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Abstract
Friction factor is an important element in both flow simulations and river engineering. In

hydraulics, studies on the friction factor in turbulent regions have been based on the con-

cept of three flow regimes, namely, the fully smooth regime, the fully rough regime, and the

transitional regime, since the establishment of the Nikuradze’s chart. However, this study

further demonstrates that combining the friction factor with Reynolds number yields a united

formula that can scale the entire turbulent region. This formula is derived by investigating

the correlation between friction in turbulent pipe flow and its influencing factors, i.e., Rey-

nolds number and relative roughness. In the present study, the formulae of Blasius and

Stricklerare modified to rearrange the implicit model of Tao. In addition, we derive a united

explicit formula that can compute the friction factor in the entire turbulent regimes based on

the asymptotic behavior of the improved Tao’s model. Compared with the reported formulae

of Nikuradze, the present formula exhibits higher computational accuracy for the original

pipe experiment data of Nikuradze.

1. Introduction
Fluid turbulence is one of the most intensively studied andmost perplexing areas in classical
physics [1]. This field comprises a host of properties that represent the most complicated aspects
of our physical world: irregularity, diffusivity, rotational flow, and three-dimensionality. Previous
researchers,such as Nikuradze [2], Blasius [3], and Strickler [4], have focused mainly on the inter-
relationship among several variables of turbulent flow, such as the Reynolds number Re, the
roughness conditions ε, and the friction factor f. Nearly a century ago, Nikuradze conducted a
series of experiments on pipe flow. He measured f against Re in various circular pipes that covered
an extensive range of relative roughness ε values. Consequently, a comprehensive but nonlinear
correlation among these three parameters was reported [2] and presented in a graph (Fig 1), called
Nikuradze’s chart, which became a benchmark in the study of the friction factor in hydraulics.

In laminar pipe flow, resistance is caused solely by the viscosity shear stress[5]. The shear
stress solved from the energy equation is presented as

t ¼ rg
r
2
S ð1Þ
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where ρ is the fluid density, gis the acceleration due to gravity, r is the radial coordinate mea-
sured from the center, and Sis the hydraulic slope.

Simultaneously, shear stress can also be computed from Newton’s law of inner friction [7]
as follows (Fig 2):

t ¼ m
du
dy

¼ �m
du
dr

ð2Þ

By substituting Eq (2) into Eq (1), we obtain du = − ρgSrdr/2μ. When this result is imple-
mented across the entire section, we obtain mean velocity

U ¼ ðpR2Þ�1

Z R

0

u2prdr ¼ rgSd2=32m, which corresponds to the Darcy–Weisbach formula

f = 2gdS/U2[8]. Hence, we determine f = 64/Re.

Fig 2. Diagram of the velocity distribution in a full-flow pipe [6].

doi:10.1371/journal.pone.0154408.g002

Fig 1. Friction factor of pipe flow in a rough pipe extracted from Nikuradze’s tabular and graphical presentation [2].

doi:10.1371/journal.pone.0154408.g001
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In the turbulence region, f passes through the hydraulically smooth, the transitional, and the
hydraulically rough regions. In the hydraulically smooth region, the relationship between f and
Re is f ~ Re−1/4 according to Blasius [3]. When f Re = 64 in the laminar region, we also maintain
the form of f Re; thus, f Re ~ Re3/4 is written for a fully smooth regime. In the hydraulically
rough region, the relationship between f and ε is f ~ ε1/3, as suggested by Strickler [4]. Similarly,
we obtain f Re ~ Reε1/3. Tao [9] proposed an implicit function G(x) based on these two form-
changed formulae to rescale Fig 1 as follows:

fRe ¼ GðRe3=4 þ CsRe
B εB=3Þ ð3Þ

where ξ = 2 and Cs = 3×10−5 are adjustable parameters computed by Tao based on the degree
of discreteness [9] of the data. G(x) is an implicit function with certain characteristics that con-
form to the boundary conditions. This function is discussed in the following section.

2. Interpolation Method

2.1 Model Modification
Recently, Gioia et al. [10] modified Strickler’s formula and revised the relationship into f ~ εα,
where α = 1/3 + η/2, and η = 0.02 was calculated by Mehrafarin and Pourtolamiilarly in a phe-
nomenon argument [11] by modifying the finding of Goldenfeld [12]. Thus, Strickler’s formula
can be modifiedinto f Re ~ εαRe. When the revision proposed by Gioia et al. [10] is considered,
Tao’s formula [9] can be revised into

fRe ¼ GðRe3=4 þ CsRe
BεBaÞ ð4Þ

We observed the limited condition of Eq (4) and found that when Re was relatively small, as
hinted by Tao [9], Cs was used to ensure Cs Re

B εBα ! 0; hence, Eq (4) became f Re = G(Re3/4).
Consequently, the requirements f Re ~ Re3/4 for Blasius’ formula and f Re ~ (Re)0 for laminar
flow can be fulfilled, which is consistent with the laminar regime. When Re is extremely large,
Eq (4) can be written as f Re ~ G[ReB(Re3/4−B + Csε

Bα)]. In this case, B> 3/4 is required to guar-
antee Re3/4−B! 0 or f Re ~ G[ReB Csε

Bα)]; thus, to maintain Eq (4)coordination with the
revised Strickler’s formula, only G(ReB Csε

Bα)~(ReB Csε
Bα)1/Bis required.

