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1 | INTRODUCTION

Abstract

Neuronal ceroid lipofuscinosis type 2 (CLN2 disease) is an autosomal recessive
condition caused by variants in the TPP1 gene, leading to deficient activity of the
lysosomal enzyme tripeptidyl peptidase | (TPP1). We update on the spectrum of TPP1
variants associated with CLN2 disease, comprising 131 unique variants from 389
individuals (717 alleles) collected from the literature review, public databases, and
laboratory communications. Previously unrecorded individuals were added to the
UCL TPP1-specific database. Two known pathogenic variants, ¢.509-1G>C and
c.622 C>T (p.(Arg208*)), collectively occur in 60% of affected individuals in the
sample, and account for 50% of disease-associated alleles. At least 86 variants (66%)
are private to single families. Homozygosity occurs in 45% of individuals where both
alleles are known (87% of reported individuals). Atypical CLN2 disease, TPP1 enzyme
deficiency with disease onset and/or progression distinct from classic late-infantile
CLN2, represents 13% of individuals recorded with associated phenotype. NCBI
ClinVar currently holds records for 37% of variants collected here. Effective CLN2
disease management requires early diagnosis; however, irreversible neurodegenera-
tion occurs before a diagnosis is typically reached at age 5. Timely classification and
public reporting of TPP1 variants is essential as molecular testing increases in use as a

first-line diagnostic test for pediatric-onset neurological disease.
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Classic late-infantile neuronal ceroid lipofuscinosis, CLN2 disease, is

the result of tripeptidyl peptidase | (TPP1) deficiency, caused by

The neuronal ceroid lipofuscinoses (NCLs) are a heterogeneous
group of neurodegenerative lysosomal storage disorders character-
ized by the accumulation of neuronal and extraneuronal ceroid
lipopigments (Jalanko & Braulke, 2009). To date, mutations in 13
human genes have been linked with NCL disorders (Mole, 2017).

autosomal recessive inheritance of two pathogenic variants in trans
in the TPP1 (MIM# 607998, CLN2) gene (Fietz et al., 2016; Mole,
Gardner, Schulz, & Xin, 2018; Sleat et al., 1997).

CLN2 disease (MIM# 204500) classically presents with seizure
onset at 2-4 years of age, preceded by delayed language
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development, and followed by rapidly progressing dementia, psycho-
motor decline (loss of the ability to walk and talk), epilepsy, blindness,
and death, typically between 6 years of age and the early teenage
years (Mole et al., 2018; Mole, 2001; Nickel et al., 2016; Nickel et al.,
2018; Steinfeld et al., 2002). Whereas classic late-infantile CLN2
disease has a very well defined natural history, there exists a
phenotypic spectrum of TPP1 enzyme deficiency in small numbers of
patients, some with later onset or protracted disease course (Kohan
et al., 2013; Kousi, Lehesjoki, & Mole, 2012). One form of juvenile
onset disease was initially described as spinocerebellar ataxia 7
(SCAR7; MIM# 609270) and was later attributed to a TPP1 enzyme
deficiency (Sun et al, 2013). Other, variant forms of complex
hereditary spastic paraplegia (Kara et al., 2016) and childhood-onset
progressive ataxia (Dy, Sims, & Friedman, 2015) were described
clinically before being linked to TPP1 enzyme deficiency. Occasional
cases present before the age of 2 years (Nickel et al.,, 2018). With the
knowledge of a shared molecular etiology, rather than being distinct
entities, these diseases can be considered part of the same
phenotypic spectrum that includes classic late-infantile CLN2 disease
and forms of atypical CLN2 disease. Thus, NCL classification was
revised to take into account such phenotypic variation (Williams &
Mole, 2012).

Effective CLN2 disease management requires timely diagnosis;
however, irreversible neurodegeneration often occurs before a
diagnosis is typically reached at 5 years of age (Nickel et al., 2018).
Early diagnosis has become even more relevant as a recently
approved intracerebroventricular enzyme replacement therapy has
been shown to effectively slow the rapid decline in motor and
language function in patients with CLN2 disease (Schulz et al., 2018).
Aside from genetic testing, there are other medical procedures that
may increase suspicion of CLN2 disease, for example, severe
cerebellar atrophy is the principal sign seen at the time of diagnosis
on magnetic resonance imaging (MRI) (Williams et al., 2006).
Photosensitivity, as detected by electroencephalography, is also an
early marker of CLN2 disease (Specchio et al., 2017).

