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 Background: Idiopathic pulmonary fibrosis (IPF) is a disease related to aging, which has become increasingly prevalent as the 
population has aged. However, there remains no effective treatment for the disease. Alveolar epithelial type II 
cell (AEC II) senescence plays an important role in the occurrence and development of IPF. Therefore, enhanc-
ing our understanding of aging AEC IIs might facilitate the development of a new therapeutic strategy for the 
prevention and treatment of IPF. The aim of this study was to investigate the effect of citrus alkaline extracts 
(CAE) on senescence in A549 cells and elucidate the mechanism by which CAE function.

 Material/Methods: Adriamycin RD (ARD) induces the senescence of A549 cells. Relevant indicators were identified following ad-
ministration of 3 concentrations of CAE (50 μg/mL, 100 μg/mL, and 200 μg/mL) to A549 cells.

 Results: CAE inhibited senescence in ARD-induced A549 cells. It inhibited p16, p21, p53, and a senescence-associat-
ed secretory phenotype, and reduced expression of the senescence-related positive cells of b-galactosidase. 
Further study revealed that activation of the b-catenin signaling pathway is closely associated with p53. CAE 
inhibited senescence in A549 cells via the b-catenin/p53 pathway. Further, inhibition of b-catenin was associ-
ated with reduced expression levels of p53 and p21, and the anti-aging effects of CAE were enhanced. When 
expression of p53 was inhibited, expression levels of b-catenin also tended to decrease.

 Conclusions: In summary, our study showed that CAE can inhibit aging in A549 cells to alleviate pulmonary fibrosis, and thus 
limit the secretion of the extracellular matrix and collagen in lung fibroblasts.
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Background

Idiopathic pulmonary fibrosis (IPF) is a gradual, irreversible, 
and serious disease of unknown origin, which occurs pre-
dominantly in elderly individuals [1]. Primary manifestations 
include fibrosis and honeycomb-like changes in the subpleu-
ral and basal regions of the lungs and deposition of collagen 
and extracellular matrix (ECM) around the pulmonary fibrosis 
foci [2]. Gradual loss of lung function and increased fatigabil-
ity are associated with disease progression. Histopathological 
findings show patterns similar to interstitial pneumonia, which 
is characterized by patchy involvement of distal airways and 
lung parenchyma, with areas of alveolar damage and fibrot-
ic remodeling [3]. With the increase of the elderly population 
in the past 10 years, the incidence rate of IPF has increased 
correspondingly [4]. Epidemiological and clinical data indicate 
that IPF is a disease related to aging and is prevalent in elder-
ly individuals. Further, the incidence and mortality rates of IPF 
increase with age [5].

The main pathogenesis of pulmonary fibrosis involves the 
damage of type II alveolar epithelial cells (AEC IIs), which re-
leases a large number of inflammatory factors that activate 
lung fibroblasts and induces the secretion of large quantities 
of ECM [6,7], eventually leading to lung scarring and remodel-
ing. Studies have shown that aging is a key factor that affects 
the initiation and development of IPF, in which AEC IIs senes-
cence is closely related to the occurrence and development of 
pulmonary fibrosis [8]. Mechanisms involved in IPF disease de-
velopment and progression include repetitive injury to the lung 
epithelium, activation and proliferation of myofibroblasts, and 
altered production of ECM, together resulting in the destruc-
tion of lung architecture and function [9,10]. Epidemiological 
investigations have demonstrated that IPF mainly occurs in in-
dividuals over 60 years of age. Indeed, accumulating evidence 
suggests that the induction of cellular senescence may play an 
important role in the pathogenesis of radiation-induced pulmo-
nary fibrosis and other fibrotic lung diseases, including IPF and 
pulmonary fibrosis induced by bleomycin [11]. Senescent AEC 
IIs have been detected in fibrotic foci in the lungs of patients 
with IPF. Similarly, mice treated with bleomycin or thoracic ir-
radiation demonstrate increases in senescent AEC IIs, the pu-
tative alveolar stem cells (ASCs) [12]. When AEC IIs/ASCs be-
come senescent, they cannot self-renew and generate AEC to 
maintain the homeostasis of the alveolar epithelium and re-
pair the epithelium after tissue injury; however, they contin-
ue to occupy the stem cell niche. In addition, senescent AEC 
II can set in motion a self-perpetuating vicious cycle of an ab-
normal tissue repair process and secondary senescence by ini-
tiating oxidative stress and inflammation. This in turn leads to 
the disruption of normal tissue structure and function, in part 
via reactive oxygen species and the senescence-associated 

secretory phenotype (SASP), which eventually leads to pul-
monary fibrosis [13].

