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Abstract: Osteoporosis and other conditions associated with low bone density or quality are highly
prevalent, are increasing as the population ages and with increased glucocorticoid use to treat
conditions with elevated inflammation. There is an unmet need for therapeutics which can target
skeletal precursors to induce osteoblast differentiation and osteogenesis. Genes associated with high
bone mass represent interesting targets for manipulation, as they could offer ways to increase bone
density. A damaging mutation in SMAD9 has recently been associated with high bone mass. Here
we show that Smad9 labels groups of osteochondral precursor cells, which are not labelled by the
other Regulatory Smads: Smad1 or Smad5. We show that Smad9+ cells are proliferative, and that the
Smad9+ pocket expands following osteoblast ablation which induced osteoblast regeneration. We
further show that treatment with retinoic acid, prednisolone, and dorsomorphin all alter Smad9 ex-
pression, consistent with the effects of these drugs on the skeletal system. Taken together these results
demonstrate that Smad9+ cells represent an undifferentiated osteochondral precursor population,
which can be manipulated by commonly used skeletal drugs. We conclude that Smad9 represents a
target for future osteoanabolic therapies.

Keywords: osteoblast; biomolecule; musculoskeletal; zebrafish; BMP-signalling; Smad9; osteoporosis

1. Introduction

Bone is a mineralised tissue, in which dynamic remodelling is tightly regulated by
the activity of osteoclasts (which resorb matrix) and osteoblasts and osteocytes (which
deposit bone matrix). This tight coupling of bone resorption and deposition is essential
to maintain a healthy skeleton capable of functioning efficiently. When this balance is
perturbed it can lead to various bone remodelling related diseases such as osteopetrosis
(excessive bone strength) or osteoporosis (OP; reduced bone strength) [1]. OP is a common
age-related bone degeneration disease that is characterised by a low bone mineral density
(BMD) and reduced bone mass resulting in increased bone fragility and fracture incidence.
In the European Union (EU), over 27.6 million people over the age of 50 suffer from OP [2].
Treating these fragility fractures cost the EU €37 billion in 2010 and this is predicted to
increase to €46.5 billion by 2025 due to our aging population, with only a small percentage
of the cost representing pharmacological intervention [3]. Therefore, there is scope to
fulfill a large demand to develop drug treatments to lower the incidence of fragility
fractures. Currently antiresorptive drugs, such as bisphosphonates which block the activity
of osteoclasts and therefore bone degradation, are the mainstay of OP treatment. However,
there are side effects associated with long term use, including hip fractures, gastrointestinal
discomfort, and osteonecrosis in the jaw. There are few affordable and minimally invasive
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treatments aimed at enhancing bone formation (osteoanabolic). Teriparatide is a costly
daily subcutaneously administered drug which consists of recombinant human parathyroid
hormone (PTH) [4]. However, it cannot be used long term as its strong osteoanabolic effect
increases the risk of osteosarcomas [5]. Therefore, there is a demand in the field to discover
new osteoanabolic drug targets which are minimally invasive treatments that could restore
the balance of bone degradation and formation in OP patients.

New osteoanabolic drug targets have previously been discovered by studying in-
dividuals with high bone mass (HBM). HBM is a rare genetic disorder which results in
increased bone mass and BMD providing resistance to fracture [6]. A striking example was
the discovery that mutations in sclerostin (SOST) caused HBM in several pedigrees [7,8].
As SOST is predominantly expressed in osteocytes to block canonical WNT signalling,
this prompted the development of Romosozumab antibody treatment, which blocks SOST
leading to stimulation of the canonical WNT signalling pathway. Romosozumab is now
used to enhance bone formation in OP patients [7]. By using a similar human genetic
approach of genome-wide association studies (GWAS) and whole-genome/exome sequenc-
ing (WGS/WES) SMAD9 was identified as a novel osteoanabolic candidate, this could
therefore make SMAD9, like SOST, a potential anabolic drug target for OP [9].

The monogenic HBM mutation caused a p.Leu22Pro substitution that is predicted to
disrupt the MAD-homology (MH) 1 DNA binding domain of SMAD9 (previously known as
SMAD8 or MADH9). SMAD9 is a co-transcription factor with SMAD1 and SMAD5, called
regulatory SMADs (R-SMADs), in the SMAD dependent Bone Morphogenetic Protein
(BMP) signalling pathway. The other R-SMADs, SMAD2 and SMAD3, are BMP indepen-
dent and are part of the TGF-β pathway [10]. In canonical BMP signalling, binding of
BMP ligands to type I and II BMP receptors (BMPR) dimerise leads to a conformational
change of the intracellular domain of the BMPR-II. This allows its kinase domain to phos-
phorylate R-SMADs at the C-terminal SSXS motif and trimerisation of SMAD1, SMAD5,
and SMAD9 to occur. It then forms a tetrameric complex with SMAD4 and traffics from
the cytosol to the nucleus to regulate transcription of target genes. Within this complex,
SMAD9 has the unique capacity to repress transcription whereas SMAD1 and SMAD5
activate transcription [11]. The R-SMADS are composed of two MH domains of which
the N-terminal MH domain bind to DNA whereas the MH2 domain can bind co-factors
and allows the oligomerisation to occur. The BMP signalling pathway, and BMPR function
have previously been pharmacologically targeted. For example, dorsomorphin is a BMPR
antagonist which prevents the occurrence of a conformational change leading to inadequate
phosphorylation of R-SMADS [12]. As SMAD9 is unique in inhibiting transcription in the
R-SMAD complex, and has been identified as a HBM gene, it appears to be an attractive
target gene. However, it is important to first assess the suitability of SMAD9 as a target
by characterising spatiotemporal activity in vivo following manipulation of the skeletal
system, in order to identify which cell types would respond upon its manipulation in vivo.

In recent years there has been a surge in the experimental use of zebrafish and medaka
as vertebrate models for disease and drug discovery. The release of the zebrafish genome
in 2013 showed that zebrafish physiology is highly conserved with humans; they share 70%
of all genes and 85% of disease genes [13]. Zebrafish have a similar skeletal physiology
to humans, they undergo both endochondral and intramembranous ossification and they
form synovial joints within the jaw [14,15]. The development of the zebrafish craniofacial
skeleton is rapid [16], and unlike rodent models, development of bones can be dynamically
visualised in zebrafish larvae as early as 3 days post fertilisation (dpf). This fast develop-
ment of complete organ systems has resulted in multiple small-molecule drug screens in
zebrafish for a range of diseases [17]. Compounds can be easily administered in multi-well
plates containing the fish and media allowing for drug screening. This in combination with
several established reporter lines relevant to musculoskeletal biology and its signalling
pathways make it an attractive model for drug discovery [18]. In addition to reporter
lines, there are conditional transgenic lines allowing chemical ablation of osteoblasts which
permit to study the effects of pharmacological manipulation on skeletogenic precursors
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pools during bone regeneration [19]. One additional advantage of manipulating early skele-
togenesis in larval zebrafish is that effects on bone made by osteoblasts can be separated
from those of osteoclasts, since osteoclasts are not fully formed in zebrafish until around
10 days of development [20,21].

More specifically, zebrafish larvae have been used to quickly screen for a range
of bone metabolic drug treatments due to the ease of bone mineralisation staining and
quantification [22]. Drugs screened in zebrafish have already made it to the clinic, such
as BMP type-1 receptor (BMP1R) antagonist dorsomorphin which was discovered in an
early embryogenesis phenotype screen and it is now used to treat lymphoma [23,24]. A
number of other biomolecules, including clinically relevant drugs such as prednisolone
and alendronate have been used to give insight into control of cell behaviour during bone
development [25] homeostasis [26] and regeneration [27] in the zebrafish and in ex vivo
cultures of the bony scales [28,29].

Here we describe in detail the expression of Smad9 during musculoskeletal develop-
ment in larval zebrafish. We show that Smad9 is expressed in a population of osteochondral
precursors, which are capable of proliferation and contribute to regeneration of osteoblasts
following their ablation. We further demonstrate that the population of Smad9 expressing
cells can be manipulated by exposure to a number of biomolecules known to affect the
skeleton. Taken together, we suggest that Smad9 is both a useful biomarker for skele-
tal precursor populations and a suitable target for follow-up therapeutic manipulation
of skeletogenesis.

2. Materials and Methods
2.1. Zebrafish Husbandry and Transgenic Lines

Zebrafish (Danio rerio) in AB/TL background were maintained under normal hus-
bandry conditions [30]. Experiments were locally ethically reviewed (AWERB at Uni-
versity of Bristol, Bristol, UK) and performed under UK Home Office project license
(30/3804. Transgenic lines have been previously described; Tg(Ola.sp7:NLS-GFP) (referred
to as sp7:GFP) [31], Tg(osterix:mCherry-NTRo)pd46 (referred to as sp7:mCherry-NTR) [19],
Tg(5xBMPRE-Xla.Id3:GFP) (referred to as BMPre:GFP) [32], Tg(-4.9sox10:egfp)ba2 (referred to as
sox10:GFP) [33], Tg(7xTCF.XlaSiam:nlsGFP) (referred to as Wnt:GFP) [34] and Tg(fms:GFP)SH377

(referred to as cfms:GFP) [35]. Larvae were maintained in 30% Danieau’s solution (Stock:
NaCl 1740 mM, KCl 21 mM, MgSO4 12 mM, Ca(NO3)2 18 mM and HEPES buffer 150 mM
in 1 L distilled H2O).