The American College of Medical Genetics (ACMG) guidelines
recommend that gene variants be reported in combination with their
assessed pathogenicity (Richards et al., 2015). The purpose of this
mutation update is to summarize the identified disease-related
genetic variation in the TPP1 gene, with emphasis on clinical
classification and genotype-phenotype correlations. There is a clear
set of patients with atypical CLN2 disease which includes TPP1
deficiency, from SCAR7 and juvenile NCL. We collected and analyzed
variant information from 389 individuals (131 different/independent
variants) associated with CLN2 disease to uniformly summarize all

TPP1 gene variants.

2 | METHODS

2.1 | Data sources

Data from the University College London (UCL) TPP1 Locus-specific

Database (https://www.ucl.ac.uk/ncl-disease/) was combined with

WiLEY-L2%

the described literature searches to collect all TPP1 variants reported
to be associated with TPP1 enzyme deficiency and/or related
disorders. A PubMed literature search was performed on May 22,
2018, using the following terms:

((CLNZ2[title] OR Tripeptidyl peptidasel[title]) OR (Batten[title] OR
NCL[title] OR neuronal ceroid lipofuscinosis[title]) AND (late infantile
[title] OR late-infantile[title])) AND ((“mutation”[mesh terms] OR
“mutation”[all fields]) OR (“genotype”[mesh terms] OR “genotype”[all
fields]) OR (“variant”[mesh terms] OR “variant”[all fields])).

Embase was searched using the following searches:

1. (‘tpp1 gene’/de OR ‘cIn2 gene’/de OR ‘tripeptidyl peptidase i'/de
OR ‘e.c. 3.4.14.9° OR ‘tripeptidyl peptidase 1’ OR ‘tripeptidyl
peptidase i’ OR 'tripeptidyl peptide hydrolase i’ OR ‘tripeptidyl-
peptidase 1° OR ‘tripeptidylpeptidase i’ OR 'tripeptidylpeptide
hydrolase i’) AND (‘mutation’/de OR ‘gene alteration’ OR ‘genome
mutation’ OR ‘mutation’) AND (‘human’/de)

2. 'neuronal ceroid lipofuscinosis’/de AND ‘mutation’ AND ‘cIn2’
AND ‘human’/de NOT ((‘tpp1 gene’/de OR ‘cIn2 gene'/de OR
‘tripeptidyl peptidase i'’/de OR ‘e.c. 3.4.14.9’ OR ‘tripeptidyl
peptidase 1’ OR ‘tripeptidyl peptidase i’ OR ‘tripeptidyl peptide
hydrolase i’ OR ‘tripeptidylpeptidase 1' OR ‘tripeptidylpepti-
dase i’ OR ‘tripeptidylpeptide hydrolase i’) AND (‘mutation’/de
OR 'gene alteration’ OR ‘genome mutation’ OR 'mutation’) AND

‘human’/de).

All variants collected from the UCL TPP1-specific database and
literature searches were assessed using ACMG standards and
guidelines for interpretation of sequence variants using available
information (Richards et al, 2015). Variants collected from the
literature were compared to, and combined with, pathogenic or likely
pathogenic variants contained in ClinVitae, a database including the
National Center for Biotechnology Information (NCBI)’s ClinVar, in
addition to several diagnostic laboratories (http://clinvitae.invitae.
com/; accessed March 8, 2018). Variant-level summaries include
variants from all sources, whereas individual-level summaries include
literature and database cases, where such information was available.

Visualization of TPP1 was created using The PyMOL Molecular
Graphics System, Version 1.8 Schrédinger, LLC with atomic coordi-
nates from Brookhaven Protein Data Bank accession number 3EE6
(Pal et al., 2009).

2.2 | Mutation nomenclature

The mutation nomenclature used in this update follows the guide-
lines indicated by the Human Genome Variation Society (den Dunnen
et al., 2016). For the description of sequence variants, we used
reference sequence NM_000391.3 for TPP1 gene. Nucleotide
numbering reflects cDNA numbering with position +1 corresponding
to the A of the ATG translation initiation codon at nucleotide 62.
Mutation descriptions on the protein level consider the initiator

methionine as codon 1.
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3 | RESULTS

3.1 | TPP1 mutation spectrum

166 publications were returned using the three searches; eight were
unavailable to review. Of the 158 publications reviewed, 90
contained TPP1 variants. All new reports were added to the locus-
specific database at UCL.