Cellular senescence is regulated by complex signal transduc-
tion pathways, of which, the p53/p21 axis is one of the most 
critical [14]. As the central link, p53 controls senescence, and 
acetylated p53, with a longer half-life, enhances the capaci-
ty of p21 to promote transcription [15]. One study found in-
creased expression levels of p53, p21, and p16 and activity of 
senescence-associated b-galactosidase (SA-b-gal) in human IPF 
cells compared to in normal epithelial cells [16]. Wnt/b-catenin 
signaling is very important to the regulation of cell cycle pro-
gression among adult mammals [17] and is related to cell se-
nescence, as indicated in previous studies [18]. These stud-
ies revealed that b-catenin activity in the AEC IIs of aged mice 
was significantly higher than that of young mice. Moreover, 
activated Wnt/b-catenin signaling accelerates hematopoietic 
stem cell failure [19], and fibroblast [20], thymocyte [21], and 
endothelial cell [22] aging and dysfunction.

As the largest fruit crop in the world, citrus has played an im-
portant role in human history [23]. China is one of the main 
birthplaces of citrus, and since ancient times, citrus plants 
have been an important source of traditional Chinese medi-
cine [24]. The dry pericarp of Rutaceae has been used in tra-
ditional Chinese medicine and as a source of food [25]. It has 
been confirmed that active ingredients from the dry pericarp 
of citrus decrease blood lipid levels [26], and produce antitu-
mor [27], antiinflammatory [28], antioxidative [29], and anti-
fibrosis effects [30]. The material has been widely used in the 
treatment of hypertension, ulcerative colitis, pulmonary fi-
brosis, and other diseases. Previous studies have clarified the 
composition of CAE by high-performance liquid chromatogra-
phy. This compound can reduce the occurrence of lung fibro-
sis in vivo and in vitro and inhibit fibroblast senescence by ac-
tivating COX-2 [31,32].

A previous study reported that Wnt/b-catenin signaling-induced 
renal epithelial cell senescence is mediated via the p53/p21 
pathway [33]. In systemic lupus erythematosus, Wnt/b-catenin 
signaling mediated bone marrow mesenchymal stem cell se-
nescence via the p53/p21 pathway [34]. The b-catenin and 
p53 expression in patients’ lung tissue with pulmonary fi-
brosis has been determined to be significantly elevated com-
pared to that in patients not affected by the disease; howev-
er, whether AEC II senescence is induced by the b-catenin/p53 
pathway remains unclear. Therefore, in this study, we aimed 
to determine whether CAE prevents the progression of pul-
monary fibrosis by inhibiting senescence in A549 cells via the 
b-catenin/p53 pathway.
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Material	and	Methods

Reagents	and	Antibodies

The dried citrus peel was purchased from the Jiangsu Provincial 
Hospital of Traditional Chinese Medicine (Nanjing, China). The 
CAE was then prepared as previously described. Dickkopf-1 
(DKK1) was purchased from R&D Systems (USA); dimethyl 
sulfoxide, fetal bovine serum, Dulbecco’s modified Eagle’s me-
dium and trypsin were purchased from Gibco, Thermo Fisher 
Scientific-CN (Shanghai, China); penicillin and streptomycin 
were purchased from Biological Industries (HaEmek, Israel); 
platelet-derived growth factor a (PDGF-a), PDGF-b, tumor ne-
crosis factor a (TNF-a), matrix metalloproteinases-7 (MMP-7), 
CyclinD1, connective tissue growth factor (CTGF), a-smooth 
muscle aorta (a-SMA), collagen I, collagen III, b-catenin, glyco-
gen synthase kinase-3b (GSK-3b), b-actin, b-tubulin, and GAPDH 
were purchased from Proteintech (Wuhan, China); and p53, 
p21, and p16 were purchased from Abcam (Cambridge, UK).