2.2. Pharmacological Treatment

Retinoic acid (RA), dorsomorphin (DM), and prednisolone (PD) (all from Sigma-
Aldrich, St Louis, MI, USA) were dissolved in dimethylsulfoxide (DMSO) to a working
stock concentration of 10 mM, 40 mM, or 100 mM, respectively. Zebrafish embryos (3 dpf)
incubated with Danieau’s solution were randomly divided into four groups: 0.01% DMSO,
1 µM RA, 4 µM DM and 25 µM PD. These concentrations were used based on previous
publications and were further confirmed after titration by quantifying the RA effect on
operculum length (treated from 3 dpf to 5 dpf at 0.5 µM, 1 µM, and 2 µM), DM effect on
embryonic dorsalisation after gastrulation (treated from 4 hpf to 24 hpf at 2 µM, 4 µM,
8 µM, and 16 µM), and PD effect on immune cell number (treated from 3 dpf to 5 dpf at
12.5 µM, 25 µM, and 50 µM) against 0.1% DMSO control (Figure S1) [12,36,37]. Each group
with the same number of embryos, 8 per group, were ablated with 5 µM nifurpirinol (NFP,
Sigma-Aldrich, 32439) for 6 h firstly, then treated with related drugs for 48 h (from 3.25 dpf
onward), refreshing the solution twice a day, 0.01% DMSO, 1 µM RA, 4 µM DM and 25 µM
PD, from 3.25 dpf to 5.25 dpf. At 5.25 dpf larvae were lethally anesthetised with tricaine
(MS222) and fixed as described below.
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2.3. Immunohistochemistry

Developmentally staged larvae (after euthanisation in MS222) were fixed in 4%
paraformaldehyde (1 h), dehydrated to 100% methanol, and stored at −20 ◦C before
staining. Immunolabeling was done as previously described [21]. Primary antibodies were
anti-Smad9 (ab96698, Abcam, Cambridge, MA, USA) used at a 1:200 dilution, anti-Col2a1
(II-II6B3, DSHB, University of Iowa, Iowa, IA, USA) used at 1:20 and anti-GFP (chicken
polyclonal, Abcam, ab13970) used at a 1:300 dilution in blocking buffer (5% horse serum).
Additionally, rabbit anti-Smad1 (1:100 dilution, sc-6031-R, Santa Cruz, Dallas, TX, USA),
rabbit anti-Smad5 (1:200 dilution, ab227090, Abcam), and rat anti-mCherry [16D7] (1:100
dilution, M11217, Invitrogen, Carlsbad, CA, USA). Primary antibodies were used in 5%
horse serum in 0.2% PBS-Triton-X100 blocking buffer. Secondary antibodies Alexa Fluor
488 anti-rabbit, Alexa Fluor 568 anti-chicken, Alexa Fluor 647 anti-mouse (A21206, A11041,
and A31571 respectively, Invitrogen, Carlsbad, CA, USA), and Dylight 650 anti-Rat (SA5-
10029, ThermoFisher, Waltham, MA, USA) were used at a 1:500 dilution. Samples were
mounted in 1% low melting point agarose and imaged as described below.

2.4. RNAscope In Situ Hybridisation

In situ hybridisation (ISH) was performed by using RNAscope ISH Technology (ACD
Bio) according to the manufacturer’s instructions. In brief, 5 dpf larvae were fixed in 4%
PFA for 2 h and dehydrated in methanol before digestion in Protease Plus for 30 min. The
runx2a probe (1:50) was hybridised at 40 ◦C overnight followed by a second fixation for
10 min. The probe channel was then amplified and developed before imaging.

2.5. Proliferation Assay

Proliferation of the larvae was measured using the Click-iT EdU imaging kit (Invit-
rogen) according to the manufacturer’s instructions. In brief, larvae were treated with
400 µM EdU in Danieau’s solution for 8 h on 4 dpf. They were fixed in 4% PFA and then
incubated in the Click-iT reaction cocktail for 30 min.

2.6. Alcian Blue Staining

Alcian blue 8 GX (Sigma-Aldrich) was used to visualise cartilage glycosaminoglycans
(GAGs). Larvae (5 dpf) were fixed in phosphate buffered formaldehyde (3.5% formalde-
hyde diluted in 100 mM monosodium phosphate buffer supplemented with 25 mM dis-
odium phosphate) for an hour. Following fixation, larvae were dehydrated to 80% ethanol
(EtOH). Larvae were incubated in freshly made Alcian blue staining solution (0.02% Al-
cian blue in 70% ethanol supplemented with 80 mM MgCl2) at room temperature for 1 h.
Larvae were washed in 50% EtOH, and subsequently washed in deionised water with
0.2% Triton-X100. Pigmentation was bleached in a solution of 10% KOH, 1.5% H2O2, in
deionised H2O) which was followed by a wash in 10% KOH, 10% Glycerol, and cleared in
70% glycerol, prior to imaging (ventral and lateral views) with a Leica stereomicroscope.

2.7. Image Acquisition and Processing

Live larvae were imaged at 4 dpf and 5 dpf and were anesthetised in 0.1 mg mL−1

MS222 under a fluorescent stereomicroscope (Leica). For Lightsheet fluorescence mi-
croscopy (Zeiss Z.1), 3 dpf larvae were embedded in 1% low-melting point agarose and
were imaged for up to 6 h with an acquisition frequency of 15 min. Immunohistochemistry
and ISH samples (n ≥ 4) were imaged using a confocal laser scanning microscopy (Leica,
Buffalo Grove, IL, USA, SP5II AOBS attached to a Leica DM I6000 inverted epifluorescence
microscope) using a 10× PL APO CS, 20× HC PL APO CORR or 40× PL APO CS (4.0,
0.7 and 1.3 numerical aperture respectively) lenses. The larvae were mounted laterally or
ventrally in 1% low melting point agarose (dissolved in Danieau’s solution) before imaging.
Images were processed using Fiji [38] and linear brightness and contrast adjustments were
applied. All IHC and ISH images are representative full projection images of confocal
stacks. Three-dimensional (3D) volume renders were generated in Imaris software package
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(Oxford Instruments) of the operculum and Smad9+ population of cells at the dorsal tip of
the operculum. Thresholds were maintained between 40–60% and the volume function
was used to measure the population of Smad9+ cells.

2.8. Protein Sequence Alignment

Human (ENSP00000369154), mouse (ENSMUSP00000029371), and zebrafish (ENS-
DARP00000117800) Smad9 protein sequences were downloaded from ENSEMBL (release
99) and aligned with Clustal Omega (v1.2.4) algorithm to identify sequence conserva-
tion [39].

2.9. Statistics

Statistical analyses were performed using GraphPad Prism 8.00 (GraphPad Software,
San Diego, CA, USA). One-way ANOVA with Tukey’s multiple comparisons test and un-
paired t-tests were performed where appropriate. Standard error of the mean is displayed
on each dot plot with n ≥ 4 in all conditions. The statistical significance system used is
as follows: ns p > 0.05, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. **** p ≤ 0.0001. Sample sizes
are indicated in the figure legends, and significant P values are shown on the figures. All
tests met standard assumptions, and the variation between each group is shown. Sample
sizes were chosen based on previous, similar experimental outcomes and were based
on standard assumptions. No samples were excluded. Larvae were randomly allocated
to treatment conditions. A subset of the data was analysed by a researcher blinded to
the treatment.