Overall, 717 alleles were collected from 389 individuals reported in
the literature and/or the UCL database, resulting in 131 different/
independent TPP1 variants (Table 1). It should be noted that the effect
on TPP1 function has not been established for all disease-associated
alleles. In some patients, further variant alleles were found, in addition
to those presumed to be disease-associated. Four of these additional
alleles are described in the UCL TPP1 Locus-specific Database.

The variant ¢.299 A>G (p.(GIn100Arg)) has a frequency below 5%
(National Center for Biotechnology Information, 2018) and is predicted
benign. It occurred as an additional allele in three unrelated patients
with classic late-infantile CLN2 disease (Sleat et al, 1999; Tessa,
Simonati, Tavoni, Bertini, & Santorelli, 2000), but it also occurred as the
disease-associated allele in trans with c.1266 + 5 G>A in a patient from
Canada (disease phenotype unknown) (Kousi et al, 2012). The
underlying sequence change for variant p.(Val426Val) is not available,
therefore this variant cannot be assessed for potential alteration to
splicing. In our data set, this variant occurred in two unrelated patients
from Argentina, together with another variant of uncertain significance
(c.89 +4 A>G; Kohan et al., 2013; Noher de Halac et al., 2005). This
latter variant potentially causes alteration of splicing and has been
described as disease-associated in one patient from Argentina (disease
phenotype unknown). Finally, c.1501 G>T (p.(Gly501Cys)) is predicted
as probably damaging and occurs in one patient from Turkey (disease
phenotype unknown) (Kousi et al., 2012). It occurs (phase unknown)
with ¢.622 C>T (p.(Arg208*)) and c.1343 C>T (p.Ala448Val)), which is
also predicted as probably damaging. For the latter three additional
alleles, there is no information on population frequency. Thus, for these
four cases, the assignment of disease-association is equivocal. Other
additional alleles excluded from the analyses were listed in ClinVar as
benign and/or have a prevalence in the population > 5%. To date, of the
131 variants reported in the UCL database as disease-associated, only
39 (30%) are recorded in ClinVar with an associated clinical
classification.

Of the variants where relatedness could be established, 86/131
disease-associated variants (66%) were private to single families. The
spectrum of disease-associated variants (131) was dominated by
missense variants (63, 48%) followed by frameshift (21, 16% each)
and nonsense (17, 13%) variant classes (Figure 1). Disease-causing
variants appear along the length of the TPP1 gene, including the
propeptide domain (Figure 2).

3.2 | Genotype-phenotype correlation

Clinical phenotype classification was available in 65% of reports
(254/389). Of those with reported phenotype classifications, the

majority were classic late-infantile (87%), with 13% atypical CLN2
disease (8% juvenile, 3% spinocerebellar ataxia or SCAR7, and <1%
spastic paraplegia or congenital disease). Note that NCL phenotype
descriptions were based on the age of disease onset: congenital,
around birth; infantile, 0.5-1.5 vyears; late-infantile, 2-4 vyears;
juvenile, 5-10 years. Most individuals (87% [337/389]) had both
alleles identified; of these, homozygosity was reported in 151 (45%)
patients.

Geographical information was available for 356 individuals (92%
of cases), with the majority of patients originating from Europe (217)
followed by North America (78), South America (28), Asia (9), the
Middle East (9), a mixture of Europe and other countries (8), Central
America (5), and Africa (2).

Overall, the two most frequently reported variants (c.509-1 G>C
and c.622C>T [p.(Arg208*)]) collectively occurred in 60% of
individuals reported and accounted for 50% of disease-associated
alleles (Table 2). On a regional level, these variants appeared less
frequently outside Europe and North America (Figure 3). The allele
c.851 G>T (p.(Gly284Val)), originally identified in Newfoundland, was
the second most common allele in North America and is a well-
characterized founder effect mutation in classic late-infantile CLN2
disease (Fietz et al., 2016). In addition, c.1525 C>T (p.(GIn509*)) was
the predominant mutated allele reported in the Middle East and also
occurred in Europe. So far, c.640 C>T (p.(GIn214%) has only been
reported in China and Italy; these may also be examples of founder
mutations.

