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Summary

The comorbidity of anxiety and dysfunctional reward processing in illnesses such as addiction1 

and depression2 suggests that common neural circuitry contributes to these disparate 

neuropsychiatric symptoms. The extended amygdala, including the bed nucleus of the stria 

terminalis (BNST), modulates fear and anxiety3,4, but also projects to the ventral tegmental area 

(VTA) 5,6, a region implicated in reward and aversion7–13, thus providing a candidate neural 

substrate for integrating diverse emotional states. However, the precise functional connectivity 

between distinct BNST projection neurons and their postsynaptic targets in the VTA, as well as 

the role of this circuit in controlling motivational states have not been described. Here, we 

recorded and manipulated the activity of genetically and neurochemically identified VTA-

projecting BNST neurons in freely behaving mice. Collectively, aversive stimuli exposure 

produced heterogeneous firing patterns in VTA-projecting BNST neurons. In contrast, in vivo 

optically-identified glutamatergic projection neurons displayed a net enhancement of activity to 

aversive stimuli, whereas the firing rate of identified GABAergic projection neurons was 

suppressed. Channelrhodopsin-2 (ChR2) assisted circuit mapping revealed that both BNST 

glutamatergic and GABAergic projections preferentially innervate postsynaptic non-dopaminergic 

VTA neurons, thus providing a mechanistic framework for in vivo circuit perturbations. In vivo 
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photostimulation of BNST glutamatergic projections resulted in aversive and anxiogenic 

behavioral phenotypes. In contrast, activation of BNST GABAergic projections produced 

rewarding and anxiolytic phenotypes, which were also recapitulated by direct inhibition of VTA 

GABAergic neurons. These data demonstrate that functionally opposing BNST to VTA circuits 

regulate rewarding and aversive motivational states and may serve as a critical circuit node for 

bidirectionally normalizing maladaptive behaviors.

The ventral BNST (BNSTv) is a heterogeneous structure 14 that innervates the VTA5,15–18, 

and aversive and rewarding stimuli activate a subset of these BNSTv projection 

neurons19–21. To identify and record the activity of BNSTv→VTA neurons using 

antidromic photostimulation in vivo, we targeted ChR2-eYFP22 under the control of a 

CaMKIIa promoter to the BNSTv of adult mice. 4 – 6 weeks later, ChR2-eYFP was 

observed in BNSTv cell bodies and projection fibers that innervate the VTA (Fig. 1a). 

Under anesthesia, optical fibers for antidromic photostimulation were positioned above the 

VTA, while recording electrodes and optical fibers for orthodromic photostimulation were 

positioned in the BNSTv (Fig. 1b). We recorded from BNSTv units that displayed reliable 

spiking to both orthodromic and antidromic-photostimulation. By systematically decreasing 

the interval between orthodromic- and antidromic-photostimulation, the fidelity of 

antidromic spikes was significantly attenuated (Fig. 1c,d), demonstrating spike collision23. 

In addition, antidromic spike latencies were significantly greater and showed less variability 

compared to orthodromic spikes (Fig. 1e,f), and antidromic spike fidelity was significantly 

greater than orthodromic spike fidelity to 40 Hz photostimulation (Fig. 1g ). Thus, 

photostimulation of BNSTv→VTA projections results in antidromic spiking that is reliably 

distinguishable from putative trans-synaptic circuit activation.

To examine the neurophysiological dynamics of identified BNSTv→VTA neurons in 

behaving mice we implanted 16-channel multielectrode arrays in the BNSTv as well as 

optical fibers above the VTA for antidromic identification of neurons24 (Fig. 1h; 

Supplementary Fig. 1). Delivery of single 5 ms, 473 nm light pulses to the VTA resulted in 

time-locked firing in many BNSTv neurons. Photostimulation of BNSTv→VTA fibers 

resulted in a bimodal firing pattern in BNSTv neurons due to distinguishable antidromic and 

polysynaptic activity (Supplementary Fig. 2, Supplementary Methods). Principle component 

and correlation analysis comparing waveform shapes demonstrated that spontaneous 

waveforms were highly correlated with light-evoked waveforms (average r = 0.950 ± 0.008; 

Supplementary Fig. 2; Supplementary Table 1)7. Light-evoked spike latencies revealed that 

a subset of recorded units consistently displayed time-locked spiking on 11.21 ± 0.68 out of 

20 trials (56%) with a mean latency of 7.31 ± 0.32 ms (Fig. 1i,j), comparable with our 

anesthetized recording data (Fig. 1e), and a previous study using electrical antidromic 

stimulation of BNST projections in rodents25. Accordingly, neurons that were identified as 

antidromic-responsive displayed spike fidelity of 81 ± 15% in response to 20 Hz 

photostimulation (Supplementary Fig. 2). Using these criteria (Supplementary Methods), we 

identified 53/137 units as BNSTv→VTA projection neurons.

BNSTv neurons display heterogeneous responses following aversive stimuli exposure19,20. 

Thus, we classified the firing patterns of identified BNSTv→VTA neurons in response to 
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unpredictable foot shocks and associated contextual cues (Supplementary Methods). 

Identified BNSTv→VTA neurons segregated into three functionally distinct classes based 

on changes in their normalized firing rates throughout the foot-shock session 

(Supplementary Fig. 3), demonstrating that BNSTv→VTA neurons differentially encode 

information related to aversive stimuli and their associated contextual cues.