Now, we apply Eq (4) to the turbulent regime, i.e., Eq (4), along with Nikuradze’s turbulence
data, as shown in Fig 3. In this regime, Cs = 1×10−8 and ξ = 3 are obtained based on the least
squares procedure.

2.2 Explicit Formula
In Fig 3, the experimental points generally converge onto a monotonous curve that simplifies
Nikuradze’s chart. This curve provides further insight into the dependence of fon Re and ε.
Moreover, if this curve is extended at both ends, then its two sides asymptote to two straight
lines. That is, when the limit Re is regarded as zero, the parameter Cs Re

3 ε3α tends to be zero

relative to Re3/4. In this case, we have lim
Re!0

CSRe
3ε3a=Re3=4 ¼ CSε

3a lim
Re!0

Re9=4 ¼ 0. Thus, Eq (4) is

reduced to f Re = G(Re3/4). To conform to Blasius’ formula f ~ Re−1/4 [3], or equivalently, f Re ~
Re3/4, G(x) should be a linear function. That is, Eq (4) should asymptote into a straight line
with a gradient of 1 in a log–log plot. The expression fitted to the experiment data can be writ-
ten as

log10ðfReÞ ¼ K1log10ðxÞ þ C1 ð5Þ

where K1 = 1,C1 = −0.5098,and x = Re3/4 +Cs Re
3 ε3α.
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We now relate this to Eq (4) by obtaining G(Re3/4+CsRe
3ε3α) ~ G[Re3(Re9/4+Csε

3α)]. For
large Reynolds numbers, an equation similar to Eq (3) must satisfy the revised Strickler’s for-
mula [4], namely, f ~ εα,or equivalently, f Re ~ εα Re. Thus, Eq (4) should take the form of G
(Re3/4 +Cs Re

3 ε3α)~[Re3(Re−9/4 +Csε
3α)]1/3 (in this case, Re−9/4 can be regarded as zero).

Therefore, we derive an explicit expression for the linear asymptote at a large Re (this expres-
sion can also be adopted when turbulence is fully developed):

log10ðfReÞ ¼ K2log10ðxÞ þ C2 ð6Þ

where K1 = 1/3and C2 = −1.825
Given these two tending character of the curves in Fig 1, we combine Eq (5) and Eq (6) to

establish

log10ðfReÞ ¼ K1log10x þ
K2 � K1

b
log10 1þ x

x0

� �b
" #

þ C1 ð7Þ

where log10x0 = (C1−C2)/(K2−K1), and β is the transitional shape parameter first used by Guo
[13]. The turbulence region lies between two extended lines; hence, Eq (7) is accessible in the
turbulence region. The shape parameter can be determined by using the collocation method
suggested by Griffiths and Smith [13]. In particular, for x<<x0, log10[1+(x/x0)

β]!0, then Eq
(7) is transformed into Eq (5); for x>>x0, log10[1+(x/x0)

β]!β(log10 x−log10 x0), then Eq (7) is
transformed into Eq (6).

Fig 3. Data of Nikuradze’s experiment rescaled using Eq (4).

doi:10.1371/journal.pone.0154408.g003
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After validating Eq (7) with specific data [14], we obtain an integrated expression for the
friction factor that covers an extensive range of turbulence region as follows:

f ¼ x

3:24Re½1þ ðx=3178Þ8=5�5=12 ð8Þ

which is plotted in Fig 4, where β = 8/5.

2.3 Comparison with Nikuradze’s Formulae
In deriving Eq (8), f Re (the product of the friction factor and the Reynolds number) can be
regarded as a single parameter to establish an improved mathematical law. Hence, the relation-
ship among f, Re, and ε becomes a relationship among f Re, Re3/4, and Re3 ε3α; such a relation-
ship provides an easier representation of the data to be studied (compare Fig 1 with Fig 4).
Therefore, when comparing the results of the present study with those from the original data
or the previous formulae, we adopt f Re to replace the single f, thereby verifying the accuracy of
our analysis in a clear and convenient manner.

First, the values of f Re that are calculated using Eq (8) are compared with those obtained
from the experimental data of Nikuradze for the entire turbulence region. The result presented
in Fig 5 and Table 1 shows that Eq (8) exhibits a strong linearity for the entire turbulent regime.