Disease alleles occur either as homozygous or as compound
heterozygous, and the disease phenotype manifested likely reflects
the combined effect of the alleles on TPP1 function. The NCL database
presents data from individual patients, allowing supposition of
genotype-phenotype correlation (https://www.ucl.ac.uk/ncl-disease/)

Several variants have only been associated with the classic late-
infantile CLN2 disease phenotype. The ¢.851G>T (p.(Gly284Val))
variant appeared 27 times in the collected population, in individuals
with classic late-infantile CLN2 disease from 26 patients in Canada
and one patient in the US. Similarly, c¢.827 A>T (p.(Asp276Val)) was
reported only in Argentina and Chile. The ¢.616 C>T (p.Arg206Cys)
variant was also unique to classic late-infantile CLN2 disease, and
three out of the four patients reported to have it resided in India.

One large deletion, spanning exon 8, was reported
(c.888_1066del [p.(His298Leufs*3)]) in one patient from the US with
unrecorded phenotype. Substitutions at residue 343 are reported in
patients with different phenotypes: p.(Glu343Lys); ¢.1027 G>A in
classic late-infantile CLN2 disease and p.(Glu343Asp); c.1027 G>A in
atypical CLN2 disease. A number of variants were only associated
with atypical CLN2 disease. The ¢.887-10 A>G (variable amino acid
change) variant, which was reported 12 times and only in South
America (Argentina, Chile, Colombia), Portugal, and Spain, likely
causes an in-frame inclusion of intron 7 and appears mainly in
patients with a juvenile age of onset. Lastly, c.1397T>G
(p.(Val466Gly)) has only been reported six times in patients from
the Netherlands with atypical CLN2 disease (SCAR7), in trans with

the common ¢.509-1 G>C splice variant.
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FIGURE 1 Spectrum of TPP1 variants described

3.3 | Biological significance

TPP1 (NM_000391.3) maps to chromosome 11p15 and encodes the
lysosomal exopeptidase, TPP1. Upon acidification, the inactive
proenzyme form (Figure 4) is processed to a 46 kDa protein. The
mature enzyme cleaves tripeptides from the amino terminus of small
polypeptides undergoing degradation in the lysosomes and has weak
endopeptidase activity (Lin, Sohar, Lackland, & Lobel, 2001; Pal et al.,
2009). In vivo substrates of TPP1 are not well characterized and the
pathological mechanisms underlying the disease remain unclear
(Cooper, Tarczyluk, & Nelvagal, 2015; Palmer, Barry, Tyyneld, &
Cooper, 2013; Stumpf et al., 2017).

Mutations identified in TPP1 are distributed over the whole
protein structure (Figure 2) and the majority are likely linked to loss

of enzyme activity, though very few will have been confirmed to do
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TABLE 2 Disease-associated TPP1 variants reported = 10 times

Number of times
reported (% of reported
alleles, N=717)

Amino acid

Nucleotide change  change

c.509-1G>C Splice acceptor 193 (27%)
variant
c.622C>T p.(Arg208*) 165 (23%)
c851G>T p.(Gly284Val) 35 (4.9%)
c.1525C>T p.(GIn509%) 20 (2.8%)
c.827 A>T p.(Asp276Val) 14 (2.0%)
c.887-10 A>G Variable 12 (1.7%)
c.1266 G>C p.(GIn422His) 11 (1.5%)
c.380 G>A p.(Arg127GIn) 10 (1.4%)

Note: Nucleotide changes are according to NM_000391.3; protein changes
are according to NP_000382.3. The emphasis now is on collecting new
variants; frequency of the most common variants is, therefore,
underrepresented here as new reports for these are no longer included in
the UCL TPP1 locus-specific database.

this biochemically. Loss of TPP1 activity leads to neuropeptide
degradation failure and significant accumulation of subunit c of ATP
synthase. However, accumulation of subunit c has been identified in
most forms of NCL and other lysosomal storage disorders, suggesting
that this may not be the primary metabolic error in TPP1 deficiency
(Palmer et al., 2013; Ryazantsev, Yu, Zhao, Neufeld, & Ohmi, 2007).
Several common pathogenic cascades have been identified in
lysosomal storage disorders, including altered lipid trafficking,
autophagy, altered calcium homeostasis and oxidative stress

Increasing allele
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FIGURE 2 TPP1 gene structure and variants reported > two times. Domain information from InterPro accession O14773. Numbers within
the arrows are the frequency with which variants were reported in the registry
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Total alleles

287

112 52
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Others
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Percentage of alleles by region of origin
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FIGURE 3 Most common alleles listed in the TPP1 locus-specific database by region of origin. The number of times an allele was
encountered is shown in parentheses. North America includes Newfoundland. Note: The emphasis now is on collecting new variants;
frequency of the most common variants is, therefore, underrepresented here as new reports for these are no longer included in the UCL

TPP1 locus-specific database.