Electrical stimulation of the BNST produces both excitatory and inhibitory responses in 

VTA neurons in vivo6 implying that distinct subcircuits may exist. In mice injected with 

AAV5-CaMKIIa-ChR2-eYFP to nonspecifically target BNSTv→VTA projection neurons 

(CaMKIIaBNSTv→VTA::ChR2), whole-cell recordings in brain slices revealed that 

photostimulation of the CaMKIIaBNSTv→VTA pathway produced both glutamatergic and γ-

aminobutyric acid (GABAergic) currents in VTA neurons (Supplementary Fig. 4), 

demonstrating that neurochemically distinct BNSTv neurons project to the VTA.

We next dissected the functional connectivity between distinct glutamatergic and 

GABAergic BNSTv→VTA neurons and their genetically defined postsynaptic targets 

within the VTA. Injection of a cre-inducible viral construct coding for ChR2-eYFP into the 

BNSTv in Vglut2-ires-cre or Vgat-ires-cre mouse lines26 resulted in robust expression in 

the BNSTv as well as in fibers originating from these neurons that innervated the VTA (Fig. 

2a,b). Whole-cell recordings from VTA neurons revealed that photostimulation of ChR2-

containing fibers originating from Vglut2 (Vglut2BNSTv→VTA::ChR2) or Vgat 

(VgatBNSTv→VTA::ChR2) expressing BNSTv neurons produced excitatory or inhibitory 

postsynaptic currents respectively (Fig. 2c,d; Supplementary Fig. 5). Vglut2BNSTv→VTA and 

VgatBNSTv→VTA terminals formed functional synapses primarily onto non-dopaminergic 

and medially located dopaminergic neurons, which have been implicated in responding to 

aversive stimuli7,9,11,13 (Fig. 2e,f; Supplementary Fig 6–7; Supplementary Methods). These 

data provide a circuit blueprint by which BNSTv subcircuits interface with VTA-reward 

circuitry.

We next explored whether glutamatergic or GABAergic subpopulations of BNSTv→VTA 

neurons differentially respond to foot-shock sessions and associated contextual cues. Using 

optical antidromic activation in vivo, we identified 34/145 Vglut2BNSTv→VTA::ChR2 

expressing neurons (Supplementary Fig. 1; Supplementary Fig. 8; Supplementary Table 1). 

While all projection neurons displayed heterogeneous firing patterns (Supplementary Fig. 

3), identified Vglut2BNSTv→VTA projection neurons exhibited a net enhancement of firing 

during the aversive event (Fig. 3a,b). In contrast, 33/77 identified VgatBNSTv→VTA::ChR2 

expressing neurons principally exhibited reduced firing during the aversive event (Fig. 3c,d; 

Supplementary Fig. 1; Supplementary Fig. 8; Supplementary Table 1). In addition, 1 week 

after 5 consecutive daily foot-shock sessions, re-exposure to shock-associated contextual 

cues alone resulted in a net enhancement of Vglut2BNSTv→VTA::ChR2 neuronal activity 

(Fig. 3e,f; Supplementary Fig. 9) while the activity of VgatBNSTv→VTA::ChR2 neurons were 

largely suppressed (Fig. 3g,h; Supplementary Fig. 9). Collectively, exposure to the aversive 

event or associated cues alone enhanced the firing of Vglut2BNSTv→VTA neurons, while 

simultaneously suppressing the activity of VgatBNSTv→VTA neurons.
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Since aversive stimuli enhanced the activity of Vglut2BNSTv→VTA neurons (Fig. 3a,b,e,f), 

which can excite non-dopaminergic VTA neurons (Fig. 2e), we next explored the behavioral 

consequences of selectively activating this projection in behaving mice. We tested mice in a 

real-time place preference paradigm to assay the effects of photostimulation of the 

Vglut2BNSTv→VTA pathway on motivational valence. Photostimulation of 

Vglut2BNSTv→VTA::ChR2 mice resulted in a significant avoidance of a stimulation-paired 

chamber (Fig. 4a,b; Supplementary Figs. 10 and 11). Activation of this pathway also 

reduced active reward seeking (Supplementary Fig. 11). The aversive effects of this 

stimulation was dependent on local VTA glutamatergic signaling as infusions of an 

ionotropic glutamate receptor antagonist cocktail abolished the aversive phenotype induced 

by Vglut2BNSTv→VTA activation (Fig. 4b; Supplementary Fig. 12 and 13). In addition, 

inescapable activation of this pathway for 20 min in an open field resulted in significantly 

less center- and more corner-time in Vglut2BNSTv→VTA::ChR2 mice in the 10 min following 

stimulation offset compared to controls, suggesting that enhanced activity in the 

Vglut2BNSTv→VTA pathway contributes to anxiety-like behavior (Fig. 4c; Supplementary 

Fig. 11).

In contrast to the aversive consequences of stimulating the Vglut2BNSTv→VTA pathway, 20 

Hz photostimulation in VgatBNSTv→VTA::ChR2 mice resulted in a significant place 

preference (Fig. 5a,b; Supplementary Figs. 10 and 14). VTA infusions of a GABAA receptor 

antagonist prevented the VgatBNSTv→VTA mediated place preference compared to saline 

injections (Fig. 5b; Supplementary Figs. 12 and 13). To determine if in vivo optogenetic 

activation of the VgatBNSTv→VTA pathway produces active reward seeking, we tested 

whether these mice would nose poke to receive photostimulation27. VgatBNSTv→VTA::ChR2 

mice readily nose poked to receive photostimulation (Fig. 5c; Supplementary Fig. 14). 