3. Results
3.1. Smad9 Is Highly Expressed in Putative Osteochondral Progenitors during
Embryonic Development

The Smad9 protein sequence is highly conserved over vertebrate evolution (83.5%
between human and zebrafish) and showed striking sequence similarity in the MH1 do-
main, MH2 domain, and the C-terminal SSVS BMPR phosphorylation motif, whereas the
linker domain (between MH1 and MH2 domains) exhibited more sequence variability
between human, mouse and zebrafish (Figure S2). This gave us further confidence that
zebrafish Smad9 protein function is likely to be highly similar to land vertebrates. We have
previously reported that Smad9 protein is expressed in the developing zebrafish skeleton at
6 and 7 dpf [9], but its expression profile prior to this is unknown. Therefore, initially we de-
termined where Smad9 is expressed during key stages in the development of the zebrafish
larval skeleton. Early craniofacial development of the lower jaw depends on neural crest
cell migration during embryonic development, and these neural crest cells highly express
sox10 as a marker. At 30 h post-fertilisation (hpf), Smad9 was highly expressed around
the pharyngeal pouches which give rise to lower jaw craniofacial elements, in a pattern
that is complementary to, but largely not overlapping with sox10 expression (Figure 1A).
Note that sox10+ cells also weakly expressed Smad9 and we observed expression in the
midbrain at 30 hpf (Figure 1A) that reduced over time (compare Figure 1A to Figure 2A).
By 48 hpf, Smad9 was seen to be strongly expressed in the olfactory placode and in the
musculoskeletal system where expression is observed at the anterior border of the mi-
grating second arch which go on to form the ceratohyal (CH) [16] and at the developing
symphysis of the Meckel’s cartilage (MC) (Figure 1B). Moreover, adjacent expression of
Smad9 was also observed to enclose the more posterior pharyngeal pouches that give rise
to ceratobranchial arches. Weak expression is also seen in the ocular muscles. Therefore,
Smad9 is predominantly expressed in a subset of skeletal elements.
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Figure 1. Smad9 is expressed adjacent to sox10 positive osteochondral progenitors in early zebrafish development. (A) 
Lateral view of a 24 hpf sox10:GFP transgenic embryo showing Smad9 expression ventrally (blue arrows) and near cranial 
neural crest pharyngeal pouches (orange arrows in insets). Orange arrows in the insets show Smad9 expression surround-
ing the anterior two pharyngeal pouches which will give rise to the MC and PQ (P1), and CH (P2). Note that Smad9 is also 
expressed at a low level in most GFP positive cells. (B) Ventral view of 48 hpf sox10:GFP transgenic fish showing Smad9 
expression surrounding GFP positive cells. Insets show high Smad9 expression in the olfactory bulb (i, orange arrow), at 
future MC (blue arrow) and ceratohyal (orange arrow) joint symphyses (ii), and surrounding the CBs (iii, orange arrow). 
CBs, ceratobranchial arches; CH, ceratohyal; E, eye; MC, Meckel’s cartilage; OF olfactory placode; OT, otolith; P, pharyn-
geal pouch; PQ, palatoquadrate MB, midbrain. Scale bar is 50 μm in all images. 

Figure 1. Smad9 is expressed adjacent to sox10 positive osteochondral progenitors in early zebrafish development.
(A) Lateral view of a 24 hpf sox10:GFP transgenic embryo showing Smad9 expression ventrally (blue arrows) and near
cranial neural crest pharyngeal pouches (orange arrows in insets). Orange arrows in the insets show Smad9 expression
surrounding the anterior two pharyngeal pouches which will give rise to the MC and PQ (P1), and CH (P2). Note that
Smad9 is also expressed at a low level in most GFP positive cells. (B) Ventral view of 48 hpf sox10:GFP transgenic fish
showing Smad9 expression surrounding GFP positive cells. Insets show high Smad9 expression in the olfactory bulb (i,
orange arrow), at future MC (blue arrow) and ceratohyal (orange arrow) joint symphyses (ii), and surrounding the CBs
(iii, orange arrow). CBs, ceratobranchial arches; CH, ceratohyal; E, eye; MC, Meckel’s cartilage; OF olfactory placode; OT,
otolith; P, pharyngeal pouch; PQ, palatoquadrate MB, midbrain. Scale bar is 50 µm in all images.
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Figure 2. Smad9 is expressed in cell populations marking joint symphyses and interfaces of cartilage and bone of the 
craniofacial skeleton. (A) Lateral view of 4 dpf individual showing Smad9 expression in the craniofacial skeleton in cell 
populations located at joint symphyses of otic cartilage (OC) and PQ (white arrow) and PQ and MC (inset i), and at carti-
lage and bone interfaces (inset ii and iii, white arrow). Smad9 expression was also observed in cranial nerves (orange 
arrow), mid brain (MB) and subpopulations of epidermal cells (EC). (B) Ventral view of the lower jaw (5 dpf) showing 
continued expression of Smad9 at the joint symphyses (orange arrows) and more dorsally located ethmoid plate (blue 
arrow). Inset (i) shows the MC and PQ symphysis with Smad9 expression not overlapping type II collagen expression 
(orange arrow). (C) Expression of runx2a was predominantly, but not exclusively, seen at the top (orange arrow) and 
posterior edge (blue arrow) in the operculum (green dotted line) by using in situ hybridisation. (D) Visualisation of pro-
liferation by EdU click-iT predominantly showed proliferation adjacent to Smad9 expression near the top (orange arrows) 
and posterior edge (blue arrows) of the operculum. BR, branchiostegal ray; CH, ceratohyal; CL, cleithrum; E, eye; EC, 

Figure 2. Smad9 is expressed in cell populations marking joint symphyses and interfaces of cartilage and bone of the
craniofacial skeleton. (A) Lateral view of 4 dpf individual showing Smad9 expression in the craniofacial skeleton in cell
populations located at joint symphyses of otic cartilage (OC) and PQ (white arrow) and PQ and MC (inset i), and at cartilage
and bone interfaces (inset ii and iii, white arrow). Smad9 expression was also observed in cranial nerves (orange arrow),
mid brain (MB) and subpopulations of epidermal cells (EC). (B) Ventral view of the lower jaw (5 dpf) showing continued
expression of Smad9 at the joint symphyses (orange arrows) and more dorsally located ethmoid plate (blue arrow). Inset
(i) shows the MC and PQ symphysis with Smad9 expression not overlapping type II collagen expression (orange arrow).
(C) Expression of runx2a was predominantly, but not exclusively, seen at the top (orange arrow) and posterior edge (blue
arrow) in the operculum (green dotted line) by using in situ hybridisation. (D) Visualisation of proliferation by EdU click-iT
predominantly showed proliferation adjacent to Smad9 expression near the top (orange arrows) and posterior edge (blue
arrows) of the operculum. BR, branchiostegal ray; CH, ceratohyal; CL, cleithrum; E, eye; EC, epidermal cell; EP, Ethmoid
plate; HS, hyosymplectic cartilage; MB, mid brain; MC, Meckel’s cartilage; OC, otic cartilage; OP operculum; OT, otolith;
PQ, palatoquadrate. Scale bar is 50 µm.
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3.2. Smad9 Is Expressed within Joints and at Cartilage-Bone Interfaces during Early
Jaw Development

Next, we examined Smad9 expression during at 4 dpf as the lower jaw skeletal
elements including joint sites have fully formed. While Smad9 shows some expression
in non-skeletal tissues, such as in the skin epithelium and cranial nerves, expression is
concentrated in the developing skeletal system (Figure 2A). Smad9 is strongly expressed
in pockets of cells located at the interface between cartilage and bone. These pockets of
cells are situated between the palatoquadrate (PQ) and branchiostegal ray, and between
the hyosymplectic and the operculum (Figure 2A). In the lower jaw at 5 dpf, Smad9 is
co-expressed adjacent to type II Collagen producing chondrocytes at all cartilage joint sites
such as the jaw joint between the MC and palatoquadrate (PQ), and in the midline at the
MC symphysis and CH joint (Figure 2B).

As many of these skeletal sites are where skeletal precursors are located and where
new cells are added to the skeletal elements, we looked at whether these cells co-expressed
other early osteochondral markers and whether they were proliferative. In the jaw joint and
at the midline joints of the MC symphysis and CH, Smad9 was strongly expressed in cells
which were positive for sox10 but negative for type II Collagen (Figure S3), with only weak
expression of Smad9 in type II Collagen expressing cells, suggesting that Smad9 is down-
regulated in cells as they differentiate and become mature chondrocytes. We next tested
whether the Smad9 expression overlapped with expression of the early osteochondral gene
transcription factor runx2a, which plays a key role in differentiation to both the chondrocyte
and osteoblast fates [40]. While runx2a is expressed throughout the operculum, in positions
corresponding with the surface osteoblasts there is little colocalisation with the pocket of
cells at the neck (characteristic pan handle shape) of the operculum (Figure 2C), suggest-
ing that Smad9 is expressed prior to runx2a in skeletal precursor cells. To test whether
Smad9+ cells are proliferative, we labelled fish with the thymidine analogue EdU which
is incorporated during DNA replication in proliferation. We observed that a proportion
of proliferating cells overlapped those with Smad9 protein (Figure 2D). From these data
we conclude that Smad9 protein is dynamically produced in an osteochondral precursor
population and that protein levels are reduced as cells differentiate to an osteoblast or
chondrocyte fate.

As Smad9 is an inhibitory transcription factor of the BMP family, we next sought to
establish the relationship between Smad9 and BMP signalling in skeletal precursors. We
therefore tested whether Smad9 was seen in cells responding to BMP signalling, by making
use of a transgenic line carrying BMP responsive elements (BMPre) driving GFP expression
(Figure S4A,B), and by labelling larvae with antibodies raised against Smad1 (Figure S4C,D)
and Smad5 (Figure S4E–G) at 7 dpf. We observed little overlap between Smad9 protein
and expression of the BMPre:GFP reporter, as we mostly observed GFP expression in the
cranial musculature whilst Smad9 was absent (Figure S4A,B); therefore fitting with the
likely role of Smad9 being a repressor of BMP signalling. By contrast, Smad1 showed a
similar pattern of expression to the BMPre:GFP reporter, with both most strongly expressed
in the craniofacial skeletal musculature (Figure S4C,D). Smad5 exhibited weaker expression
in the muscle than Smad1, but strongest expression appeared to be in the endothelial cells
of the vascular system, with little or no expression in the skeletal precursors (Figure S4E–G).
We observed similar expression patterns in the trunk, where Smad1 was expressed in the
musculature (Figure S5A), Smad5 in the musculature and vascular endothelial cells (Figure
S5B), and Smad9 in notochord sheath cells (Figure S5C). From this we concluded that
Smad9 protein largely did not colocalise with Smad1, Smad5 or cells responding to BMP
signalling, consistent with its function as a repressor of BMP signalling.