(Vitner, Platt, & Futerman, 2010). Specifically, in vitro studies have
linked TPP1 deficiency to oxidative stress and changes in mitochon-
2013).

initiating mechanisms, the uniform neuropathological features of the

drial morphology (Van Beersel et al, Regardless of the

NCLs may suggest the existence of shared pathogenic pathways for
NCL proteins (Haltia, 2006; Palmer et al., 2013).

3.4 | Clinical and diagnostic relevance

Diagnosis of CLN2 disease may be reached through a mixture of
clinical findings, TPP1 enzyme deficiency, and/or molecular findings
in TPP1 (Fietz et al., 2016). Historically, diagnoses of NCL subtypes
have relied on histopathological techniques, such as an electron

microscope evaluation of autofluorescent storage material

morphology, together with a clinical review of disease onset and
symptoms (Williams et al., 2006). Assaying of white blood cell TPP1

FIGURE 4 TPP1 proenzyme structure
and missense variants reported > three
times. Three-dimensional structure of
TPP1 dimers (Pal et al., 2009). Active site
(catalytic triad, Ser475-Glu272-Asp360)
pocket residues are shown as red space-
filling models, calcium binding sites
(Asp517-Val518-Gly539-Asp543) in blue.

activity is now the mainstay of diagnosis for TPP1-related diseases
(Fietz et al., 2016). Whereas this provides a direct test for CLN2
disease, it requires a specific suspicion of CLN2 or other NCL. By that
point, there will have been significant disease progression and
neurodegeneration (Nickel et al., 2016).

Alongside the demonstration of deficient TPP1 enzyme activity,
detection of two pathogenic mutations in trans is considered the gold
2016). Unlike

biochemical testing, molecular genetic testing can be used to test

standard for CLN2 disease diagnosis (Fietz et al,

multiple etiologies, and potentially lead to a patients phenotype. This
means that no specific suspicion of an etiology is required,
positioning these broad next-generation sequencing (NGS)-based
tests as a tool for earlier diagnosis of genetic diseases. NGS
techniques such as whole exome sequencing (WES) have emerged
in recent years as useful tools for enhancing NCL subtype
classification,

particularly when mutations in different genes
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cause similar and overlapping phenotypes (Patifio et al., 2014).
Timely diagnosis facilitates the early initiation of appropriate
disease-specific care and enables families to make informed decisions
about treatment goals (Williams et al., 2017). Unexplained seizures,
especially if preceded by early language developmental delay, can be
an early symptom of CLN2 disease. In children without a specific
CLN2 indication who present with delayed language skills, experts
recommend investigating pediatric-onset seizures using an epilepsy
gene panel (Fietz et al., 2016; Lemke et al., 2012), as an approach to
decrease time to the differential diagnosis of CLN2 disease.

Patients with CLN2 may encounter diagnostic delay due to the
inexperience of their treating physicians and lack of awareness of NCL
disorders. This may be a particular challenge in countries with an
abundance of variant phenotypes due to diverse ethnic populations
(Kohan et al., 2009). In an era where broad molecular tests are being used
(e.g., gene panels, WES), the professional interpreting and/or conveying of
test results to physicians, patients, or families is likely to not be an expert
in CLN2 or NCLs overall. Experts in the area may know where to easily
locate the TPP1 locus-specific database at UCL, but this database is less
well-known by general physicians. Central databases, like ClinVar, are
widely used for all genetic diseases and are positioned as resources for
any medical professional. The sharing of variant and clinical information
with both NCL/CLN2 expert audiences, as well as non-experts, facilitates
both efficient researches of CLN2 disease and other NCLs and accurate
interpretation of genetic testing results.