Together, these data suggest that photostimulation of the VgatBNSTv→VTA pathway 

promotes reward-related behaviors.

Since the VgatBNSTv→VTA projection preferentially innervates non-dopaminergic VTA 

neurons (Fig. 2f), we considered VTA GABAergic neurons as the likely postsynaptic target. 

VTA GABAergic neuronal inhibition via halorhodopsin activation (VgatVTA::NpHR; 

Supplementary Figs. 15 and 16)also produced reward-related phenotypes (Fig. 5d,e,f). 

Together, these results show that reward-related responses to VgatBNSTv→VTA activation are 

recapitulated by directly inhibiting VgatVTA neurons, thus providing a circuit mechanism for 

the VgatBNSTv→VTA pathway to regulate motivated behavior.

Since the BNST regulates the expression of fear and anxiety-related behavioral 

phenotypes3,28,29, we also sought to establish a role for the VgatBNSTv→VTA pathway in 

these negative motivational states. Photostimulation of the VgatBNSTv→VTA pathway and 

direct inhibition of VgatVTA neurons significantly increased time spent in the open arms of 

an elevated plus maze, indicative of anxiolysis (Fig. 5g; Supplementary Fig. 17). These 

coinciding observations suggest that VgatBNSTv→VTA and VgatVTA neurons serve as critical 

circuit nodes for moderating the expression of anxiety.

Given that VgatBNSTv→VTA neurons are largely inhibited by aversive stimuli (Fig. 3c,d,g,h), 

we examined whether concurrent activation of the VgatBNSTv→VTA projection during an 
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unpredictable foot-shock session could alleviate the subsequent development of anxiety-like 

behavior. Immediately following termination of the foot-shock session and cessation of 

VgatBNSTv→VTA::ChR2 stimulation, we measured the acute freezing response while still in 

the shock-associated context, as well as behavior in the elevated-plus maze 3 hr later 

(Supplementary Fig. 18; Supplementary Methods). VgatBNSTv→VTA::ChR2 mice spent 

significantly less time frozen (Fig. 5h), as well as significantly more open-arm time and 

entries in the elevated-plus maze relative to controls (Supplementary Fig. 18). Taken 

together, these data suggest that enhancing activity of the VgatBNSTv→VTA pathway during 

aversive stimuli exposure has anxiety-buffering properties. While the canonical view of 

BNST function proposes a dominant role of this structure in promoting anxiety states3,4,30, 

the cellular and functional complexity described here (Supplementary Fig. 19) illustrates 

that particular BNST circuit elements orchestrate divergent aspects of emotional and 

motivational processing.

Methods summary

All procedures were conducted in accordance with the Guide for the Care and Use of 

Laboratory Animals, as adopted by the NIH, and with approval of the Institutional Animal 

Care and Use Committee at UNC and described in detail in the Supplementary Methods.

Online methods

Experimental subjects and stereotactic surgery

All procedures were conducted in accordance with the Guide for the Care and Use of 

Laboratory Animals, as adopted by the NIH, and with approval of the Institutional Animal 

Care and Use Committee at UNC. Adult (25–30g) male C57BL/6J mice (Jackson 

Laboratory), adult male Vgat-ires-cre mice and adult male Vglut2-ires-cre mice (see 26 for 

additional details on the Vglut2-ires-cre and Vgat-ires-cre mouse lines) were group housed 

prior to surgery. All mice were maintained on a reverse 12 hr light cycle (lights off at 07:00) 

with ad libitum access to food and water, unless described below. Mice were anesthetized 

with a ketamine (150 mg per kg of body weight) and xylazine (50 mg per kg) solution and 

placed into a stereotactic frame (Kopf Instruments). For all in vivo electrophysiology 

experiments, male mice were unilaterally injected with 0.5 µl of purified and concentrated 

adeno-associated virus (AAV) (∼1012 infections units per ml, packaged and titered by the 

UNC Vector Core Facility) into the BNSTv using the following stereotactic coordinates: + 

0.14 mm to bregma, +/− 0.9 lateral to midline, and − 4.8 mm ventral to the skull surface. All 

viral constructs were packaged by the UNC vector core facility at a final working 

concentration of 1 – 5E12 genome copies per mL.

For all in vivo electrophysiology experiments, mice were implanted with a 16-wire (4 × 4 

configuration, wire diameter∼30µm) tungsten multielectrode array (MEA) (Innovative 

Neurophysiology, Inc) aimed at the BNSTv using the stereotactic coordinates stated above. 

For all in vivo electrophysiological and in vivo behavioral experiments, except for the VTA 

microinjection experiments, all mice were implanted with an optical fiber aimed at the VTA 

(see24 for additional details) using the following stereotactic coordinates: −3.2 mm to 

bregma, +/−0.5 lateral to midline, and −4.69 mm ventral to skull surface. For the VTA 
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microinjection experiments, a 26-gauage steel tube cannula (McMasters-Carr) that 

terminated 0.5 mm above the tip of the optical fiber was epoxied to an optical fiber and 

unilaterally aimed at the VTA using the following stereotactic coordinates: −3.2 mm to 

bregma, +/−0.5 lateral to midline, and −4.69 mm ventral to skull surface. For 

photoinhibition of VTA-GABAergic neurons using NpHR3.0, all mice were bilaterally 

implanted with an optical fiber at a 10° angle in the VTA using the following stereotactic 

coordinates: −3.2 mm to bregma, +/−1.1 lateral to midline, and –4.75 mm ventral to skull 

surface. The time from virus injection to the start of the experiments was 4 – 6 weeks for all 

ChR2 terminal stimulation manipulations and 3 – 4 weeks for cell body manipulations.