3.3. Pharmacological Manipulation Modulates Osteochondral Smad9 Expression at Skeletal Sites

As our data suggests that Smad9 labels a population of osteochondral precursors,
we next wanted to test how this population of cells would respond to pharmacological
treatment with drugs known to act on the skeleton. We selected three well characterised
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compounds. Prednisolone (PD) is widely reported to induce glucocorticoid induced osteo-
porosis (GIOP) in many species and to diminish osteoblast activation following loading [41].
In zebrafish specifically, larval treatment with PD leads to reduced mineralisation [25],
while in adults, treatment leads to impaired skeletal regeneration [42,43]. Retinoid acid
(RA) plays a complex role in the skeleton, as a key factor in morphogenesis it is controlling
precursor cell fate by forming a tightly controlled gradient. For example, mutations in
genes which control the inactivation of RA such as cyp261 have been demonstrated to
lead to ectopic and early entry to the osteocyte fate leading to premature ossification of
the spinal column and of suture osteoblasts causing craniosynostosis [44,45]. We also
selected dorsomorphin (DM) as an inhibitor of the BMP pathway, which was discovered in
a zebrafish screen and has been shown to inhibit phosphorylation of R-Smads [23]. As we
observed strong expression of Smad9 in locations associated with skeletal precursors, we
decided to treat larvae for 48-h with the chosen biomolecules with dosages confirmed after
titration (Figure S1) between 3 and 5 dpf, as by 3 dpf embryonic skeletal patterning has
concluded but skeletal growth and morphogenesis are ongoing.

Treatment of larvae from 3–5 dpf with RA led to a dramatic decrease in osteoblast
number, and a reduction in the mineralised area of the operculum similar to that described
for the cyp26b1 mutant (Figure 3A) [46]. Treatment with RA led to altered expression of
Smad9, such that the pocket of cells at the cartilage bone interface were still labelled, but
that there were fewer cells in this location, and within osteoblasts expression was patchy
with some bright Smad9+ cells at the ventral edge of the operculum (Figure 3A). In the
lower jaw cartilages, RA treatment led to altered cartilage growth at the midline in the
MC symphysis similar to that previously described in the cyp26b1 mutant [46], with subtle
changes to cartilage morphology at the joint, close to where the retroarticular process
(RAP) will form, reminiscent of changes observed at the joint following immobilisation
(Figure 3B,C) [47]. Correspondingly, we saw an almost complete loss of Smad9 expression
at the MC symphysis (Figure 3C), where both the bright cells and the more punctate
gradient in chondrocytes were both lost. At the joint we observed more subtle changes to
distribution of Smad9 with expression observed in the PQ as well as the joint interzone
(Figure 3D).

Treatment of larvae with PD led to a substantial reduction of Smad9 in the pocket
between the hyosymplectic and the operculum, such that it was almost completely ab-
sent with only punctate vesicular expression in the osteoblasts covering the operculum
remaining (Figure 3A). In the cartilage overall morphology of the elements was unchanged
(Figure 3B), although cells at the midline in the MC symphysis appeared somewhat larger;
expression of Smad9 at the midline in the MC symphysis was reduced, such that there
were no bright cells at the midline and only punctate expression in the cartilage (Figure 3C).
At the jaw joint, both cartilage morphology and Smad9 expression appeared largely un-
changed (Figure 3D).

By contrast, treatment with DM led to no dramatic differences to Smad9 expression
and skeletogenesis. In the operculum we observed only subtle changes to morphology,
and a slight change to the distribution of the Smad9+ cells pocket and its relationship with
the surrounding osteoblasts (Figure 3A). In the cartilage we observed no change to overall
morphology, and a slight enhancement of Smad9 expression at the joint sites (Figure 3B–D).
During skeletal cell maturation, the Wnt pathway plays an important role in joint formation
and its expression is dependent on joint loading [47]. The BMP pathway has been shown
to negatively regulate Wnt at skeletal sites [48]. To test whether DM treatment had an
effect Wnt expression near joint sites we used a canonical Wnt transgenic reporter line to
visualise reporter expression at the lower jaw joint sites. Firstly, we did not observe any
co-expression of the Wnt:GFP reporter and Smad9 at the joint symphyses. DM treatment
led to a decrease in reporter activity both at the midline MC symphysis (Figure S6A) and at
the MC-PQ symphysis (Figure S6B) whilst Smad9 expression appeared not affected.
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view of the operculum at 5.25 dpf following 48 h treatment with either: DMSO (control), 1 µM retinoic acid (RA), 25 µM
prednisolone (PD) or 4 µM dorsomorphin (DM). Control larvae show Smad9 expression in the pocket of cells at the top of
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the operculum (white arrow) and punctuate expression in the neck (orange arrow) and ventral edge of the operculum (blue
arrow). PD treatment dramatically reduced Smad9 expression in the pocket of cells at the top of the operculum (white
arrow) and increased punctate expression. RA treatment reduced osteoblast number and operculum outgrowth; bright
Smad9 expression was seen at the ventral edge of the operculum (blue arrow). DM treatment had little effect on Smad9
expression at the top of the operculum (though there was a reduction in punctae in the lower operculum) or on osteoblast
number. Scale bar is 20 µm. (B) Alcian blue staining of larvae treated with DMSO, RA, PD or DM at 5 dpf showing the
ventral jaw (inset i) and MC (inset ii). RA treatment resulted in deformed cartilage growth at the midline in MC, while
PD and DM did not lead to dramatic changes to morphology (orange arrow). Scale bar is 100 µm. (C) Ventral views of
MC at 5.25 dpf labelled for type II Collagen and Smad9 in control and drug treated larvae. Controls showed bright Smad9
expression at the midline in the MC with a gradient of expression throughout the cartilage. RA treatment resulted in almost
complete loss of Smad9 expression at the midline (white arrows). PD led to reduced expression of the Smad9 (white arrow),
while DM treatment had little effect on Smad9 expression at the midline. (D) Ventral views of the MC-PQ synovial joint at
5.25 dpf labelled for type II Collagen and Smad9 in control and drug treated larvae. Smad9 expression is maintained in the
joint space in all conditions (white arrow). Scale bar is 20 µm.

We therefore provide evidence that DM has a limited effect on the Smad9+ population
of cells, that PD treatment leads to a reduction in bright Smad9+ expressing cells in both
the cartilage and the bone. RA treatment led to stronger phenotypes as we also observed
a loss of Smad9 expression at the MC symphysis midline causing ectopic cartilage for-
mation. In the operculum, the reduced Smad9 expression correlated with a reduction in
osteoblast number.

3.4. Osteoblast Ablation Induces Increased Expression of Smad9 during Larval De Novo
Osteoblast Formation

We then wanted to test whether treatment with the biomolecules would prevent differ-
entiation of new osteoblasts following ablation of existing osteoblasts at 3 dpf. We therefore
first ablated osteoblasts with nifurpirinol (NFP), which was then followed by RA, PD or
DM treatment for 48-h after ablation (Figure 4A). Bergemann et al. [49] demonstrated that a
less toxic antibiotic NFP can be used to effectively ablate osteoblasts in the sp7:mCherry-NTR
transgenic line. We confirmed that treating sp7:mCherry-NTR transgenic larvae with NFP
successfully ablated osteoblasts at the times of interest. Larvae were treated for 6 h at
3 dpf with NFP, and by 24 h post treatment (hpt) full ablation of the osteoblasts in the
operculum was seen (Figure S7A,B). Macrophages were observed to engulf the remnants of
sp7+ osteoblasts (Figure S7C and Movie S1). We therefore used this model of treatment with
NFP for 6 h to ablate osteoblasts on day 3 (from 3 dpf to 3.25 dpf) of development. A rapid
recovery of osteoblasts in the operculum was seen, as already 48 h after sp7+ osteoblasts
were clearly apparent organised in the characteristic fan shape of the operculum. The
regenerated operculum was significantly smaller than the control at the same point in
development (48 hpt/5 dpf) (Figure S7B). The size of the regenerated operculum correlates
to the size of the operculum in a younger untreated larva, suggesting that the operculum
regenerates following the ontogenetic pattern. We then determined whether the Smad9+

pocket was present after ablation and whether these cells would contribute to regeneration
following the ablation of sp7 expressing osteoblasts. Strikingly, we observed an expansion
of the Smad9+ pocket indicating that this pool is activated when osteoblast repopulation is
occurring (Figure 4B,C).