Interpreting the variants identified by molecular genetic tests can
be cumbersome or unclear, particularly in cases of novel missense
and/or in frame variation. In CLN2 disease, most patients (60%, in
this database) have one of two common variants (c.509-1 G>C and
€.622 C>T [p.(Arg208*)]), which have been consistently reported as
pathogenic. If patients have any indication of CLN2 disease, and
molecular testing finds any pathogenic or likely pathogenic variant in
TPP1, TPP1 enzyme activity testing can be used to confirm the
diagnosis. In addition, if a second variant is not identified, but enzyme
activity is deficient, this can be used as evidence to classify any other
potentially deleterious variants in the patient as well as provide a
laboratory-based diagnosis of CLN2 disease (Fietz et al., 2016;
Richards et al., 2015).

3.5 | Relevant animal models

The TPP1 gene shows wide conservation in vertebrates (e.g., human,
macaque, mouse, and cow; Wlodawer et al., 2003), but there is no
obvious orthologue in lower organisms (e.g., Drosophila, Caenorhabdi-
tis elegans, or Saccharomyces cerevisiae). However, TPP1 does belong
to a family of enzymes with members found in bacteria (Oda et al,
1996; Oda, Takahashi, Tokuda, Shibano, & Takahashi, 1994). A novel
TPP1 orthologue, located in the lysosomes of the amoeba Dictyos-
telium discoideum, has also been described (Phillips & Gomer, 2015).

Zebrafish with a TPP1 deficiency die prematurely and show
ubiquitous storage material containing ATP synthase subunit c, with
it being more evident in the CNS and muscles (Mahmood et al.,

2013). The early stop codon in exon 3 (which is also described in

humans but at a different amino acid position) leads to an early-onset
neurodegenerative phenotype and functional motor impairment
preceded by a phase of hyperactivity that could be consistent with
seizures. The zebrafish model also shows significant apoptotic cell
death and aberrant proliferation in the optic tectum, cerebellum, and
retina. As mouse models for CLN2 disease do not seem to suffer from
visual problems or retinal degeneration (see below), the study of this
aspect of the disease could utilize these findings from the zebrafish
model.

The first TPP1 deficient mouse model (mixed background
[C57BL/6:129S6]) was generated by knock-in of the CLN2-specific
p.(Argd447His) missense mutation into the Tpp1 gene in combination
with a large intronic insertion (Sleat et al., 2004). The lack of activity
of TPP1 protein does not affect the initial stages of development but
evolves with signs of progressive neurological deficits with aging. The
lifespan is drastically reduced (median survival 138d) and the mice
display early motor deficits, seizures, spontaneous tremors, and
ataxia (Sleat et al., 2004). The neurological impairment is visible in
the brain, spinal cord, and peripheral sensory neurons, with an
accumulation of autofluorescent material in the lysosomes. The
severe loss of neurons in the cerebral cortex that is observed in the
human late-infantile CLN2 disease is not that obvious, but there is a
clear loss of Purkinje cells which could be linked to the cerebellar
ataxia. Studies on the histology of the retina do not show any loss of
photoreceptors or any reduction in cell layers (Sleat et al., 2004).

More recently, a mouse model encoding the most common
nonsense mutation found in humans, an early stop codon instead of
arginine in the 208 positions (p.Arg207* in mice), has been generated
and described (Geraets et al., 2017). The resulting transcript
reduction leads to reduced enzymatic activity in different organs,
such as the liver, spleen, or cerebellum. Consequently, mice show a
reduced lifespan, with most dying between 3 and 6 months of age. As
observed in the previous mouse model (Sleat et al., 2004), impaired
motor behavior is observed and characterized by tremors, seizures,
hyperactivity, and strength deficits. The visual phenotype was not
studied. Histological evaluation of the brain displayed an accumula-
tion of the mitochondrial ATP synthase subunit c in superficial or
deep cortical layers. Showing a similar phenotype to the pre-existing
mouse model, this new transgenic mouse could be used for the
preclinical evaluation of all therapeutic approaches including muta-
tion-guided therapies.

To date there is evidence of NCL in over 20 canine breeds and mixed-
breed dogs (Katz, Rustad et al., 2017). The canine Tpp1 gene sequence
(GenBank AF114167) includes all 13 exons that are present in the human
TPP1 gene, and exonic sequences are highly conserved between both
species (Drogemdiller, Wohlke, & Distl, 2005).

