Trizol reagent (Invitrogen,
USA), and cDNA was synthetized by using RNA reverse transcription kits (Takara, Japan).
mRNA expression levels were examined on a CFX96 Touch Real-time PCR instrument
(Bio-Rad, Richmond, CA) using a SYBR Green PCR Master Mix (Takara, Japan). β-actin
was used as an internal control to normalize target genes transcription, and their mRNA
relative expression was calculated by the 2−∆∆Ct method. The primer sequences used
were as follows: IL-1β (Forward: 5′-TGG ACC TTC CAG GAT GAG GAC A-3′; Reverse:
5′-GTT CAT CTC GGA GCC TGT AGT G-3′), IL-6 (Forward: 5′-TAC CAC TTC ACA AGT
CGG AGG C-3′; Reverse: 5′-CTG CAA GTG CAT CAT CGT TGT TC-3′), TNF-α (Forward:
5′-GGT GCC TAT GTC TCA GCC TCT T-3′; Reverse: 5′-GCC ATA GAA CTG ATG AGA
GGG AG-3′), COX-2 (Forward: 5′-GCG ACA TAC TCA AGC AGG AGC A-3′; Reverse:
5′-AGT GGT AAC CGC TCA GGT GTT G-3′). β-actin (Forward: 5′-GTC GTA CCA CAG
GCA TTG TGA TGG-3′; Reverse: 5′-GCA ATG CCT GGG TAC ATG GTG G-3′).

2.5. Histopathological Analysis

Colon tissues in each group were fixed with 10% neutral formalin, subsequently
embedded into paraffin, and cut into 5 µm-thick sections for staining with hematoxylin-
eosin (H&E). Finally, the slides were examined under a light microscope.

2.6. Immunohistochemistry

After deparaffinization and rehydration, heat-induced antigen retrieval was imple-
mented on the colon tissue sections under microwave irradiation. To block endogenous
peroxidase activity, the slides were exposed to 3% H2O2 for 10 min at room temperature.
Then, the sections were incubated overnight with primary antibodies at 4 ◦C prior to incu-
bation with secondary antibodies for 1 h at room temperature. After that, the chromogenic
reaction was carried out by using a DAB reagents (Sangon Biotech Co., Ltd., Shanghai,
China), and the slides were counterstained with hematoxylin.



Nutrients 2022, 14, 726 5 of 21

2.7. Western Blotting Assay

Frozen colon tissues were ground up in liquid nitrogen before harvesting proteins by
using RIPA lysis buffer. Samples were centrifuged at 15,000 r/min for 10 min at 4 ◦C and
stored at −80 °C after the determination of protein concentrations. For Western blotting,
protein samples were separated by 10% sodium dodecyl sulfate (SDS) polyacrylamide gel
electrophoresis and transferred onto a polyvinylidene fluoride (PVDF) membrane, which
was then blocked with 5% skimmed milk for 1 h at room temperature. Afterward, the
blots were incubated with primary antibodies at 4 ◦C overnight. The specific primary
antibodies used were as follows: p-JNK (381100; dilution, 1:1000), p-STAT3 (381552; di-
lution, 1:5000), β-catenin (383616; dilution, 1:1000), CyclinD1 (382442; dilution, 1:2000),
and C-Myc (380784; dilution, 1:1000). After washing with TBST, the membranes were
incubated with horseradish peroxidase (HRP)-conjugated secondary antibody for 1 h at
room temperature, and were then visualized by using the ECL detection system (Millipore,
MA, USA). The band density was quantified using ImageJ software for each group and
normalized with β-actin.

2.8. The 16S rRNA Microbial Community Analysis

Fecal samples were collected from five randomly selected mice in each group, the
effects of BBR on the gut microbial communities were determined by 16S rRNA gene
analysis. The sequencing work was conducted in Sinotech Genomics Co., Ltd. (Shanghai,
China). Specifically, total bacterial DNA was extracted by using the PowerSoil DNA
Isolation Kit (Mobio Labs, Solana Beach, USA). The V3–V4 region of the bacterial 16S rRNA
gene was amplified with the primers (338F: 5′-ACT CCT ACG GGA GGC AGC AG -3′;
806R: 5′-GGA CTA CHV GGG TWT CTA AT-3′). The PCR was performed in a total volume
of 20 µL, consisting of 15 µL of TransStart® FastPfu PCR Master Mix (TransGen Biotech Co.,
Ltd., Beijing, China), 5 µM of both forward and reverse primers, 0.2 µL of bovine serum
albumin (BSA), and 10 ng of template DNA. PCR was performed under the following
conditions: an initial denaturation at 95 ◦C for 3 min, then 27 cycles at 95 ◦C for 30 s, 55 ◦C
for 30 s, and 72 ◦C for 45 s, with a final extension step of 72 ◦C for 10 min. PCR products
were purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City,
CA, USA) prior to quantification by QuantiFluorTM-ST (Promega Corporation, Madison,
WI, USA).