Cell Culture

A549 cells and MRC-5 human lung fibroblasts were obtained 
from the China Cell Type Culture and Collection Center (Wuhan, 
China) and were cultured in DMEM with 10% fetal bovine se-
rum supplemented with 100 U/mL penicillin G and 100 μg/mL 
streptomycin. The cells were maintained at 37°C in a humidi-
fied 5% CO2 incubator. For experiments involving Adriamycin 
RD (ARD)-induced senescence, A549 cells were treated with 
ARD (0.01 μ M) for 48 h. Then, the medium containing the ARD 
was removed and cells were starved for 24 h. After the addi-
tion of fresh medium, the cells were used for aging SA-b-gal-
positive cells using the SA-b-gal test.

Cell Co-culture

The A549 cells were treated with ARD (0.01 μM) for 48 h. 
Then, the medium containing ARD was removed and the cells 
were starved for 24 h with different concentrations of CAE 
(50 μg/mL, 100 μg/mL, 200 μg/mL). Next, the supernatant 
containing CAE was removed, the cells were washed 3 times 
with phosphate-buffered saline (PBS), and fresh medium was 
added for 48 h. Next, the conditioned supernatant (without 
CAE) was transferred to the MRC-5 cells [35]. The supernatant 
was applied to the MRC-5 cells for 3 days, and the cells were 
then used for western blotting and enzyme-linked immuno-
sorbent assay (ELISA).

SA-b-gal	Staining

The activity of SA-b-gal in cultured A549 cells was assayed us-
ing the senescence-associated b-galactosidase staining kit from 
Beyotime (Nanjing, China), according to the manufacturer’s 

instructions. The SA-b-gal-positive cells were examined un-
der an optical microscope and were analyzed via Image J soft-
ware version 1.52e.

Western	Blotting

The cultured cells were observed to lyse in radioimmunoprecip-
itation assay buffer containing 1% phenylmethylsulfonyl fluo-
ride from Beyotime (Nanjing, China), and total protein levels 
were quantified by the Pierce bicinchoninic acid protein analysis 
kit (Thermo Scientific; Rockford, IL, USA). Proteins (20 g/well) 
were segregated via sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis, and were subsequently moved to a hydrophil-
ic polyvinylidene fluoride membrane (Merck MILI; Darmstadt, 
Germany). Next, the membrane was incubated with 5% dried 
skimmed milk powder in tris-buffered saline with 0.1% Tween 
20 at 25°C for 1 h. Then, the membrane and primary antibody 
were incubated overnight at 4°C. Proteins were detected by in-
cubating with a rabbit or a mouse IgG (H&L) antibody labeled 
with a peroxidase enzyme (Plano, TX, USA). The visualization 
of target bands was accomplished using a super-enhanced 
luminol-based chemiluminescent western blot detection kit 
(Yeasen; Shanghai, China). Protein levels were then standard-
ized using b-tubulin, b-actin, or GAPDH.

The	Isolation	of	RNA	and	Real-time	Quantitative	
Polymerase Chain Reaction

Total RNA was obtained by using a Trizol reagent (Invitrogen; 
Carlsbad, CA, USA), according to the manufacturer’s instruc-
tions. Using the 5×All-in-One RT MasterMix (Applied Biological 
Materials Inc; Richmond, BC, Canada), cDNA was extracted via 
reverse transcription. Expression levels of mRNA were evaluat-
ed via quantitative real-time polymerase chain reaction (PCR) 
using EvaGreen 2×qPCR Master Mix (ABMI). Relative expres-
sion levels of mRNA target genes were determined by normal-
izing values to the expression levels of GAPDH. The compar-
ative DDCT method was used for data analysis. The synthetic 
primers were obtained from Sangon Biotech (SB, Shanghai, 
China). The primer sequence is shown in Table 1.

Immunofluorescence	Staining

The A549 cells were immobilized for 30 min with 4% para-
formaldehyde, incubated for 20 min with 0.5% Triton X-100, 
and washed 3 times with PBS. Then, nonspecific binding sites 
were blocked by incubating for 30 min at 25°C with 10% 
goat serum, and frozen cells and sections were incubated 
at 4°C with the anti-b-catenin (1: 50) and anti-p53 (1: 100) 
antibodies. Next, the cells were stirred for 1 h at 25°C with 
FITC-labeled (1: 4000; Immunoway Biotechnology, USA) and 
Alexa-Fluor 647 (1: 500, Beyotime) secondary antibodies and 
washed with PBS. The A549 cells were stained 3 times with 
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4’,6-diamidino-2-phenylindole (DAPI). The exposure of tar-
get genes was obtained via visualization using the fluores-
cence microscopy.