The first report of NCL in Dachshund dogs described a
neurodegenerative disease starting with hind-leg weakness at 3
years of age (Cummings & de Lahunta, 1977). Histological analysis
showed cerebellar atrophy together with marked loss of neurons and
Purkinje cells in the area. Ultrastructural studies revealed various
membrane-bound inclusions in addition to the autofluorescent

lipofuscin granules. No genetics or biochemical analysis was
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performed in this study, so the genetic basis of this disease is
unknown. However, another Dachshund dog model, with earlier
disease onset, was found to be homozygous for the mutant ¢.325delC
allele in Tppl (Awano et al., 2006). The first symptoms (vomiting,
mental dullness, loss of housebreaking, and unresponsiveness to
previously learned commands) were visible at approximately 9
months of age. The disease progressed with gradual loss of sight
and ataxia (10 months), and myoclonus of the head with seizures (11
months). This model showed episodes of hyperactivity and howling,
and later exhibited aggressive behavior, a hypermetric gait, and
incessant circling. Vomiting became more frequent and diarrhea
subsequently developed. Finally, diarrhea progressed to hematoche-
zia, with death by 12 months of age. The TPP1 activity measured in
the brain was less than 1% of that observed in the cortex of control
dogs, resulting in autofluorescent storage bodies in all examined
regions of the CNS. The ultrastructural electron microscopy analysis
of the bodies consistently showed the curvilinear forms character-
istic of the human CLN2 mutations (Awano et al., 2006).

All previously described animal models, regardless of the type
of mutation, share the most common symptoms observed for
human pathology due to the reduced levels of TPP1 protein. Thus,
animal models are an invaluable resource to test different
therapeutic strategies, such as gene therapy, cell transplantation,
chemical compounds, or enzymatic replacement. Given the nature
of the symptoms and the progression of the disease, most efforts
are focused on the CNS and loss of vision. However, it is crucial to
take into account that the storage bodies are found to accumulate
in all visceral organs, so there may be extraneuronal pathology. A
recent publication showed systemic signs of the disease in dogs
after delayed neurological progression due to successful intracer-
ebroventricular gene therapy (Katz et al., 2014, 2017; Vuillemenot
et al., 2015). If the therapeutic approaches to treat the CNS
succeed, animal models could provide valuable insight into further
challenges affecting the life expectancy and the quality of life of
the patients.

3.6 | Future prospects

The newly approved intracerebroventricular enzyme replacement
therapy has rendered CLN2 disease from an untreatable to treatable
disease, especially if treatment is started early before significant
neurodegeneration has already taken place (Schulz et al., 2018). The
ultimate effort to improve early diagnosis of a now treatable disease
is newborn screening (NBS). Experts suggest that assaying TPP1
activity with enzyme substrates compatible with tandem mass
spectrometry detection could support future large-scale NBS
programs (Barcenas et al., 2014; Fietz et al., 2016). The adoption of
successful NBS programs for CLN2 also relies heavily on the clarity
of genotype-phenotype correlations. There must be a concerted
effort to ascertain the disease liability of TPP1 variants to facilitate
interpretation of variants detected through population-based screen-
ing and diagnostic molecular genetic testing. The algorithm for

detection should maximize specificity, achieve a high positive
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predictive value, and have a low false-positive rate (Pitt, 2010).
There is also the more distant possibility of whole exome or whole
genomic sequencing on all newborns, which could be followed by
specific testing for predicted enzyme deficiencies. In addition, a
robust understanding of genotype-phenotype correlations would
facilitate interpretation of NBS data.

4 | CONCLUSION

To date, 131 TPP1 gene variants have been reported in 389
individuals with TPP1 deficiency. The majority of disease-causing
TPP1 variants are private. Currently, only 30% of TPP1 variants
reported here are in the NCBI ClinVar database with an associated
ACMG clinical classification. Most individuals with TPP1 deficiency
have one of two variants: ¢.622 C>T (p.(Arg208*) or ¢.509-1G>C.
The uniform and timely reporting of all variants not only benefits
families by providing a definitive diagnosis, but has also allowed
genotype-phenotype correlations to be considered, and in some
cases, reassessed. The inclusion of all variants in a database, disease-
causing or not, is useful. If a variant has previously been proved
benign, this could expedite interpretation and diagnosis. Compre-
hensive reporting and data sharing is essential as molecular genetic
testing increases as a first-line diagnostic test for pediatric-onset
neurological disease. The long-established NCL mutation database
remains a valuable resource for collecting TPP1 variants.

To contribute to the UCL NCL database, please contact Sara

Mole (s.mole@ucl.ac.uk).
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