The purified amplicons were pooled in equimolar concentrations and sequenced using
the Illumina MiSeq PE300 platform (Illumina, San Diego, CA, USA). The raw data (fastq
format) were quality-filtered by Trimmomatic and merged by FLASH [37]. High-quality
reads were selected and all of the effective reads were clustered into operational taxonomic
units (OTUs) using the Usearch pipeline (http://www.drive5.com/usearch/ (accessed
on 31 August 2020)) with 97% similarity cutoff. The representative sequences of OTUs
were compared with the Silva 16S rRNA Database (release 123) using the RDP Classifier
algorithm (v 2.11. https://sourceforge.net/projects/rdp-classifier/ (accessed on 31 August
2020)). In order to analyse the alpha diversity, the α-diversity values of the samples were
calculated using Mothur (v1.33.3) software, and corresponding rarefaction curves were
generated using R (v4.1.1) software to judge whether the data generated were sufficient to
cover all species in the community. The ACE index and Shannon index were performed by R
software (v4.1.1) to reflect the species richness and diversity of the community, respectively.
Additionally, the beta diversity analysis was performed by QIIME software (v1.80), and
the weighted UniFrac principal component analysis (PCoA) was employed to evaluate the
similarity and otherness of sample community composition.

2.9. Identification of Potential Probiotics Isolated from Fecal Samples

Fecal samples were inoculated into a de Man Rogosa Sharpe (MRS) broth. After
28 h incubation, suspensions were also distributed on MRS agar plates with a spreader and
cultured in a incubator (culture conditions: 37 ◦C, 5% CO2, 48 h). After that, colonies with
different morphology were randomly selected and preliminarily screened by morphological

http://www.drive5.com/usearch/
https://sourceforge.net/projects/rdp-classifier/
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and phenotypic methods. A single pure colony was selected and sub-cultured to obtain a
pure strain.

We used 16s rDNA gene sequencing analysis to identify the genotypic characterization
of isolates. Bacterial DNA was extracted from bacterial fluid amplification of culture by
using a DP336 kit (Tiangen Biotech Co., Ltd. Beijing, China). PCR was carried out in
total volumes of 50 µL containing 25 µL of I-5™ 2×High-Fidelity Master Mix (Tsingke
Biological Technology Co., Ltd., Beijing, China), 1 µL of both forward and reverse primers,
1 µL of DNA samples, and 22 µL of sterile distilled water. Amplification of the 16S rDNA
was performed using universal primers (27F: 5′-GAG AGT TTG ATC CTG GCT CAG-3′;
1492R: 5′-TAC GGC TAC CTT GTT ACG AC-3′). PCR was performed under the following
conditions: the initial denaturation at 95 ◦C for 3 min, then 39 cycles at 98 ◦C for 10 s, 55 ◦C
for 15 s, 72 ◦C for 20 s, and a final extension at 72 ◦C for 5 min. PCR products (20 µL) were
electrophoresed on 1% agarose gel and visualized under a Gel Imager. The PCR product
bands were collected from the gel, and purified using a DNA gel recovery kit (Tsingke
Biological Technology Co., Ltd., Beijing, China). The sequencing task was accomplished
by Tsingke Biological Technology Co., Ltd. The sequences obtained were compared with
other selected sequences from the same family strains deposited in the GenBank database
by using the Basic Local Alignment Search Tool (BLAST).

2.10. Oral Feeding of Cultured Lactobacillus rhamnosus

Lactobacillus rhamnosus (L. rhamnosus) was grown in MRS broth (performed in a 37 ◦C
shaker at 200 r/min for 24 h), and the cultures were harvested and washed with sterile
PBS. Subsequently, the concentration of cultures was adjusted to 109 cfu/mL with PBS
containing 25% glycerol and stored at −80 ◦C. Prior to oral feeding, strains were thawed
and resuspended in potable water to a concentration of 1 × 108 cfu/mL. Mice were ran-
domly divided into three groups, including the AOM/DSS + Lac + BBR group (gavaged
with L. rhamnosus and BBR), the AOM/DSS + BBR group (gavaged with BBR), and the
AOM/DSS group (gavaged with potable water). BBR (15 mg/kg/day) and L. rhamnosus
(1 × 108 cfu/mL, 5 days a time) was administrated by the intragastric route for 1 month
prior to model induction in the experiment group.