ELISA

The collagen I and collagen III levels within the supernatant 
of cultured cells were evaluated using an ELISA kit (Shanghai 
Westtang Bio-Tech Co, China), according to the manufactur-
er’s instructions. The results were based on 3 experiments.

Statistics Analysis

All experiments were conducted at least 3 times, and the 
data were expressed as mean±SD. GraphPad Prism software 
version 8.0 was used to visualize the analysis, and statisti-
cal significance was determined using the Tukey-corrected, 
one-way ANOVA. Values of P<0.05 were regarded as statisti-
cally significant.

Results

ARD	Induced	A549	Cell	Senescence

ARD is an anticancer drug that can induce senescence in a va-
riety of cell types. Senescent cells typically produce increased 
levels of SA-b-gal activity and secrete proinflammatory cyto-
kines, a phenomenon referred to as SASP. As we have shown 
in a previous study, A549 cells exhibit senescent behavior after 
ARD (0.01 μM) had been added for 48 h [36]. Cellular hyper-
trophy was used as the cell senescence marker. By visualizing 
cellular morphology in the present study, we found that A549 
cells treated with ARD (0.01 μM) for 48 h were larger and more 

numerous than untreated cells (Figure 1A). SA-b-gal has been 
identified as a general marker of aging. We observed a signifi-
cant increase in the number of SA-b-gal-positive cells in the A549 
cells 48 h after ARD treatment as compared with control-treat-
ed A549 cells (Figure 1A, 1B). Western blot analysis revealed 
that the SASP of A549 cells treated with ARD was significant-
ly more pronounced than that of normal cells (Figure 1C, 1D), 
which indicated that ARD induced senescence in A549 cells.

CAE	Inhibited	the	Aging	of	A549	Cells	Induced	by	ARD

In order to assess the effect of CAE on aging in A549 cells, 
we analyzed the SASP associated with pulmonary fibrosis. 
The factors we monitored included PDGF-a, TNF-a, PDGF-b, 
MMP-7, CyclinD1, and CTGF. The senescent cells can secrete 
multiple SASPs, including cytokines, chemokines, matrix re-
modeling proteases, and growth factors, which can promote 
proliferation and tissue deterioration [13]. CTGF is a key addi-
tional biomarker of aging and cellular senescence [37]. PDGF 
isoforms and PDGF receptors have important functions in the 
regulation of growth and survival of various cell types [38]. 
These wound-associated senescent cells then promote opti-
mal wound healing by secreting PDGF-A, an SASP factor, which 
promotes myofibroblast differentiation. PDGF secreted by se-
nescent cells is a growth factor that regulates cell growth and 
the division of pericytes, which cover endothelial cell channels 
to provide stability and control perfusion of blood vessels [39]. 
We found that the treatment with CAE effectively reduced the 
number of SA-b-gal-positive cells in a dose-dependent manner 
(Figure 2A, 2B). Western blotting revealed that after 24 h of 
CAE treatment, the expression levels of PDGF-a, TNF-a, PDGF-b, 
CyclinD1, and CTGF in senescent A549 cells were significantly 
reduced. Protein expression levels of MMP-7 also tended to 
decrease, but the levels did not statistically differ from those 

Gene Forward	primer Reveres	primer

GAPDH GGTTGTCTCCTGCGACTTCA TGGTCCAGGGTTTCTTACTCC

PDGF-a TTCGCAGGAAGAGAAGTATTGAGGAAG CCGTGAAGGCTGGCACTTGAC

PDGF-b TCTGCTGCTACCTGCGTCTGG CATCTTCATCTACGGAGTCTCTGTGC

MMP-7 CCACTCACCTGCTGCTACTCATTC CTGCTGCTGGTGATCCTCTTGTAG

CTGF AGCTGCCTACCGACTGGAAGAC GGTGGTTCTGTGCGGTGTGC

TNF-a GCGACGTGGAACTGGCAGAAG GAATGAGAAGAGGCTGAGACATAGGC

CyclinD1 TGGATTGATTCGAAATCTTGCC GAACAAGCAACTGAACTAGTCG

GSK-3b AGGAGAACCCAATGTTTCGTAT ATCCCCTGGAAATATTGGTTGT

Collagen I CGGCCCTGCTGGAAACCCTC GGGAGCACCACGTTCACCGG

Collagen III CCTTCGACTTCTCTCCAGCC TTTCGTGCAACCATCCTCCA

a-SMA CTTTGGCTTGGCTTGTCAGG CGGACAGGAATTGAAGCGGA

b-catenin TGAGGACAAGCCACAAGATTAC TCCACCAGAGTGAAAAGAACG

Table 1. Primer sequences qRT-PCR.