Moreover, Nikuradze’s formulae for the smooth zone and the rough zone are compared
with the data from his experiments (Fig 6). Nikuradze’s formulae are [6],

1ffiffiffi
f

p ¼ 2lgðRe
ffiffiffi
f

p
Þ � 0:8 ð9Þ

Fig 4. Comparison of the curves obtained from Tao’s model for various ε values with Eq (6).

doi:10.1371/journal.pone.0154408.g004
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for
ffiffiffiffiffiffiffi
f =8

p
Reε < 5, i.e., in the hydraulically smooth turbulence zone, and

f ¼ 1

½2lgð3:71=εÞ�2 ð10Þ

for
ffiffiffiffiffiffiffi
f =8

p
Reε > 70, i.e., in the hydraulically rough turbulence zone.

Finally, the values of f Re predicted using Eq (8) are also validated against the experimental
data of Nikuradze for both smooth and rough zones (Fig 7).

Meanwhile, the relative errors computed as |measured−predicted|/|measured| in the afore-
mentioned figures (Figs 5–7) are listed in Table 1. This table shows that the f value from Eq (8),
which has an error of 5.4%, is applicable in calculating or predicting the friction factor for

Fig 5. Comparison between the results of the present study and the experimental data for the entire
turbulence regime.

doi:10.1371/journal.pone.0154408.g005

Table 1. Prediction Errors for Different Formulae.

Average relative errors of the friction factor (%)

Investigator Nikuradze Present theory

Equation (9),(10) (8)

Entire turbulence region None 5.4

Smooth zone 30.8 3.2

Rough zone 20.1 4.3

doi:10.1371/journal.pone.0154408.t001
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Fig 6. Comparison between Nikuradze’s formulae and the experimental data for the smooth and
rough turbulence zones.

doi:10.1371/journal.pone.0154408.g006
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Fig 7. Comparison between the present study and the experimental data for the smooth and rough
turbulence zones.

doi:10.1371/journal.pone.0154408.g007
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different turbulent pipe flows. We suggest that Eq (8) is a useful and reliable method for
hydraulic research and applications. The result shows that the relative error obtained from
Nikuradze’s formula (9) for the hydraulically smooth turbulence region is 30.8%, which is
nearly 10 times higher than that obtained from Eq (8). The relative error of Nikuradze’s for-
mula (10) is 20.1%, which is thrice higher than that obtained from Eq (8). Therefore, the pre-
diction of the present study for the friction factor f (or f Re) is significantly more reliable than
that of Nikuradze’s formulae for the two boundary zones. Moreover, unlike Eq (8), Nikuradze
did not provide a formula for the transition zone. A single formula that covers all the three
zones is clearly more convenient for calculations. Furthermore, Nikuradze’s formula (9) is an
implicit expression for f, whereas Eq (8) is explicit.

3. Discussion
In the past, the calculation and analysis of the friction factor f has been a consistent concern
among hydraulic researchers because of the significance of this factor in understanding pipe
flow and sediment transport. Accordingly, several formulae (Colebrook [15]; Brownlie [16];
Cheng and Chiew [17]; Ligrani and Moffat [18]; Yalin and daSilva [19]) have been proposed in
the literature to estimate the friction factor; however, they must be computed separatelyunder
laminar, fully smooth, and rough turbulent flow conditions. Compared with these formulae,
the proposed formula can scale the entire turbulent regimes, and thus, is definitely more practi-
cal to use. To the best of our knowledge, no single formula that canexplicitly calculate the fric-
tion factor in various flow regimeshas yet been established, except for the combination
approach of Cheng [20]. In his study, the friction factor was assumed to have the function
form of f ¼ f @L f

1�@
T , where fL is a friction factor for laminar flow, fT is that for turbulent flow,

and @ is the weighing factor. However, the present formula is based on the combination of a
new parameter, i.e., f Re, in which we do not have to consider the flow regimes. Therefore,the
proposed formula is entirely different from Cheng’s formulae.

Motivated by the idea of deriving a single monotonic function, we developed an explicit
expression for the friction factor of pipe flow that covered the entire Re range by interpolating
the two asymptotic expressions into a single monotonic function through the rescaling the
experimental data of Nikuradze. The comparisons between the curves of the data suggest that
the predictions obtained using our formula are accurate and reliable, including those that cor-
respond to the transition zone of the original Nikuradze chart. In this study, we have noted
and verified that parameter f Re should be regarded as a relevant parameter by checking it
against the boundary conditions for Re and ε. A revised rescaled function (Tao [9]) is then
possible. This method is proven to be highly helpful in explicitly uncovering the dependence
of the friction factor. In hydraulics, the results provided by Nikuradse’s experiments have
served as the basis of research on friction resistance. The concepts of a hydraulically smooth
zone, a hydraulic transitional zone, and a hydraulically rough zone have been used for nearly
a century to study the friction factor given the lack of knowledge on the united relationship
among the three zones. Thus, this study is the first to unite these three zones and to provide a
united formula that can scale the entire turbulence regime. The convenience brought by unit-
ing the empirical equations does not only considerably aid in the computation of hydraulic
parameters, such as frictional head loss, but also further enhances the understanding of flow
resistance.
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