2.11. Statistical Analysis

All data are presented as mean ± standard error of the mean (SEM) collected from
at least three independent experiments. Differences between two groups were analysed
by an unpaired Student’s t-test using GraphPad Prism 9.0. One-way analysis of variance
(ANOVA) was used for comparisons of more than two groups. Significance was recognised
at the value of p < 0.05.

3. Results
3.1. Berberine Precludes Body Weight Loss and Decreases Disease Activity Index (DAI) Score in
Dextran Sulfate Sodium Salt (DSS)-Induced Colitis Mice

In order to investigate the effect of BBR on DSS-induced colitis mice, the body weights
of mice were examined in each group. The data indicated that a dramatic decrease was
observed in body weight after treatment with DSS, and BBR pre-administration reduced
body weight losses, especially in the DSS + BBR(H) group (Figure 2A). Furthermore,
the mice exhibited a significant increase in disease activity index (DAI) score after DSS
treatment, and DAI scores were significantly decreased in the DSS + BBR(L) group and the
DSS + BBR(H) group (Figure 2B). Therefore, pre-administration of BBR can prevent weight
loss and ameliorate clinical symptoms in DSS-induced colitis mice.
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3.2. Berberine Inhibits the Expressions of Inflammatory Mediators and Ameliorates Colon Lesions
in DSS-Induced Colitis Mice

To investigate the effects of BBR on DSS-induced colon injury, the colons of mice
were examined for length measurement. The results indicated that BBR attenuated DSS-
induced colon length shortening (Figure 3A). Histological characteristic of colon tissues
were analysed after staining with H&E. As shown from the evidence (Figure 3B), a normal
intestinal mucosa structure was observed in the control group. In contrast, damaged
crypts, irregular distribution of the glands and increased inflammatory cell infiltration were
noticed in the DSS stimulation group. Notably, the BBR pre-administration groups showed
an obvious improvement in the histological structure of the intestinal mucosa (Figure 3B).
Additionally, we further analysed the transcriptional levels of pro-inflammatory cytokines
in colon tissues, including COX-2, TNF-α, IL-β, and IL-6. RT-qPCR results showed that
the mRNA expression of pro-inflammatory cytokines was significantly increased in the
DSS-induced group compared with the model group, but pre-administration with BBR
substantially diminished the expression of inflammatory mediators (Figure 3C).

3.3. Berberine Inhibits the Development of Azoxymethane (AOM)/DSS-Induced Precancerous
Lesions and Improves Intestinal Barrier Function

To further identify the effectiveness of BBR on colon cancer, we utilized a mouse
model of AOM/DSS-induced colitis-associated carcinogenesis, and extended the period
of administration of BBR (30 days). During the experimental period, body weights and
DAI scores were appraised weekly in each group. The results showed that body weight
losses and DAI scores were significantly increased, and even observed mucosal prolapse
during defecation in the AOM/DSS-induced group mice. However, pre-administration of
BBR diminished body weight losses and DAI scores, especially in the AOM/DSS + BBR(H)
group (Figure 4A–C). In addition, the number of tumors in colon tissues was examined to
determine the effects of BBR on tumor formation after AOM/DSS induction. Representative
gross images of colon tissues from each group were presented in Figure 4C, and the number
of tumors was obviously reduced in the BBR pretreatment group compared with the model
group (Figure 4E).
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Figure 3. The effect of pre-administration of BBR on DSS-induced colon inflammation. (A) Repre-
sentative photograph and quantitative result showing the length of colon in each group (n = 6–10).
(B) Histopathological changes were examined by hematoxylin-eosin (H&E) staining (n = 6–10); scale
bars = 50 µm. (C) The transcriptional levels of cyclooxygenase (COX-2), tumor necrosis factor (TNF-
α), interleukin (IL-1β), and IL-6 in colon tissues detected by quantitative real-time polymerase chain
reaction (RT-qPCR). β-actin was used as internal control to normalize target genes transcription,
and relative mRNA expression was calculated by the 2−∆∆Ct method (n = 5). Data are presented
as mean ± SEM of the indicated number of independent experiments. “*” p < 0.05, “**” p < 0.01,
“***” p < 0.001, “****” p < 0.0001 vs. model group (DSS group).