By deploying this model, we were able to test the hypothesis that if RA was preventing
new osteoblast formation, we would see impaired osteoblast repopulation after ablation.
Indeed, we observed that while Smad9 expression was still clearly observed in the pocket
of cells, no sp7+ osteoblasts were seen following treatment (Figure 4D) and regrowth of
the operculum was completely absent (Figure 4E). Treatment with PD and DM following
NFP ablation of osteoblasts lead to no obvious additional defects to operculum size over
ablation alone (Figure 4D,E), indicating that early acute osteoblast regenerative capacity
in larvae is not dependent on glucocorticoid and BMP signalling. However, we observed
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that after osteoblast ablation, both the Smad9+ pocket and sp7+ osteoblast operculum size
(p = 0.12) showed a smaller tendency in PD treated larvae (Figure 4D,E), implying that PD
treatment had a limited effect on the Smad9+ cell population.
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Figure 4. Osteoblast ablation and pharmacological treatment affects osteoblast generation and Smad9 expression:
(A) Schematic showing that osteoblasts were ablated with nifurpirnol (NFP) at 3 dpf; followed by drug treatment (for
48 h) and phenotype assessment at 5.25 dpf. (B) Lateral view of the operculum after 6 h DMSO or NFP treatment. NFP
treatment resulted in a smaller regenerated operculum and expanded Smad9 expression in the pocket of cells at the top
of the operculum (white arrow). (C) Analysis of 3D rendered images showed NFP treatment significantly increased the
volume of the Smad9+ pocket of cells. (D) Lateral view of operculum after a combination of NFP and RA, PD or DM
treatment. Treatment with NFP and RA blocked osteoblast regeneration but maintained Smad9 expression. NFP and PD
treatment results in a depleted Smad9 expression but a regenerated operculum. NFP and DM treatment had no change to
Smad9 expression (white arrow) or operculum regeneration. (E) Quantification of operculum length after drug treatments
at 5.25 dpf. N ≥ 5. Scale bar is 20 µm. ns p > 0.05, * p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.0001.

Taken together these data show that Smad9 is expressed in precursor populations in
both cartilage and bone elements, concentrated at interfaces. We show that pharmacological
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manipulations known to affect osteochondral cells were able to modulate Smad9 expression
at these sites. After osteoblast depletion we observed an increased Smad9+ pocket indi-
cating this pool provides cells for osteoblast repopulation. We identified striking changes
to Smad9 expression upon RA treatment correlating with altered midline chondrocyte
differentiation and overgrowth at the MC symphysis in cartilage and with rapid osteoblast
differentiation limiting operculum growth and completely preventing regrowth following
ablation. PD treatment led to a notable reduction of Smad9 MC symphysis expression
and in the Smad9+ pocket at the dorsal tip of the operculum. In line with DM being a
BMP signalling inhibitor, DM had a limited effect on Smad9 expression and osteochondral
populations, which further validates Smad9 acting as a transcriptional repressor of BMP
signalling in zebrafish as well.

4. Discussion

Here we describe the expression of Smad9 (previously known as Smad8) during
early skeletal development. We show that during skeletal development expression of
Smad9 largely does not colocalise with Smad1, Smad5 or with cells responding to BMP
signalling. We show that Smad9 labels an osteochondral precursor population, which
is proliferative and expands during regeneration following ablation of sp7+ osteoblasts.
Murine Smad9 has been shown to be expressed in distal and proximal sites of skeletal
elements in developing skeletal elements [50]. Our data shows a similar expression pattern
during early development and that this expression becomes limited to a subset of precursor
cells manipulation of which could lead to alterations in skeletal patterning. It has previously
been shown that Smad9 can be induced by BMP7, as when beads coated with BMP7 were
implanted into chick hind limbs, the expression domain of Smad9 was increased [51]. Here
we expand on this data by showing how Smad9 is differentially regulated by RA and PD,
but is largely unchanged following treatment with the BMP signalling inhibitor DM.

While over the last decade there has been a huge increase in the number of GWAS as-
sociated loci harbouring potential novel genes with skeletal phenotypes, such as eBMD [52],
OP [53] and fracture susceptibility [54], there remains an unmet need for rapid downstream
functional characterisation [55]. Studies of rare bone diseases associated with HBM and
subsequent detailed functional characterisation of identified associated genes, such as
the Wnt regulator SOST, have underpinned the development of the new OP therapeutic
Romozsumab, an antibody that blocks SOST function leading to bone anabolism [56,57].
Similar to SOST, a damaging mutation predicted to affect SMAD9 function has been identi-
fied in a pedigree with HBM [9]. As Smad9 is a R-SMAD and a downstream transcriptional
inhibitor of the SMAD-dependent BMP signalling pathway, it represents an appealing
target for pharmacological manipulation. Dysregulation of BMP signalling is associated
with many disease pathologies, an example of which is the ectopic bone forming dis-
ease fibrodysplasia ossificans progressivia (FOP) where a gain of function mutation in
type II BMPR (ACVR1) leads to constitutively active kinase domain enhancing R-SMAD
translocation to the nucleus [58]. A number of therapeutics based on modulation of BMP
signalling are now licensed for clinical use in skeletal disease and orthopedic settings [59].
Zebrafish are increasingly used in functional characterisation of genes identified by GWAS
and in drug discovery pipelines. Indeed, the BMP inhibitor DM was first identified by its
dorsalising effects in embryonic zebrafish [12], and analogues of DM that can target Acvr1
are now repurposed (from being a leukaemia therapy) and in clinical trials to prevent
the ectopic mineralisation seen in FOP [24]. Drug screens in zebrafish can therefore be a
leading platform to discover new biologically active agents. However, subtle physiological
differences between mammalian and teleost bone should be taken into account when inter-
preting results for certain drug targets. For example, unlike human bone, zebrafish lack
hematopoietic bone marrow and show trabeculation only in some bones. These differences
need to be considered when especially investigating potential drug targets that focus on
trabeculation and bone marrow integrity rather than osteoanabolic cell response. When
focussing on amending osteoblast function to discover putative osteoactive biomolecules
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that could act on validated HBM genes, assays could be performed in larvae [60], on ex
vivo cultured elasmoid scales [28,29], or administered to adult fish to test effects on the
skeleton during regeneration/bone healing in exoskeletal elements [43].

Firstly, for any newly identified HBM gene, it is important to validate that it is
expressed in the developing skeleton and shows functional relevance. Here we show that
Smad9 protein is indeed dynamically expressed during early skeletal development. During
development progression, Smad9 expression is becoming more restricted to precursor
populations in the cartilage, at joint sites where new cells are added, and in pockets of
cells at the interface between cartilage and bone. This population of cells expands during
regeneration of the operculum following osteoblast ablation. Previous mouse studies
using a transgenic LacZ reporter lines under control of an endogenous Smad9 promoter
detected LacZ expression in the developing skeleton (e.g., ribs, maxilla, mandible), gut,
hind brain, and trachea [50]. This study shows for the first time that Smad9 is expressed
at symphyses of cartilage and bone. Moreover, we show that there is little overlap in
expression between Smad9 and the other BMP dependent R-Smads (Smad1 and Smad5)
or with cells responding to BMP signalling, consistent with a role for Smad9 functioning
to inhibit BMP signalling. We saw little difference to Smad9 expression or to skeletal
patterning following treatment with DM, consistent with Smad9 already acting to repress
BMP signalling at these sites. It is therefore interesting to note that these findings are in
line with the previous evidence that the damaging p.Pro22Leu mutation in SMAD9 does
not cause FOP in humans, as in developing zebrafish it is not expressed in FOP prone and
BMP signalling responsive tissues such as muscle.

Treatment of larvae with PD led to an almost complete loss of Smad9 in the precur-
sor pocket of the operculum, and diminished Smad9 expression at cartilage joint sites.
Glucocorticoids have been associated with enhanced chondrogenic differentiation from
mesenchymal stem cells [61]. However long-term use of PD is associated with OP, and
osteonecrosis [62] and has been also shown to diminish skeletal regeneration following
injury in zebrafish due to dampening of the inflammation response that is important for
bone remodelling and tissue repair [27]. Our data showed that following PD treatment the
Smad9+ pools were diminshed but that after osteoblast ablation a small pool of Smad9+
cells remained. This is likely due to the fact that during ablation the Smad9+ pool expands
which could explain why PD treatment had a little effect on operculum regrowth, as these
remaining Smad9+ cells may repopulate the operculum with new osteoblasts. Another
factor may be that the inflammation response is not crucial for repleting the osteoblast pool.
While we saw relatively minor effects on bone following PD treatment, this is likely because
at least in part osteoporotic phenotypes associated with PD treatment are associated with
increased osteoclast action and altered metabolism, at the stages studied here zebrafish
have not yet formed active osteoclasts (they become active around 10 dpf [21]) and the
metabolic changes that occur on changing from yolk feeding to free feeding have also not
yet taken place.