Histology, immunohistochemistry, and microscopy

Mice were anesthetized with pentobarbital and transcardially perfused with phosphate 

buffered saline (PBS) followed by 4% paraformaldehyde (weight/volume) in PBS. 40 µm 

brain sections were subjected to immunohistochemical staining for neuronal cell bodies 

(NeuroTrace Invitrogen; 640 nm excitation/660 nm emission or 435 nm excitation/455 nm 

emission and/or tyrosine hydroxylase (TH)) (Pel Freeze; made in sheep, 1:500) (see10,13 for 

additional information). Brain sections were mounted, coverslipped, and z−stack and tiled 

images were captured on a Zeiss LSM 710 confocal microscope using a 20x or 63x 

objective. To determine optical fiber placement, tissue was imaged at 10x and 20x on an 

upright epi-fluorescent microscope.

In vivo anesthetized electrophysiology

C57BL/6J mice were bilaterally injected with 0.3 µl of AAV5-CaMKIIa-ChR2-eYFP into 

the BNSTv. 6 weeks following virus injection, mice were anesthetized with 0.5 – 1.0% 

isoflurane (Butler Schein) and were placed into a stereotaxic frame (Kopf Instruments). 

Body temperature was maintained at ∼ 37°C with a homeothermic heating blanket (Harvard 

Apparatus, Holliston, MA). Tail pinches were administered frequently to monitor responses 

under anesthesia. A reference electrode was fixed inside brain tissue, approximately 2 mm 

from both the BNSTv and VTA. Extracellular neural activity was recorded using a glass 

recording electrode (5 − 10 MΩ: and filled with 0.5 M NaCl). The recording electrode was 

lowered into the BNSTv (+ 0.14 mm to bregma, +/− 0.9 lateral to midline, and − 4.8 mm 

ventral to the skull surface) by a motorized micromanipulator (Scientifica). Recordings were 

amplified (Multiclamp 700B, Molecular Devices), highpass filtered at 6 kHz and sampled at 

10 kHz. Here, orthodromic photostimulation refers to action potentials initiated at the cell 

body, while antidromic photostimulation refers to backward propagating action potentials 

initiated at distal axonal fibers; both are independent of synaptic transmission.

For orthodromic activation, an optical fiber coupled to a solid state laser (473 nm) was fed 

through the side port of the electrode holder to terminate near the tip of the glass recording 

electrode, which allowed for delivery of ∼5 mW light pulses into the BNSTv. For 

antidromic activation, an optical fiber housed in a steel cannula and coupled to a separate 

solid state laser (473 nm) was inserted into the VTA at a 16° angle (- 3.2 mm to bregma, + 

1.4 mm lateral to midline, and − 4.9 mm ventral to the skull surface), which delivered ∼10 

mW of light to the VTA. BNSTv neurons were classified as antidromic-responsive, if the 

following 3 criteria were met: 1) stable antidromic spike latency (< 0.2 ms), 2) ability to 
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respond reliably to high frequency photostimulation, 3) collision between orthodromic- and 

antidromic-evoked spikes. Each photostimulation parameter delivered a 5 ms light pulse to 

either BNSTv cell bodies (orthodromic) or BNSTv axons within the VTA (antidromic). To 

determine stable antidromic latencies, 5 ms light pulses were delivered to the VTA every 5 s 

for 20 trials. To confirm reliable antidromic spike fidelity, 20, 40, and 100 Hz train pulses of 

light were delivered to the VTA every 10 s for 10 trials at each frequency. To validate spike 

collision, we varied the collision interval (0, 1, 2, 5, 10, 20 ms) between orthodromic and 

antidromic photostimulation. Each collision interval was repeated every 5 s for a total of 10 

trials. Data acquisition and analysis was performed using pCLAMP software (Molecular 

Devices). Placements of recording electrode tips within the BNSTv and optical fibers within 

the VTA were verified with histological examination of brain tissue following the 

experiments.

Patch-clamp electrophysiology

Brain slices preparation and general methods for patch-clamp electrophysiology were 

conducted as previously described10,13, with the following changes. To examine both 

BNSTv postsynaptic glutamatergic and GABAergic currents, C57BL/6J mice were injected 

with AAV5-CaMKIIa-ChR2-eYFP to nonspecifically target BNSTv→VTA projection 

neurons (CaMKIIaBNSTv→VTA::ChR2). For whole-cell voltage recordings (EPSCs and 

IPSCs) from VTA neurons, electrodes (2–4 MΩ electrode resistance) contained in mM: 117 

cesium methanesulfonate, 20 HEPES, 0.4 EGTA, 2.8 NaCl, 5 TEA, 2 Mg-ATP, 0.2 Na-GTP 

(pH 7.2–7.4), 275–285 mOsm. The cesium methanesulfonate internal solution also 

contained the selective NMDA antagonist, MK-801 (1.125 mM). VTA neurons were held at 

Vh = −70mV (EREV for GABAA receptors) and Vh = +10 mV (EREV for AMPA receptors) 

to examine both glutamatergic and GABAergic postsynaptic currents respectively within the 

same neuron. Photostimulation (5 ms pulses of 1–2 mW, 473 nm light delivery via LED 

through a 40x microscope objective) was used at both voltages. In a subset of neurons (n = 4 

of 11 neurons), TTX (1 µM) and 4-AP (1 mM) was bath applied to isolate monosynaptic 

currents.