Histopathology analysis revealed that AOM/DSS-induced mice exhibited precancer-
ous lesions, characterized by crypt destruction, inflammatory cell infiltration, and tumor
formation, while BBR pre-administration can ameliorate the lesions of the colon (Figure 4F).
As a cell-proliferation marker, Ki67 expresses abundantly in malignant tumor tissue. There-
fore, the expression of Ki67 in colons were analysed by immunohistochemistry, and the
results showed that the expression of Ki67 in the colon was higher in AOM/DSS-induced
mice than normal mice. Notably, a decrease in the expression of Ki67 was observed in the
BBR pre-administration group (Figure 4F). Additionally, immunohistochemistry staining
for occludin and ZO-1 exhibited enhanced immunoreactivity in the BBR-treated group
compared with the AOM/DSS-induced group (Figure 4G).
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Figure 4. Effects of BBR on azoxymethane (AOM)/DSS-induced precancerous lesions. Body
weight (A) and disease activity index (DAI) score (B) were appraised weekly in each group (n = 8).
(C) Representative gross images of colon tissues and the number of tumors (n = 8). (D) Mucosal pro-
lapse during defecation in the AOM/DSS-induced group mice. (E) Histopathological changes were
examined by H&E staining (n = 8); scale bars = 100 µm. (F) Immunohistochemical staining for Ki67.
The expression of ZO-1 (G) and Occludin (H) in colon tissues were tested by immunohistochemistry;
scale bars = 100 µm. Data are presented as mean ± SEM of the indicated number of independent
experiments. “*” p < 0.05, “****” p < 0.0001 vs. model group (AOM/DSS group).
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3.4. Berberine Exhibits Anti-Cancer Activity via the JNK/STAT3 and β-Catenin Pathways in
AOM/DSS-Induced Colitis-Associated Carcinogenesis Mice

Chronic inflammation plays pivotal role in the development and progression of colon
cancer. The transcriptional levels of pro-inflammatory cytokines were detected by RT-
qPCR. The results showed that increased expression of IL-6, TNF-α, IL-1β, and COX-2
was found in the AOM/DSS-induced group, but they were dramatically diminished
after BBR pre-administration (Figure 5A). To identify the anti-inflammatory mechanism
of BBR, the translational levels of critical pathway proteins were examined by Western
blot analysis. As shown in Figure 5B, the protein expression of p-JNK and p-STAT3 was
markedly increased in the AOM/DSS-induced group compared with the control group,
while their expression levels were restrained by pre-administration of BBR. In addition, we
observed that pre-administration of BBR reduced β-catenin expression compared with the
AOM/DSS-induced group, which synchronously caused a decrease in the expression of
c-Myc and cyclinD1 (Figure 5B).
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Figure 5. Detection of inflammatory factors in colon tumor tissue. (A) The expression levels of
inflammatory factors COX-2, TNF-α, IL-1β and IL-6 in colon tissues detected by RT-qPCR. β-actin
was used as internal control to normalize target gene transcription, and relative mRNA expression
was calculated by the 2−∆∆Ct method (n = 5). (B) The protein expression of p-JNK, p-STAT3, β-
catenin, CylinD1 and c-Myc were examined by Western blot analysis. β-actin was used as the loading
control. Relative expression of proteins was quantified using ImageJ and expressed as a ratio. Data
are presented as mean ± SEM of the indicated number of independent experiments. “*” p < 0.05,
“***” p <0.001, “****” p < 0.0001 vs. model group (AOM/DSS group).
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3.5. Berberine Modulates AOM/DSS-Induced Gut Microbiota Dysbiosis