Treatment of larvae with RA led to a loss of Smad9 at the midline; excess RA is
associated with cartilage overgrowth leading to craniosynostosis and jaw mispatterning
in cyp26b1 mutants in which the degradation of RA is altered [44], again consistent with
Smad9 normally acting to prevent premature chondrogenesis. In the spine treatment with
RA during spine patterning is associated with ectopic bone formation [36]. Interestingly, we
observed Smad9 expression in the notochord sheath, though we did not study expression
of notochord Smad9 after RA treatment. However, in the operculum, treatment with
RA led to reduced osteoblast differentiation and a smaller operculum size. Following
ablation treatment with RA led to a complete failure of osteoblast differentiation, such
that the Smad9+ cells were present, but no new osteoblasts were formed. Since Smad9
expression was altered in response to pharmacological treatment and osteoblast ablation,
future research should focus on loss-of function smad9 alleles ideally combined with
transcriptomic or proteomic analysis to determine the downstream effects of changed
Smad9 expression.
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Taken together the fact that Smad9 expression is predictive of the differentiation of
osteochondral precursor populations suggests that it plays a role controlling the timing of
differentiation. Smad9 could therefore both be a useful read out of regenerative capacity in
the skeleton and an appropriate target for future pharmacological manipulation relevant to
developing osteoanabolic therapies.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-273
X/11/2/277/s1, Figure S1: Dose response of pharmacological treatments; Figure S2: Smad9 protein
is highly conserved between zebrafish and land mammals; Figure S3: Smad9 is co-expressed with
Sox10 at joint sites; Figure S4: Smad9 expression does not overlap expression of BMP responsive
cells, Smad1 or Smad5; Figure S5: Smad9 is expressed in the notochord whilst Smad1, Smad5 and
the BMPre:GFP transgene are not; Figure S6: Pharmacological manipulation effects Wnt signalling
in larvae jaws; Figure S7: Chemical ablation of osteoblasts induces rapid macrophage clearance of
apoptotic cells and subsequent regeneration of the operculum resident osteoblasts; Movie S1: Rapid
clearance of sp7+ cells by macrophages after chemical ablation.

Author Contributions: The study was designed and supervised by D.J.M.B. and C.L.H.; Experiments
were performed by G.L.K.M., M.W., and D.J.M.B.; Data was analysed by all authors. Figures were
made by G.L.K.M.; and D.J.M.B. The manuscript was drafted by C.L.H. and D.J.M.B., then read and
agreed by all authors. Funding was acquired by C.L.H. and D.J.M.B. All authors have read and
agreed to the published version of the manuscript.

Funding: C.L.H. and D.J.M.B. received funding from Versus Arthritis (29137 and 22044 respec-
tively). G.L.K.Mc.D is funded by the Wellcome Trust Dynamic Cell doctoral training programme
(108907/Z/15/Z). M.W. is funded by the China Scholarship Council.

Institutional Review Board Statement: Animal work described was approved by AWERB (Animal
Welfare Ethical Review Board) at the University of Bristol and was conducted under a UK Home
Office Project License.

Informed Consent Statement: “Not applicable” (no human subjects).

Data Availability Statement: Raw data will be made available on the data.bris repository with
permanent DOI fixed upon manuscript acceptance.

Acknowledgments: The Authors would like to acknowledge their funders (as above). The authors
would like to thank Mathew Green and Pablo Peon Garcia for zebrafish maintenance, the Wolfson
Bioimaging facility staff for advice on and access to microscopy equipment and members of the
Hammond lab for helpful discussions. D.J.M.B. and C.L.H. also gratefully acknowledge Professor
Celia Gregson’s mentorship and support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Feng, X.; McDonald, J.M. Disorders of bone remodeling. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 121–145. [CrossRef]
2. Hernlund, E.; Svedbom, A.; Ivergård, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jonsson, B.; Kanis, J.A.

Osteoporosis in the European Union: Medical management, epidemiology and economic burden. Arch. Osteoporos. 2013, 8, 1–115.
[CrossRef] [PubMed]

3. Svedbom, A.; Hernlund, E.; Ivergård, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jönsson, B.; Kanis, J.A.
Osteoporosis in the European Union: A compendium of country-specific reports. Arch. Osteoporos. 2013, 8, 137. [CrossRef]

4. Metcalf, L.M.; Aspray, T.J.; McCloskey, E.V. The effects of parathyroid hormone peptides on the peripheral skeleton of post-
menopausal women. A systematic review. Bone 2017, 99, 39–46. [CrossRef]

5. Watanabe, A.; Yoneyama, S.; Nakajima, M.; Sato, N.; Takao-Kawabata, R.; Isogai, Y.; Sakurai-Tanikawa, A.; Higuchi, K.; Shimoi,
A.; Yamatoya, H.; et al. Osteosarcoma in Sprague-Dawley rats after long-term treatment with teriparatide (human parathyroid
hormone (1–34)). J. Toxicol. Sci. 2012, 37, 617–629. [CrossRef] [PubMed]

6. Gregson, C.L.; Steel, S.A.; O’Rourke, K.P.; Allan, K.; Ayuk, J.; Bhalla, A.; Clunie, G.; Crabtree, N.; Fogelman, I.; Goodby, A.; et al.
“Sink or swim”: An evaluation of the clinical characteristics of individuals with high bone mass. Osteoporos. Int. 2012, 23, 643–654.
[CrossRef] [PubMed]

https://www.mdpi.com/2218-273X/11/2/277/s1
https://www.mdpi.com/2218-273X/11/2/277/s1
http://doi.org/10.1146/annurev-pathol-011110-130203
http://doi.org/10.1007/s11657-013-0136-1
http://www.ncbi.nlm.nih.gov/pubmed/24113837
http://doi.org/10.1007/s11657-013-0137-0
http://doi.org/10.1016/j.bone.2017.03.007
http://doi.org/10.2131/jts.37.617
http://www.ncbi.nlm.nih.gov/pubmed/22688001
http://doi.org/10.1007/s00198-011-1603-4
http://www.ncbi.nlm.nih.gov/pubmed/21455762


Biomolecules 2021, 11, 277 16 of 18

7. McClung, M.R.; Grauer, A.; Boonen, S.; Bolognese, M.A.; Brown, J.P.; Diez-Perez, A.; Langdahl, B.L.; Reginster, J.-Y.; Zanchetta,
J.R.; Wasserman, S.M.; et al. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 2014,
370, 412–420. [CrossRef] [PubMed]

8. Balemans, W. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet.
2001, 10, 537–543. [CrossRef]

9. Gregson, C.L.; Bergen, D.J.M.; Leo, P.; Sessions, R.B.; Wheeler, L.; Hartley, A.; Youlten, S.; Croucher, P.; McInerney-Leo, A.M.;
Fraser, W.; et al. A Rare Mutation in SMAD9 Associated with High Bone Mass Identifies the SMAD-Dependent BMP Signaling
Pathway as a Potential Anabolic Target for Osteoporosis. J. Bone Miner. Res. 2020, 35, 92–105. [CrossRef]

10. Nakao, A.; Imamura, T.; Souchelnytskyi, S.; Kawabata, M.; Ishisaki, A.; Oeda, E.; Tamaki, K.; Hanai, J.-I.; Heldin, C.-C.; Miyazono,
K.; et al. TGF-β receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 1997, 16, 5353–5362. [CrossRef]
[PubMed]

11. Tsukamoto, S.; Mizuta, T.; Fujimoto, M.; Ohte, S.; Osawa, K.; Miyamoto, A.; Yoneyama, K.; Murata, E.; Machiya, A.; Jimi, E.; et al.
Smad9 is a new type of transcriptional regulator in bone morphogenetic protein signaling. Sci. Rep. 2014, 4, 1–11. [CrossRef]
[PubMed]

12. Yu, P.B.; Hong, C.C.; Sachidanandan, C.; Babitt, J.L.; Deng, D.Y.; Hoyng, S.A.; Lin, H.Y.; Bloch, K.D.; Peterson, R.T. Dorsomorphin
inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 2008, 4, 33–41. [CrossRef] [PubMed]

13. Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.;
et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [CrossRef]
[PubMed]

14. Askary, A.; Smeeton, J.; Paul, S.; Schindler, S.; Braasch, I.; Ellis, N.A.; Postlethwait, J.; Miller, C.T.; Crump, J.G. Ancient origin of
lubricated joints in bony vertebrates. eLife 2016, 5, e16415. [CrossRef] [PubMed]

15. Kimmel, C.B.; Miller, C.T.; Moens, C.B. Specification and morphogenesis of the zebrafish larval head skeleton. Dev. Biol. 2001,
233, 239–257. [CrossRef]

16. Eames, B.F.; DeLaurier, A.; Ullmann, B.; Huycke, T.R.; Nichols, J.T.; Dowd, J.; McFadden, M.; Sasaki, M.M.; Kimmel, C.B. FishFace:
Interactive atlas of zebrafish craniofacial development at cellular resolution. BMC Dev. Biol. 2013, 13, 23. [CrossRef]

17. MacRae, C.A.; Peterson, R.T. Zebrafish as tools for drug discovery. In Nature Reviews Drug Discovery; Nature Publishing Group:
Berlin, Germany, 2015; Volume 14, pp. 721–731.

18. Lleras-Forero, L.; Winkler, C.; Schulte-Merker, S. Zebrafish and Medaka as Models for Biomedical Research of Bone Diseases; Develop-
mental Biology; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 457, pp. 191–205.