To isolate BNSTv glutamatergic and GABAergic postsynaptic currents, 

Vglut2BNSTv→VTA::ChR2 and VgatBNSTv→VTA::ChR2 mice were used for recordings. For 

whole-cell voltage clamp recordings of VTA EPSCs from Vglut2BNSTv→VTA::ChR2 mice, 

once stable light-evoked EPSCs were achieved, 10 µM DNQX was bath applied. For whole-

cell voltage clamp recordings of VTA IPSCs from VgatBNSTv→VTA::ChR2 mice, once 

stable light-evoked IPSCs were achieved, 10 µM Gabazine was bath applied.

Ex vivo validation of photoinhibition of VTA GABA neurons

For current clamp recordings to show hyperpolarization of membrane voltage from VTA 

GABA neurons following NpHR inhibition, Vgat-ires-cre mice were transduced with Cre-

inducible NpHR under control of the EF1α promoter in the VTA. Electrodes (2–4 MΩ) 

contained in mM: 130 K-gluconate, 10 KCl, 10 HEPES, 10 EGTA, 2 MgCl2, 2 Mg-ATP, 

0.2 Na-GTP (pH 7.2–7.4), 275–285 mOsm. VTA neurons were maintained at ∼ −60 mV. 

For photoinhibition, 500 ms pulses of 5–8 mW, 532 nm light delivery via a solid-state laser 

coupled to an optical fiber positioned in the brain slice.
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Unpredictable foot-shock paradigm

Mice were placed in sound-attenuated mouse behavioral chambers (Med Associates) where 

an unpredictable foot shock was used as an aversive stimulus. A houselight and white noise 

signaled the start of the trial and remained on throughout the entire 20 min foot-shock 

session (contextual cues). Each unpredictable foot shock was 0.75 mA in intensity and 500 

ms in duration on a variable interval (VI60) schedule. Mice received approximately 20 

unpredictable foot shocks during the entire 20 min session.

For the in vivo electrophysiology experiments, Vglut2BNSTv→VTA::ChR2 and 

VgatBNSTv→VTA::ChR2 mice implanted with a MEA in the BNSTv and an optical fiber in 

the VTA were placed in the unpredictable foot-shock context where they received the visual 

and auditory contextual cues in the absence of foot shock for 20 min (contextual cue 

exposure prior to shock association). 5 days after the unpaired contextual cue session, mice 

were run in the standard unpredictable foot-shock session (approx. 20 unpredictable foot 

shocks, 0.75 mA, 500 ms) for 5 consecutive days as stated above, which included paired 

presentation of the contextual cues. 7 days following the 5th unpredictable foot-shock 

session, mice were placed back into the unpredictable foot-shock paradigm, where they 

received the visual and auditory contextual cues (houselight and white noise) in the absence 

of foot shock for 20 min.

In vivo electrophysiology

Neural activity was recorded using an Omniplex recording system (Plexon Instruments). 

Signals from each electrode in the array were referenced to ground, and recordings were 

performed in differential mode to subtract artifacts unrelated to neural activity. Acquired 

data was bandpass filtered between 0.1 and 8,000 Hz. Spike sorting was performed offline 

using Offline sorter (Plexon Instruments), as previously described31,32. Briefly, 

discrimination of individual units was performed offline using principal component analysis 

to separate individual units from the same electrode. In addition, auto- and cross-

correlograms, firing characteristics, and inter-spike interval distributions were examined to 

ensure units were well-isolated. In addition, timestamp data to signify the start and end of 

foot-shock sessions, and the delivery of light pulses to optical fibers was synchronized with 

electrophysiological data. Sorted waveforms were further processed in NeuroExplorer (Nex 

Technologies) to extract unit timestamps and relevant events. NeuroExplorer-extracted 

timestamps were exported to MATLAB and further data processing and statistical testing. 

Neuronal units were included in the data if the signal-to-noise ratio was high, and the mean 

firing rate was between 0.5 – 25 Hz during baseline recording periods. During the time 

epoch surrounding the individual delivered foot shocks, large shock artifact were readily 

apparent. While these were easily isolated and excluded from the analyzed waveform data 

using offline spike sorting, neuronal firing responses in the 500 – 1000 ms following foot 

shock onset could not be reliably quantified. Thus, data collected during these time epochs 

were excluded from analysis. This represents an approximate loss of 0.8 – 1.66% of the 

collected data during the foot-shock session. Resulting data was binned in 30 s epochs in 

order to minimize the skewing of our results due to data lost by the shock artifacts. In 

addition, recording sites was verified histologically using electrolytic lesions at 200 µA for 5 

s.
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To identify units originating from BNSTv projection neurons, 5 ms light pulses were 

delivered to VTA to antidromically stimulate BNSTv projection neurons that innervated the 

area. Light pulses were delivered in 10 s intervals for 20 trials starting 40 min after the end 

of the unpredictable foot-shock session. Recorded BNSTv units were classified as light-

responsive, and thus VTA-projecting, if they met both of the following two criteria. 1) The 

latency of the first spike after light stimulation onset was less than 20 ms for ≥ 20% of the 

trials. 2) Light-evoked and spontaneous waveform shapes had a correlation coefficient of > 