Dysbiosis of gut microbiota is a pivotal characteristic of CRC. In an attempt to observe
the effects of BBR on the gut microbiota, the gut microbiota composition was revealed by
16S rRNA gene sequencing in fecal samples. As shown in Figure 6A, the curve tend to
be smooth, which indicates that the sequencing depth is adequate. The ACE index and
Shannon index have been used to reflect the species richness and diversity of the community,
respectively. Our results showed that both ACE richness index and Shannon diversity
index were significantly higher in the AOM/DSS + BBR group than that in the AOM/DSS-
induced group (Figure 6B,C). The weighted UniFrac principal component analysis (PCoA)
was employed to estimate the phylogenetic similarity and difference of gut microbiota
composition in each group. In the coordinate graph, the closer the distance between the
two samples the more similar the species composition and structure of the two samples.
The PCoA result revealed that the composition and structure of gut microbiota from the
AOM/DSS-induced group was obviously different from the other groups, suggesting the
homeostasis of gut microbiota was dramatically disrupted by the AOM/DSS stimulus
(Figure 6D). Notably, a closer distance between the AOM/DSS + BBR group and the control
group was observed, suggesting that pre-administration of BBR can partially alleviate the
gut microbiota dysbiosis induced by the AOM/DSS stimulus.
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Figure 6. Analysis of gut microbiota richness and diversity in the Control, AOM/DSS, BBR, and
AOM/DSS + BBR groups. (A) The rarefaction curves show the numbers of unique operating
taxonomic units (OTUs) in each group (n = 5). The ACE index (B) and Shannon (C) index of
fecal samples in each group (n = 5). (D) Weighted UniFrac principal coordinate analysis (PCoA)
based on OTU abundance (n = 5). Data are presented as mean ± SEM of the indicated number of
independent experiments. * indicates p < 0.05, ** indicates p < 0.01.
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The gut microbiota taxa and their relative abundance were analysed to further identify
the species that caused significant inter-group differences. Hence, we investigated the taxo-
nomic composition at the phylum and genus levels. As shown in Figure 7A, the taxonomic
composition at the phylum level mainly contained Firmicutes, Bacteroidetes, Proteobacteria,
Actinobacteria, Verrucomicrobia, and Epsilonbacteraeota. Among them, Firmicutes, Bac-
teroidetes, Proteobacteria, and Actinobacteria were the most abundant phyla. The relative
abundance of Firmicutes and Actinobacteria was diminished in the AOM/DSS-induced
group in comparison to the control group, while AOM/DSS stimulus increased the abun-
dance of Bacteroidetes, Proteobacteria, and Verrucomicrobia. Notably, pre-administration
of BBR can mitigate the variation of gut microbiota caused by AOM/DSS stimulation
(Figure 7A,C). Additionally, The Firmicutes/Bacteroidetes (F:M) ratio in the BBR group was
significantly lower than that in the control group, and pre-administration of BBR increased
the F:M ratio compared with the AOM/DSS-induced group (Figure 7D). At the genus
level, an increased abundance of Lactobacillus, Lachnospiraceae_NK4A136_group, Odoribacter,
Ruminococcaceae_UCG-014, Blautia, Oscillibacter, Ruminiclostridium_9, and some uncultured
or unclassified genera belonging to Lachnospiraceae, Bacteroidia, Desulfovibrionaceae,
and Ruminococcaceae in the AOM/DSS + BBR group compared with the AOM/DSS
group (Figure 7E). Also noteworthy is an obvious reduction in the abundance of Muribacu-
laceae_norank, Bacteroides, Dubosiella, Alistipes, Escherichia-Shigella, Parasutterella, Akkermansia,
Paraprevotella, Staphylococcus, and unclassified genera from Prevotellaceae and Muribacu-
laceae (Figure 7F).

3.6. Lactobacillus rhamnosus (L. rhamnosus) Treatment Improves the Anti-Cancer Effect of BBR

According to the results from 16S rRNA gene sequencing, Lactobacillus was a dominant
genus accounting for more than 30% of total gut bacteria, and BBR pre-administration
dramatically increased the abundance of Lactobacillus (Figure 7B,C). Consequently, we
hypothesized whether the presence of Lactobacillus is essential for improving the anti-cancer
activity of BBR. In order to further identify a specific bacterium that exerted beneficial
effects on AOM/BSS-induced colitis-associated carcinogenesis mice, Lactobacillus were
preliminarily isolated and screened using MRS medium (Figure 8A). Finally, the isolate
was identified as L. rhamnosus by 16S rDNA sequencing analysis (Figure 8B,C).