19. Singh, S.P.; Holdway, J.E.; Poss, K.D. Regeneration of Amputated Zebrafish Fin Rays from De Novo Osteoblasts. Dev. Cell 2012,
22, 879–886. [CrossRef]

20. Mantoku, A.; Chatani, M.; Aono, K.; Inohaya, K.; Kudo, A. Osteoblast and osteoclast behaviors in the turnover of attachment
bones during medaka tooth replacement. Dev. Biol. 2016, 409, 370–381. [CrossRef]

21. Witten, P.E.; Huysseune, A. A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special
emphasis on osteoclasts and their function. Biol. Rev. 2009, 84, 315–346. [CrossRef]

22. Hammond, C.L.; Schulte-Merker, S. Two populations of endochondral osteoblasts with differential sensitivity to Hedgehog
signalling. Development 2009, 136, 3991–4000. [CrossRef]

23. Chen, X.; Wang, Z.; Duan, N.; Zhu, G.; Schwarz, E.M.; Xie, C. Osteoblast–osteoclast interactions. Connect. Tissue Res. 2018,
59, 99–107. [CrossRef]

24. Yu, P.B.; Deng, D.Y.; Lai, C.S.; Hong, C.C.; Cuny, G.D.; Bouxsein, M.L.; Hond, D.W.; McManus, P.M.; Katagiri, T.; Sachidanandan,
C.; et al. BMP type I receptor inhibition reduces heterotopic ossification. Nat. Med. 2008, 14, 1363–1369. [CrossRef] [PubMed]

25. He, H.; Wang, C.; Tang, Q.; Yang, F.; Xu, Y. Possible mechanisms of prednisolone-induced osteoporosis in zebrafish larva. Biomed.
Pharmacother. 2018, 101, 981–987. [CrossRef]

26. Pasqualetti, S.; Congiu, T.; Banfi, G.; Mariotti, M. Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-
induced osteoporosis in adult zebrafish scale. Int. J. Exp. Pathol. 2015, 96, 11–20. [CrossRef] [PubMed]

27. Geurtzen, K.; Vernet, A.; Freidin, A.; Rauner, M.; Hofbauer, L.C.; Schneider, J.E.; Brand, M.; Knopf, F. Immune Suppressive and
Bone Inhibitory Effects of Prednisolone in Growing and Regenerating Zebrafish Tissues. J. Bone Miner. Res. 2017, 32, 2476–2488.
[CrossRef] [PubMed]

28. Bergen, D.J.M.; Kague, E.; Hammond, C.L. Zebrafish as an emerging model for osteoporosis: A primary testing platform for
screening new osteo-active compounds. Front. Endocrinol. 2019, 10, 6. [CrossRef] [PubMed]

29. De Vrieze, E.; Zethof, J.; Schulte-Merker, S.; Flik, G.; Metz, J.R. Identification of novel osteogenic compounds by an ex-vivo
sp7:luciferase zebrafish scale assay. Bone 2015, 74, 106–113. [CrossRef]

30. Aleström, P.; D’Angelo, L.; Midtlyng, P.J.; Schorderet, D.F.; Schulte-Merker, S.; Sohm, F.; Warner, S. Zebrafish: Housing and
husbandry recommendations. Lab. Anim. 2020, 54, 213–224. [CrossRef]

31. DeLaurier, A.; Frank Eames, B.; Blanco-Sánchez, B.; Peng, G.; He, X.; Swartz, M.E.; Ullmann, B.; Westerfield, M.; Kimmel,
C.B. Zebrafish sp7:EGFP: A transgenic for studying otic vesicle formation, skeletogenesis, and bone regeneration. Genesis 2010,
48, 505–511. [CrossRef]

http://doi.org/10.1056/NEJMoa1305224
http://www.ncbi.nlm.nih.gov/pubmed/24382002
http://doi.org/10.1093/hmg/10.5.537
http://doi.org/10.1002/jbmr.3875
http://doi.org/10.1093/emboj/16.17.5353
http://www.ncbi.nlm.nih.gov/pubmed/9311995
http://doi.org/10.1038/srep07596
http://www.ncbi.nlm.nih.gov/pubmed/25534700
http://doi.org/10.1038/nchembio.2007.54
http://www.ncbi.nlm.nih.gov/pubmed/18026094
http://doi.org/10.1038/nature12111
http://www.ncbi.nlm.nih.gov/pubmed/23594743
http://doi.org/10.7554/eLife.16415
http://www.ncbi.nlm.nih.gov/pubmed/27434666
http://doi.org/10.1006/dbio.2001.0201
http://doi.org/10.1186/1471-213X-13-23
http://doi.org/10.1016/j.devcel.2012.03.006
http://doi.org/10.1016/j.ydbio.2015.12.002
http://doi.org/10.1111/j.1469-185X.2009.00077.x
http://doi.org/10.1242/dev.042150
http://doi.org/10.1080/03008207.2017.1290085
http://doi.org/10.1038/nm.1888
http://www.ncbi.nlm.nih.gov/pubmed/19029982
http://doi.org/10.1016/j.biopha.2018.02.082
http://doi.org/10.1111/iep.12106
http://www.ncbi.nlm.nih.gov/pubmed/25603732
http://doi.org/10.1002/jbmr.3231
http://www.ncbi.nlm.nih.gov/pubmed/28771888
http://doi.org/10.3389/fendo.2019.00006
http://www.ncbi.nlm.nih.gov/pubmed/30761080
http://doi.org/10.1016/j.bone.2015.01.006
http://doi.org/10.1177/0023677219869037
http://doi.org/10.1002/dvg.20639


Biomolecules 2021, 11, 277 17 of 18

32. Alexander, C.; Zuniga, E.; Blitz, I.L.; Wada, N.; le Pabic, P.; Javidan, Y.; Zhang, T.; Cho, K.W.; Crump, J.G.; Schilling, T.F.
Combinatorial roles for BMPs and endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development
2011, 138, 5135–5146. [CrossRef]

33. Dutton, J.R.; Antonellis, A.; Carney, T.J.; Rodrigues, F.S.L.M.; Pavan, W.J.; Ward, A.; Kelsh, R.N. An evolutionarily conserved
intronic region controls the spatiotemporal expression of the transcription factor Sox10. BMC Dev. Biol. 2008, 8, 105. [CrossRef]

34. Moro, E.; Ozhan-Kizil, G.; Mongera, A.; Beis, D.; Wierzbicki, C.; Young, R.M.; Bournele, D.; Domenichini, A.; Valdivia, L.E.;
Lum, L.; et al. In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev. Biol. 2012,
366, 327–340. [CrossRef]

35. Dee, C.T.; Nagaraju, R.T.; Athanasiadis, E.I.; Gray, C.; del Ama, L.F.; Johnston, S.A.; Secombes, C.J.; Cvejic, A.; Hurlstone,
A.F.L. CD4-Transgenic Zebrafish Reveal Tissue-Resident Th2- and Regulatory T Cell–like Populations and Diverse Mononuclear
Phagocytes. J. Immunol. 2016, 197, 3520–3530. [CrossRef]

36. Spoorendonk, K.M.; Peterson-Maduro, J.; Renn, J.; Trowe, T.; Kranenbarg, S.; Winkler, C.; Schulte-Merker, S. Retinoic acid and
Cyp26b1 are critical regulators of osteogenesis in the axial skeleton. Development 2008, 135, 3765–3774. [CrossRef] [PubMed]

37. Huo, L.; Wang, L.; Yang, Z.; Li, P.; Geng, D.; Xu, Y. Prednisolone induces osteoporosis-like phenotypes via focal adhesion signaling
pathway in zebrafish larvae. Biol. Open. 2018, 15, 7. [CrossRef] [PubMed]

38. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid,
B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [CrossRef] [PubMed]

39. Lassmann, T.; Frings, O.; Sonnhammer, E.L.L. Kalign2: High-performance multiple alignment of protein and nucleotide sequences
allowing external features. Nucleic Acids Res. 2009, 37, 858–865. [CrossRef] [PubMed]

40. Fujita, T.; Azuma, Y.; Fukuyama, R.; Hattori, Y.; Yoshida, C.; Koida, M.; Ogita, K.; Komori, T. Runx2 induces osteoblast and
chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J. Cell Biol. 2004, 166, 85–95.
[CrossRef]

41. Bergström, I.; Isaksson, H.; Koskela, A.; Tuukkanen, J.; Ohlsson, C.; Andersson, G.; Windahl, S. Prednisolone treatment reduces
the osteogenic effects of loading in mice. Bone 2018, 112, 10–18. [CrossRef]

42. De Vrieze, E.; Van Kessel, M.A.H.J.; Peters, H.M.; Spanings, F.A.T.; Flik, G.; Metz, J.R. Prednisolone induces osteoporosis-like
phenotype in regenerating zebrafish scales. Osteoporos. Int. 2014, 25, 567–578. [CrossRef]

43. Schmidt, J.R.; Geurtzen, K.; von Bergen, M.; Schubert, K.; Knopf, F. Glucocorticoid Treatment Leads to Aberrant Ion and
Macromolecular Transport in Regenerating Zebrafish Fins. Front. Endocrinol. 2019, 10, 674. [CrossRef] [PubMed]