e928547-4
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Han D. et al: 
Citrus alkaline extracts alleviate pulmonary fibrosis

© Med Sci Monit, 2021; 27: e928547
LAB/IN VITRO RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



of the control-treated cells (Figure 2C). However, mRNA levels 
of MMP-7 decreased in a dose-dependent manner after CAE 
treatment (Figure 2D). As a functional biomarker of aging, p16 
plays an important role in cell senescence. After the treatment 
of CAE, the expression levels of p16 proteins decreased sig-
nificantly, and levels of p16 mRNA displayed the same trend 
(Figure 2E). Our results indicated that CAE was capable of in-
hibiting aging in ARD-induced A549 cells.

CAE	Inhibited	the	Expression	of	P53	and	b-catenin in A549 
Cells

Although previous results indicated that CAE inhibited senes-
cence in A549 cells, the mechanism by which CAE functions 
remains unclear. To understand the preliminary mechanism by 
which CAE modulates senescence in A549 cells, we explored the 
activation state of key signals known to regulate the process of 

senescence. When cells become senescent, DNA binding and 
the transcriptional activity of p53 increase, promoting target 
gene transcription [40]. This induces cell cycle arrest, main-
ly through p21 and other cell cycle-dependent kinase inhibi-
tors. Western blotting revealed that after ARD-induced senes-
cence, the protein expression levels of p53 and p21 increased, 
while CAE treatment inhibited expression of both proteins and 
their transcripts in a dose-dependent manner (Figure 3A, 3B). 
Previous studies have indicated that Wnt/b-catenin signaling is 
related to cell senescence and GSK-3b is its downstream tar-
get, which negatively regulates the exposure of b-catenin. The 
western blot results indicated that after ARD treatment, lev-
els of b-catenin were significantly upregulated and expression 
levels of GSK-3 b were downregulated. After 24 h of treatment 
with CAE, levels of b-catenin decreased, while GSK-3b levels 
gradually increased; the mRNA expression levels were consis-
tent with these results (Figure 3C, 3D). Immunofluorescence 
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Figure 3.  Citrus alkaline extracts (CAE) inhibited the expression of p53 and b-catenin in A549 cells. (A) The analysis of p53and p21 in 
A549 cells by western blot. Each group was assessed in triplicate, and experiments were repeated 3 times. Bar graphs show 
the relative quantification. ### P<0.001, #### P<0.0001 vs Blank; *** P<0.001, **** P<0.0001 vs Adriamycin RD (ARD). (B) Real-
time qPCR analysis of genes; relative expression of p53 and p21. ## P<0.01, #### P<0.0001 vs Blank; * P<0.05, **** P<0.0001, 
and ns=not significant vs ARD. (C) The analysis of b-catenin and GSK-3b in A549 cells by western blot. Each group was 
assessed in triplicate, and experiments were repeated 3 times. Bar graphs show the relative quantification, ## P<0.01 vs 
Blank, ** P<0.01, *** P<0.001, and ns=not significant vs ARD. (D) Real-time qPCR analysis of genes, relative expression of 
p16. ### P<0.001 vs Blank, * P<0.05, *** P<0.001, and **** P<0.0001 vs ARD. (E, F) Immunofluorescence staining of p53 and 
b-catenin. DAPI was used to stain the nucleus. Scale bar, 50μm; ### P<0.001 vs Blank, * P<0.05, *** P<0.001, and ns=not 
significant vs ARD.
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assays revealed that the expression of p53 and b-catenin sig-
nificantly increased 48 h after ARD treatment, but decreased 
24 h after CAE treatment (Figure 3E, 3F). These findings indi-
cate that CAE inhibited expression of p53, p21, and b-catenin 
in A549 cells, and CAE may inhibit senescence in A549 cells 
through the b-catenin/p53 pathway.