0.90. To compare light-evoked and spontaneous waveforms from units, light-evoked 

waveform characteristics were defined using the average waveform shape and average 

principal component values (PC1–3) of the first spike following photostimulation onset from 

each successful trial where a waveform was collected within 20 ms after light onset. This 

subset of light-evoked waveforms were then averaged together for a given unit, and 

compared to a subset of spontaneous, non-light-evoked waveforms that occurred 

immediately preceding the onset of light stimulations (pre-stimulation waveforms) and the 

first collected waveforms occurring after the 20 ms interval following the offset of 

photostimulations (post-stimulation waveforms). The correlation between each average 

waveform shape over the three time epochs (pre-stimulation, during stimulation, post-

stimulation) was then calculated using Pearson’s product-moment coefficient as well as their 

average principle component values.

VTA-projecting BNSTv neuronal units were then further classified, dependent on their 

firing response to the foot shock session into 3 categories: foot-shock session-excited, foot-

shock session-inhibited and foot-shock session-no effect. To clarify, foot-shock session-

excited, foot-shock session-inhibited, and foot-shock session-no effect refers to a neural 

unit’s activity in response to the collective aversive experience, not to individual foot 

shocks. To assess the firing rate of a particular neuron, each spike from 10 min preceding 

the foot shock session to 20 min following the end of the foot shock session was binned into 

30 s bins. Firing rate was then normalized to the mean firing rate during the 10 min 

preceding the start of the 20 min foot-shock session using z-scores. Neurons were classified 

as foot-shock session-excited if their average z-score during the 20-min foot-shock session 

was greater than 1. Likewise, neurons were classified as foot-shock session-inhibited if their 

average z-score during the shock session fell below −1. All other units where the z-score did 

not exceed an absolute value of 1 during the 20 min foot-shock session were classified as no 

effect. Neural activity was recorded from the same mice during the cue exposure, foot 

shock, and cue re-exposure sessions, therefore we were able to reliably record activity from 

the same population of neurons during each of the three sessions.

Photostimulation of Vglut2BNSTv→VTA::ChR2 and VgatBNSTv→VTA::ChR2 projections and 
photoinhibition of VgatVTA::NpHR neurons during real-time place preference

Vglut2BNSTv→VTA::ChR2, VgatBNSTv→VTA::ChR2, VgatVTA::NpHR, and litter mate 

controls were implanted with optical fibers above the VTA and were run in the real-time 

place preference paradigm. See10 for additional details on this method.
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Intra-VTA injection of antagonists and photostimulation of Vglut2BNSTv→VTA::ChR2 and 
VgatBNSTv→VTA::ChR2 projections during real-time place preference

A separate cohort of Vglut2BNSTv→VTA::ChR2 and VgatBNSTv→VTA::ChR2 mice were 

unilaterally implanted with a 26-gauge cannula coupled to an optical fiber aimed above the 

VTA. All mice were placed in a custom-made place preference arena and were run in the 

real-time place preference paradigm to achieve a baseline measurement. Two days following 

the baseline session, Vglut2BNSTv→VTA::ChR2 mice were injected with either 0.3 µl of 

vehicle (saline) or a cocktail of selective glutamate antagonists (0.1 µg AP-5/0.001 µg 

DNQX in saline) and VgatBNSTv→VTA::ChR2 mice were injected with either 0.3 µl of 

vehicle (saline) or a selective GABAA antagonist (0.001 µg Gabazine) into the VTA in a 

counter balanced design (all drugs from Tocris). The injector needle (33 gauge steel tube, 

McMasters-Carr) extended approximately 1 mm past the cannula to ensure drug delivery 0.5 

mm below the optical fiber. All mice were infused at a rate of 0.1 µl per minute. The injector 

remained in place for approximately 2 min following infusion to ensure proper diffusion of 

drug into the VTA. Immediately following the microinjection procedure, all mice were 

placed into the real-time place preference chamber. Mice had 2 days off between each VTA 

microinjection.

Photostimulation of Vglut2BNSTv→VTA::ChR2 projections during open-field testing

Vglut2BNSTv→VTA::ChR2 and Vglut2BNSTv→VTA::Control mice were examined in a custom 

made open field arena (25 × 25 × 25 cm white plexiglass arena) for 35 min. After a baseline 

period of 5 min, all mice received constant 20 Hz photostimulation. Immediately, following 

the 20 min photostimulation epoch, all mice had a 10 min period in which they received no 

photostimulation. Center zone was defined as the center 156 cm2 (25% of the entire arena). 

Corner zones were defined as the 39 cm2 in each corner. The 35 min session was recorded 

with a CCD camera that was interfaced with Ethovison software (Noldus Information 

Technologies). Time spent in the corner and the center of the open-field apparatus was 

recorded. Heat maps and post-acquisition processing were conducted in MATLAB 

(Mathworks Inc.).

Photostimulation of Vglut2BNSTv→VTA::ChR2 projections during sucrose self-
administration

Vglut2BNSTv→VTA::ChR2 and Vglut2BNSTv→VTA::Control mice with optical fibers 

implanted above the VTA were first food restricted to 90% of their free-feeding weight. 

They were then placed in standard mouse operant chambers in order to nose poke for a 15% 

(w/v) sucrose solution on FR-1 schedule in a 30 min session. Once stable nose-poking 

behavior for 15% sucrose was observed (approx. 100 active nose pokes on at least 2 

consecutive days), all mice received constant 20 Hz photostimulation during the entire 30 

min sucrose session.