44. Laue, K.; Pogoda, H.M.; Daniel, P.B.; Van Haeringen, A.; Alanay, Y.; Von Ameln, S.; Rachwalski, M.; Morgan, T.; Gray, M.J.;
Breuning, M.H.; et al. Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the
localized degradation of retinoic acid. Am. J. Hum. Genet. 2011, 89, 595–606. [CrossRef]

45. Jeradi, S.; Hammerschmidt, M. Retinoic acid-induced premature osteoblast-to-preosteocyte transitioning has multiple effects on
calvarial development. Development 2016, 143, 1205–1216. [CrossRef] [PubMed]

46. Laue, K.; Jänicke, M.; Plaster, N.; Sonntag, C.; Hammerschmidt, M. Restriction of retinoic acid activity by Cyp26b1 is required
for proper timing and patterning of osteogenesis during zebrafish development. Development 2008, 135, 3775–3787. [CrossRef]
[PubMed]

47. Brunt, L.H.; Begg, K.; Kague, E.; Cross, S.; Hammond, C.L. Wnt signalling controls the response to mechanical loading during
zebrafish joint development. Development 2017, 144, 2798–2809. [CrossRef]

48. Kamiya, N.; Ye, L.; Kobayashi, T.; Mochida, Y.; Yamauchi, M.; Kronenberg, H.M.; Feng, J.Q.; Mishina, Y. BMP signaling negatively
regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development 2008, 135, 3801–3811. [CrossRef]

49. Bergemann, D.; Massoz, L.; Bourdouxhe, J.; Carril Pardo, C.A.; Voz, M.L.; Peers, B.; Manfroid, I. Nifurpirinol: A more potent and
reliable substrate compared to metronidazole for nitroreductase-mediated cell ablations. Wound Repair Regen. 2018, 26, 238–244.
[CrossRef]

50. Huang, Z.; Wang, D.; Ihida-Stansbury, K.; Jones, P.L.; Martin, J.F. Defective pulmonary vascular remodeling in Smad8 mutant
mice. Hum. Mol. Genet. 2009, 18, 2791–2801. [CrossRef]

51. Abarca-Buis, R.F.; Bustamante, M.; Cuervo, R.; Aguilar-Fernández-de-Lara, D.; Chimal-Monroy, J. Smad8 is expressed in the
anterior necrotic zone: Evidence for a role of bone morphogenetic proteins/SMAD signaling in the activation of a molecular
cascade that culminates in cell death. Dev. Growth Differ. 2011, 3, 780–792. [CrossRef]

52. Kemp, J.P.; Morris, J.A.; Medina-Gomez, C.; Forgetta, V.; Warrington, N.M.; Youlten, S.E.; Zheng, J.; Gregson, C.L.; Grundberg, E.;
Trajanoska, K.; et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6
in osteoporosis. Nat. Genet. 2017, 49, 1468. [CrossRef]

53. Morris, J.A.; Kemp, J.P.; Youlten, S.E.; Laurent, L.; Logan, J.G.; Chai, R.C.; Vulpescu, N.A.; Forgetta, V.; Kleinman, A.; Mohanty,
S.T.; et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat. Genet. 2019, 51, 258–266. [CrossRef] [PubMed]

54. Trajanoska, K.; Rivadeneira, F. The genetic architecture of osteoporosis and fracture risk. Bone 2019, 126, 2–10. [CrossRef]
[PubMed]

55. Tobias, J.H.; Duncan, E.L.; Kague, E.; Hammond, C.L.; Gregson, C.L.; Bassett, J.H.D.; Williams, G.R.; Min, J.L.; Gaunt, T.R.;
Karasik, D.; et al. Opportunities and challenges in functional genomics research in osteoporosis: Report from a workshop held by
the Causes Working Group of the Osteoporosis and Bone Research Academy of the Royal Osteoporosis Society on October 5th
2020. Front. Endocrinol. 2020, 11, 1127.

http://doi.org/10.1242/dev.067801
http://doi.org/10.1186/1471-213X-8-105
http://doi.org/10.1016/j.ydbio.2012.03.023
http://doi.org/10.4049/jimmunol.1600959
http://doi.org/10.1242/dev.024034
http://www.ncbi.nlm.nih.gov/pubmed/18927155
http://doi.org/10.1242/bio.029405
http://www.ncbi.nlm.nih.gov/pubmed/30012552
http://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
http://doi.org/10.1093/nar/gkn1006
http://www.ncbi.nlm.nih.gov/pubmed/19103665
http://doi.org/10.1083/jcb.200401138
http://doi.org/10.1016/j.bone.2018.04.002
http://doi.org/10.1007/s00198-013-2441-3
http://doi.org/10.3389/fendo.2019.00674
http://www.ncbi.nlm.nih.gov/pubmed/31636606
http://doi.org/10.1016/j.ajhg.2011.09.015
http://doi.org/10.1242/dev.129189
http://www.ncbi.nlm.nih.gov/pubmed/26903503
http://doi.org/10.1242/dev.021238
http://www.ncbi.nlm.nih.gov/pubmed/18927157
http://doi.org/10.1242/dev.153528
http://doi.org/10.1242/dev.025825
http://doi.org/10.1111/wrr.12633
http://doi.org/10.1093/hmg/ddp214
http://doi.org/10.1111/j.1440-169X.2011.01285.x
http://doi.org/10.1038/ng.3949
http://doi.org/10.1038/s41588-018-0302-x
http://www.ncbi.nlm.nih.gov/pubmed/30598549
http://doi.org/10.1016/j.bone.2019.04.005
http://www.ncbi.nlm.nih.gov/pubmed/30980960


Biomolecules 2021, 11, 277 18 of 18

56. Brunkow, M.E.; Gardner, J.C.; Van Ness, J.; Paeper, B.W.; Kovacevich, B.R.; Proll, S.; Skonier, J.E.; Zhao, L.; Sabo, P.J.; Fu, Y.-H.;
et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J.
Hum. Genet. 2001, 68, 577–589. [CrossRef]

57. Cosman, F.; Crittenden, D.B.; Adachi, J.D.; Binkley, N.; Czerwinski, E.; Ferrari, S.; Hofbauer, L.C.; Lau, E.; Lewiecki, E.M.;
Miyauchi, A.; et al. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 2016, 375, 1532–1543.
[CrossRef]

58. Carney, T.J.; Feitosa, N.M.; Sonntag, C.; Slanchev, K.; Kluger, J.; Kiyozumi, D.; Gebauer, J.M.; Talbot, J.C.; Kimmel, C.B.; Sekiguchi,
K.; et al. Genetic analysis of fin development in zebrafish identifies furin and hemicentin1 as potential novel fraser syndrome
disease genes. PLoS Genet. 2010, 6, e1000907. [CrossRef]

59. Lowery, J.W.; Rosen, V. Bone morphogenetic protein–based therapeutic approaches. Cold Spring Harb. Perspect. Biol. 2018,
10, a022327. [CrossRef]

60. Chen, J.R.; Lai, Y.H.; Tsai, J.J.; Hsiao, C.D. Live fluorescent staining platform for drug-screening and mechanism-analysis in
zebrafish for bone mineralization. Molecules 2017, 22, 2068. [CrossRef] [PubMed]

61. Shintani, N.; Hunziker, E.B. Differential effects of dexamethasone on the chondrogenesis of mesenchymal stromal cells: Influence
of microenvironment, tissue origin and growth factor. Eur. Cells Mater. 2011, 22, 302–319. [CrossRef] [PubMed]

62. Weinstein, R.S. Glucocorticoid-Induced Osteoporosis and Osteonecrosis. Endocrinol. Metab. Clin. N. Am. 2012, 41, 595. [CrossRef]

http://doi.org/10.1086/318811
http://doi.org/10.1056/NEJMoa1607948
http://doi.org/10.1371/journal.pgen.1000907
http://doi.org/10.1101/cshperspect.a022327
http://doi.org/10.3390/molecules22122068
http://www.ncbi.nlm.nih.gov/pubmed/29186901
http://doi.org/10.22203/eCM.v022a23
http://www.ncbi.nlm.nih.gov/pubmed/22116649
http://doi.org/10.1016/j.ecl.2012.04.004

	Introduction 
	Materials and Methods 
	Zebrafish Husbandry and Transgenic Lines 
	Pharmacological Treatment 
	Immunohistochemistry 
	RNAscope In Situ Hybridisation 
	Proliferation Assay 
	Alcian Blue Staining 
	Image Acquisition and Processing 
	Protein Sequence Alignment 
	Statistics 

	Results 
	Smad9 Is Highly Expressed in Putative Osteochondral Progenitors during Embryonic Development 
	Smad9 Is Expressed within Joints and at Cartilage-Bone Interfaces during Early Jaw Development 
	Pharmacological Manipulation Modulates Osteochondral Smad9 Expression at Skeletal Sites 
	Osteoblast Ablation Induces Increased Expression of Smad9 during Larval De Novo Osteoblast Formation 

	Discussion 
	References