CAE	Inhibited	A549	Senescence	Through	the	b-catenin/P53 
Pathway

Previous studies have revealed a correlation between the p53 
and Wnt signaling pathways. For example, downstream effec-
tor T-cell factor 4 (TCF-4) was identified as a transcriptional tar-
get of p53 [41]. Overexpression of b-catenin in the cytoplasm 
of human retinoblastoma cells enhanced the transcription-
al activity of p53. Therefore, we used Wnt/b-catenin and p53 
inhibitors to explore the relationship between the proteins. 
The results revealed that DKK1 and PTF-a did not induce cell 
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Figure 4.  Citrus alkaline extracts (CAE) inhibited A549 senescence through the b-catenin/p53 pathway. (A) The analysis of p53and p21 
in A549 cells by western blot. Each group was assessed in triplicate, and experiments were repeated 3 times. Bar graphs 
show the relative quantification, ### P<0.001, vs Blank, **P<0.01, ***P<0.001, and ns = not significant vs Adriamycin RD 
(ARD); s, P<0.05, N=not significant vs ARD+CAE. (B) Real-time qPCR analysis of genes; relative expression of p53 and p21. 
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Figure 5.  Citrus alkaline extracts (CAE) reduced expression levels of fibrosis markers in MRC-5 cells by inhibiting senescence in A549 
cells. (A) An analysis of a-SMA by western blot, collagen I, collagen III in MRC-5 cells. Each group was assessed in triplicate, 
and experiments were repeated 3 times. Bar graphs show the relative quantification, # P<0.05 vs Blank, ** P<0.01, and 
ns=not significant vs Adriamycin RD (ARD). (B) Real-time qPCR analysis of genes, and relative expression of a-SMA, collagen 
I, and collagen III. ### P<0.001, #### P<0.0001 vs Blank, * P<0.05, ** P<0.01, **** P<0.0001, and ns=no significant vs ARD. 
(C) Determination of transforming collagen I and collagen III in the cell culture supernatant. The data are shown as mean±SD. 
#### P<0.0001 vs Blank; ns=no significant ** P<0.01 and **** P<0.0001 vs ARD.

senescence (Supplementary Figure 1). After treating A549 cells 
with DKK1, the inhibitor of b-catenin, DKK1 inhibits of the WNT 
signaling pathway, and studies have shown that DKK1 chang-
es WNT-induced epithelial cell proliferation in a dose-depen-
dent manner in vitro [42]. In the present study, b-catenin pro-
tein expression was significantly downregulated, while p53 and 
expression levels of the downstream factor p21 also tended 
to decline. However, protein expression levels of GSK-3b in-
creased, albeit non-significantly, and mRNA expression levels 
displayed the same trends (Figure 4C, 4D). Previous studies 
have shown that PFT-a has the ability to reversibly block p53-
dependent transcriptional activation and apoptosis, as a spe-
cific inhibitor of the p53 signaling pathway. A 10-μM concen-
tration of PFT-a inhibited apoptotic death of C8 cells induced 

by Dox, etoposide, Taxol, cytosine arabinoside, UV light, and 
gamma radiation [43]. In the present study, after treating A549 
cells with PTF-a, the inhibitor of p53, levels of p53, p21, and 
b-catenin proteins significantly decreased, while the levels of 
GSK-3b expression increased. We observed that changes in the 
transcription levels of p53, p21, b-catenin, and GSK-3b corre-
sponded to changes in protein levels (Figure 4A, 4B). It should 
be noted that the anti-aging effect of CAE can be enhanced 
by treating A549 cells with DKK1 and PTF-a and a high dose 
of CAE. As shown in Figure 4, in the senescent A549 cells pre-
treated with DKK1 and PTF, the effect of CAE on inhibiting the 
senescence of A549 cells seems to be enhanced. The protein 
expression of p21 and b-catenin was significantly increased 
compared with that of the CAE group (Figure 4A, 4C). Their 
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mRNA expression levels were consistent (Figure 4B, 4D). After 
inhibitor intervention, the protein expression of p53 showed 
a downward trend compared with that of the CAE group, and 
the mRNA expression of p53 and p21 showed the same trend, 
but there was no statistical significance (Figure 4B). Compared 
with the CAE group, after the intervention of inhibitors, the ex-
pression of GSK-3b showed an upward trend, and the expres-
sion of mRNA showed the same trend, but there was no sta-
tistical significance. These findings demonstrate that b-catenin 
and p53 interact, and CAE may inhibit senescence in A549 cells 
via the b-catenin/p53 pathway.