In order to further investigate whether L. rhamnosus plays an instrumental role in
the therapeutic action exerted by BBR, BBR or/and L. rhamnosus were administrated
by the intragastric route (Figure 8D). The results indicated that oral administration of
L. rhamnosus and BBR dramatically diminished the number of tumors in comparison to the
AOM/DSS + BBR group (Figure 8E,F). Therefore, L. rhamnosus is an important probiotic
for enhancing the beneficial effects of BBR in the prevention of AOM/BSS-induced colitis-
associated carcinogenesis.
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Figure 7. The effect of BBR on gut microbiota composition. The gut microbiota composition profiles
at the phylum (A) and genus (B) level. Less abundant bacteria are grouped under the category
“Other”, (n = 5). (C) Relative abundance of gut microbiota at the phylum level (n = 5). (D) The
phylum Firmicutes: Bacteroidetes (F:B) ratio in each group. (E) Up-regulated gut microbiota in the
AOM/DSS + BBR group but low in the AOM/DSS group (n = 5). (F) Down-regulated gut microbiota
in the AOM/DSS + BBR group but high in the AOM/DSS group (n = 5). Data are presented as
mean ± SEM of the indicated number of independent experiments. * p < 0.05, ** p < 0.01 vs. Control
group, # p < 0.05, ## p < 0.01 vs. AOM/DSS group.
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Figure 8. L. rhamnosus can promote the preventive effect of BBR on inflammatory colorectal cancer.
(A) Screening of Lactobacillus by MRS bacterial medium. (B) PCR amplification and sequencing
of bacterial 16S rDNA region. (C) Results of sequence homologous alignment in NCBI database.
(D) Schematic diagram of bacterial solution, BBR intragastric administration and AOM/DSS treat-
ment. (E) Representative gross images of colon tissues in each group (n = 6). (F) Quantitative result
showing the number of tumors in each group (n = 6). Data are presented as mean ± SEM of the
indicated number of independent experiments. ** indicates p < 0.01.

4. Discussion

As a double-edged sword, inflammation mediates a protective response against
pathogen infection and tissue damage, while chronic inflammatory conditions also trigger
carcinogenic events, especially those involved in the tumorigenesis of gastrointestinal
organs [3,4]. The increasing disease burden caused by CRC has become one of the major
public health problems all over the globe [38–40]. Tumorigenesis has been considered
to be a sophisticated biological process, and chronic inflammatory conditions are indis-
pensable in the initiation of CRC. In recent years, immune modulators and nonsteroidal
anti-inflammatory drugs (NSAIDs) have been broadly used for CRC therapy, whereas
several side effects have been found during the therapeutic process [41,42]. Therefore,
many efforts have been devoted to excavate novel preventive therapeutics, and chemo-
preventive agents with anti-inflammatory and anti-tumourigenic benefits have attracted
great attention, especially as safe and inexpensive compounds derived from foods and
herbs [18–21,43].

BBR is an active ingredient extracted from plants, which has aroused considerable
attention due to its multiple biological activities [23–25]. Available evidence suggests that



Nutrients 2022, 14, 726 15 of 21

BBR exhibits enormous therapeutic potential in various diseases, and the underlying mech-
anism is involved in the modulation of inflammation, oxidation, autophagy, and intestinal
microbiota [25,31,44]. Importantly, the anti-cancer activity of BBR has been extensively
investigated in both preclinical models and clinical trials, particularly in gastrointestinal
cancers [30–34]. These previous studies strongly suggest that BBR could be used as a
promising anti-cancer agent for cancer treatment and prevention. However, whether pro-
phylactic BBR administration also exerts beneficial effects in the development of cancers
is still poorly understood. Here, we analysed the effects of pre-administration of BBR in
DSS-induced colitis and AOM/DSS-induced colitis-associated carcinogenesis mice based
on body weight, disease activity index (DAI) score, and colon histology. We found that
pre-administration of BBR can preclude body weight losses, palliate clinical signs, and
ameliorate colon lesions.

Previous studies have reported that soluble mediators play a crucial role in perpet-
uating a chronic inflammatory microenvironment, including IL-6, IL-1β, TNF-a, COX-2
and PGE2, which are propitious to promoting CRC cell angiogenesis, growth, and migra-
tion/invasion [32,45]. Therefore, the blockade of these cytokines contributes to prevent
CRC progression. Wang and his colleagues found that depletion of neutrophil or blockade
of IL-1β activity significantly reduced mucosal damage and tumor formation in a colitis-
associated cancer (CAC) mice model [46]. Additionally, inhibition of IL-6 and anti-TNF-α
therapy also presented therapeutic benefits in CRC clinical trials [47,48]. The data from
our study indicated that the mRNA levels of IL-6, IL-1β, TNF-a, and COX-2 in colon
increased significantly after DSS or AOM/DSS treatment, whereas pre-administration of
BBR decreased the transcriptional levels of inflammatory cytokines, suggesting BBR could
inhibit inflammatory responses. These findings are consistent with previous studies, in
which the administration of BBR suppressed the secretion of IL-1, IL-1β, IL-6, IL-12, TNF-α,
TGF-β and IFN-γ in a DSS-induced ulcerative colitis rat model [26]. In this research, BBR
was administrated regularly by the oral route prior to the establishment of the disease
model, suggesting that BBR provided chemonpreventive effects against inflammation and
tumorigenesis. Taken together, inflammatory cytokines are closely associated with tumor
development and progression, and BBR is able to target inflammation for the prevention
and treatment of CRC and other inflammation-associated cancers.