Optical self-stimulation of VgatBNSTv→VTA::ChR2 projections

VgatBNSTv→VTA::ChR2 and VgatBNSTv→VTA::Control mice with optical fibers implanted 

above the VTA were trained in one 30 min session to nose poke on a fixed ratio (FR-1) 

schedule for optical self-stimulation of the VgatBNSTv→VTA::ChR2 projections in standard 
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mouse operant chambers (Med Associates). Each nose poke resulted in a single 3 s 20 Hz 

optical pulse train. Following the 1 day 20 Hz training session, mice were run daily at each 

photostimulation frequency (1, 5, 10, 20, 40 Hz) in a counter-balanced design.

Optical self-inhibition of VgatVTA::NpHR neurons

VgatVTA::NpHR and VgatVTA::Control mice with optical fibers implanted above the VTA 

were trained in one 30 min session to nose poke on a fixed ratio (FR-1) schedule for 

photoinhibition of VTA GABAergic cell bodies in standard mouse operant chambers as 

described above (Med Associates).

Photostimulation of VgatBNSTv→VTA::ChR2 projections and photoinhibition of 
VgatVTA::NpHR neurons during the elevated plus maze

VgatBNSTv→VTA::ChR2, VgatVTA::NpHR, VgatVTA::Control, and VgatBNSTv→VTA::Control 

mice were run in the elevated plus maze (EPM) to assay anxiety-like behavior. Activity and 

location was recorded for 5 min (baseline). Following this 5 min baseline period, 

VgatBNSTv→VTA::ChR2 and VgatBNSTv→VTA::Control mice received constant 20 Hz 

photostimulation for 5 min, while VgatVTA::NpHR and VgatVTA::Control mice received 

constant inhibition for 5 min. Immediately following the 5 min photostimulation or 

photoinhibition epoch, all mice had a 5 min period in which they received no light delivery.

Photostimulation of VgatBNSTv→VTA::ChR2 projections during foot-shock followed by 
freezing and anxiety-like behavior measurements

VgatBNSTv→VTA::ChR2 and VgatBNSTv→VTA::Control mice with optical fibers implanted 

above the VTA were run in a modified foot-shock paradigm as described above. Briefly, 

mice were placed into sound attenuated mouse chambers (Med Associates) for a 5 min 

baseline period. After the 5 min baseline period, a house light and white noise were 

activated and mice received the same foot shock protocol as described above. Additionally, 

during the 20 min shock session, all mice received constant 20 Hz photostimulation. A 

separate cohort of mice (VgatBNSTv→VTA::ChR2 and VgatBNSTv→VTA::Control) received 

constant 20 Hz photostimulation of this pathway in the absence of foot shock. Immediately 

following the 20 min foot shock and photostimulation epoch, all mice had a 5 min period in 

which they received no foot shock or photostimulation while still exposed to contextual 

cues, to assay freezing behavior. Freezing was defined as the total lack of any movement, 

except respiration for a period of 2 s. The 30 min test session was recorded with a CCD 

camera that was interfaced with Ethovision software (Noldus Information Technologies). 

Time frozen during the 5 min period immediately following the foot shock and 

photostimulation session was recorded. Approximately 3 hr after the foot shock and 

photostimulation session or just the photostimulation session in the absence of foot shock, 

mice were run on the elevated-plus maze to assay anxiety-like behavior for 5 min.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Optogenetic identification of BNSTv→VTA projection neurons
a. Sagittal image showing the BNSTv→VTA projection (ac, anterior commissure; D, dorsal; 

V, ventral; P, posterior; A, anterior; scale = 500 µm). b. Optogenetic collision test. c. 

Example traces from a single CaMKIIaBNSTv→VTA unit demonstrating antidromic-

orthodromic spike collision. d. Significant reduction in antidromic spike fidelity (%) at short 

antidromic-orthdromic photostimulation intervals (O, orthodromic photostimulation; A, 

antidromic photostimulation; F5,65 = 48.63, P < 0.0001; n = 12 units). e. Antidromic spike 

latencies were significantly greater than orthodromic latencies (P < 0.0001; n = 12 units). f. 
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Antidromic-initiated spikes displayed significantly greater latency stability compared to 

orthodromic-activated spikes (P < 0.001; n = 12 units). g. Antidromic spikes responded 

more reliably to 40 Hz photostimulation compared to orthodromic spikes (F2,18 = 11.2, P = 

0.003, n = 4 units). h. Optogenetic identification of BNSTv→VTA projection neurons in 

behaving mice. i. Representative peri-event histogram and raster of a single unit timelocked 

to 5 ms antidromic photostimulation. j. Mean first-spike latencies following antidromic 

photostimulation for all identified CaMKIIaBNSTv→VTA projection neurons (n = 53 units, n 