CAE	Reduced	the	Expression	of	Fibrosis	Markers	in	MRC-5	
Cells	by	Inhibiting	the	Senescence	of	A549	Cells

Studies have shown that some senescence-associated factors 
could induce senescence in normal cells, and senescence can 
be transferred to untransformed adjacent cells through the 
paracrine activity of SASP [44]. AEC II is a key factor that pro-
motes the development of pulmonary fibrosis, and the pulmo-
nary fibroblast is an important component needed for the de-
velopment of pulmonary fibrosis. We observed that CAE could 
inhibit senescence in ARD-induced A549 cells and reduce the 
SASP. Next, we tested whether CAE had the capacity to regu-
late expression of fibrosis markers in MRC-5 cells by inhibit-
ing senescence in A549 cells. We transferred the supernatant 
from A549 cells that were treated with ARD or CAE to cultures 
of MRC-5 cells, followed by a 3-day culture. Then, we detected 
the expression levels of lung fibrosis markers including a-SMA, 
collagen I, and collagen III. Western blotting results revealed 
that the protein levels of a-SMA, collagen I, and collagen III 
gradually decreased as CAE concentration increased. Further, 
mRNA levels corresponded to those determined for the pro-
teins (Figure 5A, 5B). The presence of collagen I and collagen III 
in the supernatants of cultures was detected by ELISA. Results 
showed that the expression of collagen I and collagen III in the 
supernatant tended to decrease after CAE treatment relative 
to the levels associated with untreated cells (Figure 5C). Our 
results demonstrated that CAE inhibited the expression of a-
SMA, collagen I, and collagen III in lung fibroblasts by inhibit-
ing senescence in A549 cells. Therefore, we believed that CAE 
may repress pulmonary fibrosis by inhibiting aging in AEC IIs.

Discussion

Fibrosis is a common pathological feature of many lung dis-
eases, including IPF, an aging-related disease of unknown eti-
ology [4]. Our previous results suggested that CAE could effec-
tively induce pulmonary fibroblast apoptosis of a normal and 
model mice, and its functioning mechanism was probably re-
lated to the p38/COX-2/Fas signaling pathway, regulated by 
oxidative stress [45]. Additionally, other previous findings il-
lustrated that CAE regulates lung fibroblast senescence, which 

is dependent on the COX-2/P53 pathway, suggesting that the 
inhibition of cellular senescence might represent an approach 
to control pro-fibrotic lung fibroblasts [32]. However, wheth-
er CAE can inhibit senescence in AEC IIs remains unclear, and 
the mechanism in IPF is unknown.

In IPF and an experimental pulmonary fibrosis model, AEC IIs 
showed obvious signs of aging [46]. AEC IIs are progenitor cells 
of the alveolar epithelium. In vitro, A549 cells are common-
ly used as a substitute for AEC IIs. ARD is an anticancer drug 
that can induce senescence in a variety of cell types. Our pres-
ent study revealed that ARD-treated A549 cells experienced 
senescence and displayed SASPs, which affected lung fibro-
blasts in a paracrine manner.

Cell senescence is an evolutionary conservative state of sta-
ble replication stagnation that is induced by aging-associat-
ed stressors including telomere wear, oxidative stress, DNA 
damage, and proteomic instability [6]. These sources of stress 
are associated with the pathogenesis of IPF. Cellular senes-
cence is now considered an important driving mechanism for 
chronic lung diseases, particularly IPF [47]. The aging of lung 
tissue ultimately results in structural remodeling of the ECM 
caused by alterations in the concentration and organization 
of ECM components such as collagen and elastin [48]. The tu-
mor suppressor p53 induces cell cycle arrest, apoptosis, senes-
cence, and innate immunity. This protein plays a central role 
in cell senescence, mainly by inducing the dephosphorylation 
of the cyclin-dependent kinase inhibitor p21 and by activat-
ing the cell cycle inhibitor retinoblastoma [49]. We also ana-
lyzed the p53/p21 pathway in the present study. Our results 
confirmed that the expression of the p53 and p21 proteins in 
A549 cells were significantly increased by ARD-induced senes-
cence. Further, expression levels of p53 and p21 in A549 cells 
significantly decreased 24 h after CAE treatment.