Transcription factors are indispensable for signaling by inflammatory mediators dur-
ing intestinal inflammation, including NF-κB and STATs, which ultimately contribute to
the development and progression of CRC. The NF-κB signaling is activated by various
inflammatory molecules IL-1β and TNF-α; simultaneously, the activation of NF-κB can
enhance the secretion of pro-inflammatory cytokines themselves, which is responsible for
the presence of chronic inflammatory conditions [49]. Moreover, signal transducer and
activator of transcription 3 (STAT3) also plays a crucial role in inflammation-associated
tumorigenesis because of its pro-inflammatory and oncogenic properties. According to
the data gathered from several studies, the JNK/STAT3 signaling pathway is activated in
the progression of various tumors, such as lung cancer, breast cancer, and CRC [32,50,51].
Similarly, the activation of JNK/STAT3 signaling was observed in the colon tissues of the
AOM/DSS-induced group, and pre-administration of BBR suppressed the expression of
p-JNK and p-STAT3, suggesting BBR may be involved in blockading JNK/STAT3 signaling.
Additionally, Wnt/β-catenin signaling has also been demonstrated to be a key regulator
of inflammatory signaling, which is conducive for tumorigenesis. The accumulation of
β-catenin protein is a common feature of several cancers, such as breast cancer, gastroin-
testinal cancers, hepatocellular carcinoma, endometrial cancer, and ovarian cancer [10].
In the absence of Wnt ligands, β-catenin is phosphorylated and targeted for degradation,
while Wnts bind to their receptors leading to its accumulation and translocation into the
nucleus, where it combines with Tcf/Lef to stimulate the transcription of genes involved in
the development and progression of cancer, such as COX-2, VEGF, survivin, c-Myc and
cyclinD1 [52,53]. Likewise, our results showed that increased expression of β-catenin was
noticed in the colons of model mice, while the inhibitory effect of BBR on β-catenin and the
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expression of the Wnt target genes c-Myc and cyclinD1. Taken together, this evidence indi-
cated that BBR exerts anti-inflammatory and cancer preventive activity possibly through
the modulation of JNK/STAT3 and β-catenin signaling.

As a pivotal constituent of the intestinal tract, the gut microecosystem is essential
for modulating intestinal homeostasis and host health due to its protective capability for
mucosal barrier, metabolism of nutrition, and immunity [5,54]. Accumulating evidence
based on metagenomics and experimental models has verified the potential influences
of gut microbiota in modulating CRC development [11,55]. Recently, growing evidence
demonstrated that BBR may contribute to maintaining the gut homeostasis by modulating
gut microbiota and thereby exhibits health-related benefits in various diseases, including
obesity, atherosclerosis, diabetes, inflammatory disease, and cancer [14,35,56,57]. Hence,
we investigated the effects of BBR on gut microbiota via microbial sequence analyses. Our
results indicated that compared with the AOM/DSS-induced group, a significant decrease
was noticed in the abundances of the phyla Bacteroidetes, Proteobacteria, and Verrucomi-
crobia in the AOM/DSS + BBR group; meanwhile, the abundance of the Firmicutes phylum
was increased in the AOM/DSS + BBR group. Indeed, Bacteroidetes, Proteobacteria, and
Verrucomicrobia have been demonstrated to play a pivotal role in the activation of inflam-
mation, whereas Firmicutes can produce butyric acid, which is instrumental in protecting
the intestinal wall and suppressing intestinal inflammation and CRC incidence [11,58,59].
Additionally, the ratio of Firmicutes to Bacteroidetes is regarded as a relevant biomarker
of gut dysbiosis, and it is low in IBD patients but high in obese patients [60–62]. Similarly,
our results showed that the ratio was decreased in the AOM/DSS-induced group and
pre-administration of BBR can restore the ratio of Firmicutes to Bacteroidetes.