= 7 mice). All values for all figures represent mean ± s.e.m. * P < 0.05, ** P < 0.01.
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Figure 2. Excitatory and inhibitory synapses onto non-dopaminergic VTA neurons from 
neurochemically distinct BNSTv neurons
a – b. ChR2-eYFP in the BNSTv (top) and fibers in the VTA (bottom) in Vglut2-ires-cre (a) 

and Vgat-ires-cre (b) mice (BNSTld, lateral-dorsal BNST; oval, oval nucleus BNST; D, 

dorsal; V, ventral; L, lateral; M, medial; green = ChR2-eYFP; cyan = fluorescent Nissl stain; 

scale bars = 200 µm (top), 20 µm (bottom)). c. Optically-evoked EPSCs recorded in VTA 

neurons following Vglut2BNSTv→VTA::ChR2 stimulation before and after application of the 

glutamate receptor antagonist, DNQX (bottom) (n = 4 cells, P = 0.0307). d. Optically-
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evoked IPSCs recorded in VTA neurons following VgatBNSTv→VTA::ChR2 stimulation 

before and after application of the GABAA receptor antagonist, Gabazine (bottom) (n = 4 

cells, P = 0.0378. e - f. Location of light-responsive and non light-responsive dopaminergic 

and non-dopaminergic neurons in horizontal VTA slices following photostimulation of 

Vglut2BNSTv→VTA::ChR2 (e) and VgatBNSTv→VTA::ChR2 (f) projections. * P < 0.05.
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Figure 3. Vglut2BNSTv→VTA and VgatBNSTv→VTA projection neurons display distinct firing 
patterns in response to foot shock and shock-associated contextual cues
a. Color-coded normalized firing rates for all identified Vglut2BNSTv→VTA neurons in 

response to the first foot-shock session. b. Average normalized firing rate of classified 

shock-excited Vglut2BNSTv→VTA neurons is significantly altered compared to no effect 

classified neurons during and following the foot-shock session (F99,2900 = 3.13, P < 0.0001, 

n = 34 units, n = 7 mice). Inset: percentages of classified neurons. c. Color-coded 

normalized firing rates for all identified VgatBNSTv→VTA neurons in response to the first 
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foot-shock session. d. Average normalized firing rate of classified shock-inhibited 

VgatBNSTv→VTA neurons is significantly altered compared to no effect classified neurons 

during and following the foot-shock session (F99,2600 = 2.66, P < 0.0001, n = 33 units, n = 5 

mice). e. Color-coded normalized firing rates of identified Vglut2BNSTv→VTA neurons in 

response to cue re-exposure. f. Average normalized firing rate of classified cue-excited 

Vglut2BNSTv→VTA neurons is significantly altered compared to no effect classified neurons 

during and following cue re-exposure (F99,3100 = 5.135, P < 0.0001, n = 37 units, n = 4 

mice). g. Color-coded normalized firing rates of VgatBNSTv→VTA neurons in response to cue 

re-exposure. h. Average normalized firing rate of classified cue-inhibited VgatBNSTv→VTA 

neurons is significantly altered compared to no effect classified neurons during and 

following cue re-exposure (F99,4,900 = 8.285, P < 0.0001, n = 56 units, n = 4 mice).
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Figure 4. Photostimulation of theVglut2BNSTv→VTA pathway promotes aversion and anxiety
a. Representative real-time place preference tracks from Vglut2BNSTv→VTA::ChR2 (top) and 

control (bottom) mice. b. Intra-VTA infusions of a glutamate antagonist cocktail, followed 

by Vglut2BNSTv→VTA::ChR2 stimulation during real-time place preference blocked aversion 

(F3,15 = 12.811, P < 0.001, n = 6 mice). c. Representative heat maps displaying average time 

spent in an open field for 10 min following stimulation from Vglut2BNSTv→VTA::ChR2 (top) 

and Vglut2BNSTv→VTA::Control (bottom) mice. Vglut2BNSTv→VTA::ChR2 mice spent 

significantly more time in the corners (P = 0.008) and less time in the center (P = 0.007) of 

an open field immediately following constant 20 Hz stimulation compared to 

Vglut2BNSTv→VTA::Control mice (n = 6 mice per group).

Jennings et al. Page 20

Nature. Author manuscript; available in PMC 2013 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Photostimulation of theVgatBNSTv→VTA pathway and inhibition ofVgatVTA neurons 
produces reward-related behaviors and attenuates anxiety
a. Real-time place preference representative tracks from VgatBNSTv→VTA::ChR2 (top) and 

control (bottom) mice. b. Intra-VTA infusions of the GABAA antagonist, Gabazine, 

followed by VgatBNSTv→VTA::ChR2 stimulation abolished place preference (F3,15 = 13.718, 

P < 0.001, n = 6 mice) cVgatBNSTv→VTA::ChR2 mice made significantly more nose pokes 

to obtain photostimulation compared to controls (F4,36 = 12.42, P < 0.001, n = 5 – 7 mice 

per group). d. Schematic detailing VgatVTA::NpHR inhibition during behavioral 

experiments. eVgatVTA::NpHR mice spent significantly more time in the inhibition-paired 

side when compared to controls (P = 0.01, n = 6 mice per group). fVgatVTA::NpHR mice 

made significantly more nose pokes to obtain photoinhibition compared to controls (P < 

0.001, n = 5 mice per group). gVgatBNSTv→VTA::ChR2 mice spent significantly more time 
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in the elevated-plus maze (EPM) open arms compared to controls during the 5 min 

photostimulation epoch (F2,24 = 14.648, P < 0.001, n = 7 mice per group). f. After 

concurrent photostimulation during the foot-shock session, VgatBNSTv→VTA::ChR2 mice (n 

= 6 – 7) spent significantly less time frozen compared to controls (F1,22 = 37.992, P < 

0.001). * P < 0.05, ** P < 0.01, *#P significant compared to all manipulations.
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