Wnt signaling pathways are strictly regulated under physiolog-
ical conditions. They play a key role in regulating cell fate and 
tissue regeneration [50]. Activation of the signaling of Wnt/b-
catenin is accompanied by the accumulation of b-catenin in 
the cytoplasm, b-catenin’s translocation into the nucleus, and 
its binding with T-cell factor/lymphocyte enhancer factor [41]. 
Wnt signaling can be divided into at least 3 different path-
ways, of which, the most extensively studied is the pathway 
of Wnt/b-catenin signaling. This classical signaling pathway is 
initiated by the extracellular ligand Wnt. Without the Wnt li-
gand, the b-catenin is phosphorylated via GSK-3b and subse-
quently degraded via the ubiquitin proteasome system [51]. 
As Wnt ligands connect to coiled receptors, the GSK-3b activ-
ity is then inhibited, non-phosphorylated b-Catenin levels are 
increased in the cytoplasm to then transfer to the nucleus to 
promote transcription of its various target genes [17]. Research 
by Chilosi et al [52] revealed that b-catenin plays a significant 
role in the development of fibrosis, and its aberrant activation 
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is a key feature of IPF. The signaling of Wnt/b-catenin controls 
the progenitor cells function and regulates tissue homeostasis 
in both developing and mature lungs. Previous studies have 
shown that the activation of Wnt/b-catenin has been observed 
in human and animal lungs, and is associated with pulmonary 
epithelial dysfunction [18]. In the present study, we have con-
firmed that increased b-catenin activity accelerates cell senes-
cence. Our results also indicated that the signaling of Wnt/b-
catenin modulates cell senescence. ARD showed the capacity 
to activate the signaling pathway of Wnt/b-catenin in A549 
cells, which enhanced levels of b-catenin and reduced levels 
of GSK-3b. However, CAE treatment decreased expression lev-
els of b-catenin and enhanced the expression of GSK-3b. This 
indicates that CAE may inhibit the Wnt/b-catenin pathway, 
which is related to cellular senescence.

Wnt/b-catenin signal transduction and the p53 pathway are 
key regulators of aging and are closely associated with heart 

CAE

β-catenin

p53

p21

AEC II senescence

SASP

CyclinD1
PDGF-a

PDGF-b

TNF-α

TNF-β

MMP

Pulmonary fibrosis

ECM
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Fibroplast
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p16

Figure 6.  Citrus alkaline extract (CAE) inhibition, a proposed mechanism of alveolar epithelial type II cell (AEC II) senescence to 
alleviate pulmonary fibrosis via the b-Catenin/p53 pathway.

failure, systemic lupus erythematosus, kidney disease, cancer, 
and other diseases [53]. A feedback loop between b-catenin 
and p53 has been observed in colon cells. Any increase in b-
catenin concentration in a cytoplasm leads to an activation of 
p53, which then promotes the proteasomal degradation of b-
catenin [52]. Other studies have confirmed that the signaling 
of Wnt/b-catenin activation leads to p53 accumulation [54]. 
The signaling of Wnt/b-catenin regulates the proliferation and 
differentiation of the mesenchymal progenitor cells through 
the p53 pathway [55]. TCF-4 is a transcription factor with a 
key role in the signaling of Wnt/b-catenin. In cancer, p53 reg-
ulates the transcription of TCF-4, indicating a relationship be-
tween b-catenin and p53 [56]. One way in which p53 affects 
the Wnt signaling pathway involves DKK1. The DKK1 protein 
can inhibit Wnt activity, and is also transcriptionally upregu-
lated by p53 [57]. Both p53 and b-catenin interact via an au-
toregulatory loop [58]. Elevated levels of b-catenin inhibit p53 
degradation and thereby enhance p53 activity. This effect is 
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antagonized by active p53, which leads to the downregulation 
of protein levels of b-catenin [59]. It has been shown that the 
expression levels of Wnt/b-catenin and p53 in AEC IIs in pa-
tients with IPF are elevated as compared with those of indi-
viduals without IPF [60]. Our results indicated that b-catenin, 
p53, and p21 expression decreased after treatment with ei-
ther DKK1 or PTF-a. This finding suggests that there is a link 
between the b-catenin pathway and the p53 pathway and that 
CAE can inhibit A549 senescence via the b-catenin/p53 pathway.

Conclusions

We assessed the effect of CAE treatment on aging and elu-
cidated the mechanism by which CAE inhibits senescence in 
A549 cells. Our results indicate that CAE inhibits senescence in 
A549 cells via the b-catenin/p53 pathway. The inhibition of ep-
ithelial senescence can alleviate pulmonary fibrosis. Therefore, 
our findings suggest that inhibiting epithelial cell senescence 
can limit pulmonary fibrosis (Figure 6). These findings indi-
cate that CAE may be a promising therapeutic option for the 
treatment of IPF.
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