Dysbiosis of the gut microbiome disrupts intestinal homeostasis due to the diversity
of gut microbiota and its complex interaction with the intestine. Importantly, increasing evi-
dence suggests that the gut microbiota and its metabolites are involved in the development
and progression of several types of cancer by influencing inflammation, DNA damage,
and apoptosis [63]. Several studies have identified that the decrease of several potentially
beneficial bacterial species (including Lactobacillus, Bifidobacterium, Oscillibacter, Rumini-
clostridium 9, and Dubosiella), and the increase of some adverse bacterial species (including
Enterococcus, Enterotoxigenic bacteroides fragilis, Streptococcus, Helicobacter, Fusobacterium
nucleatum, Escherichia-Shigella, Klebsiella and Akkermansia), which are closely correlated
with an increased risk of CRC [11,13,17,64–66]. The data from our study showed that
AOM/DSS stimulus inevitably disturbed the balance of intestinal microbiota, as shown by
a dramatic decrease in the abundance of dominant microbiota Lactobacillus and Dubosiella,
and an increase in the abundance of harmful bacteria Bacteroides, Escherichia-Shigella, and
Akkermansia. Conversely, pre-administration of BBR normalized these bacteria to rela-
tively normal levels, suggesting BBR plays an important role in modulating gut microbiota
homeostasis. Additionally, some of the butyrate-producing bacteria, belonging to the
Lachnospiraceae and Ruminococcaceae families, which have increased dramatically after
BBR prointervention. Available evidence has demonstrated that butyrate can enhance
intestinal epithelial barrier function and modulate the intestinal immune response [63,67].
Strikingly, a dramatic increase in the abundance of Lactobacillus was observed after pre-
administration of BBR, but there was no significant difference between the AOM/DSS
and AOM/DSS + BBR group. In this scenario, BBR-induced increase in Lactobacillus could
be harnessed to improve the harsh pathological environments. Cumulative research has
indicated that Lactobacillus, as a recognized probiotic, can rehabilitate intestinal homeostasis
in gastrointestinal inflammatory diseases [65,68]. Moreover, L. rhamnosus treatment can
reduce the expression of β-catenin and the inflammatory proteins NFκB-p65, COX-2 and
TNF-α in dimethyl hydrazine (DMH)-induced colon carcinogenesis [69]. Similarly, our
results imply that L. rhamnosus pretreatment increased the protective effects of BBR in
AOM/DSS-induced colitis-associated carcinogenesis, suggesting that L. rhamnosus plays an
instrumental role in preventing colon carcinogenesis. Altogether, the anti-cancer activity of
BBR is in part explained by its role in the modulation of the gut microbiota.
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As described in previous studies, BBR has been validated as a multifunctional natural
product with diverse therapeutic applications. Similarly, our results indicate that pre-
administration of BBR exerts cancer-preventive effects by modulating inflammation and
gut microbiota composition. However, BBR-mediated inhibition of the inflammatory
response whether depends on the complex interactions between the microbiota and the
host is unclear. Recent findings suggested that BBR might modify bacterial metabolites and
increase the levels of butyrate and glutamine to reduce inflammation in the intestine [14].
Additionally, dysbiosis induces secondary bile acid deficiency in inflammatory-prone UC
patients, which aggravates the pro-inflammatory state [70]. Therefore, a better fundamental
understanding the roles of microbiota in colorectal carcinogenesis based on ecology and
physiology is required, which would highlight the potential contribution of gut microbiota
to the multifunctional bioactivity of BBR.

5. Conclusions

The treatment of cancers is a major medical challenge facing humanity due to their
complex pathological mechanisms. Therefore, chemoprevention with multifunctional natu-
ral products is the most practical strategy to preclude carcinogenic progression, and thus
contribute to reduce the morbidity and mortality of cancers. Pre-administration of BBR
exhibits cancer-preventive effects in AOM/DSS-induced colitis-associated carcinogenesis
model mice. The mechanism underlying such an effect was involved in inhibiting inflam-
mation and tumor cell proliferation, and enhancing intestinal barrier function, as well as
maintaining gut homeostasis (Figure 9). As a consequence, BBR might be a promising
chemopreventive agent for the prevention of CRC, and a supplement of BBR in a normal
diet could confer upon the organism health-related benefits.
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