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Abstract
Panagrolaimus superbus nematodes are able to tolerate desiccation 
by entering into a peculiar state of suspended animation known 
as anhydrobiosis. When desiccated, anhydrobiotic organisms are 
also able to tolerate other physical stresses, as high and low levels 
of temperature and pressure. Here, we decided to investigate the 
tolerance of desiccated P. superbus to an unprecedented double 
stress – hypoxia within 99.99% Gallium (Ga) metal cage. The authors 
observed that regardless of the external relative humidity, desiccated 
P. superbus tolerated 7 d confined within the metal cage, displaying 
no negative effects on its survival and population growth rates 
over 40 d. The results evidence that anhydrobiosis also renders 
nematodes tolerant to otherwise lethal concentrations of Ga, in an 
oxygen-poor environment; thus, expanding its polyextremotolerance 
profile.
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Nematodes have adapted to live in different eco-
systems (marine, freshwater, and terrestrial environ-
ments) and hosts (as parasites), with a cosmopolitan 
scattered pattern, inhabiting tropical, temperate 
and sub-Arctic soils, playing important roles in 
biogeochemistry (van den Hoogen et al., 2019). 
Importantly, many of these organisms are plant-
parasitic entities that lead to drastic impacts on crops 
worldwide; thus, resulting in global annual losses 
around $125 billion (Barker et al., 1994; Crow et al., 
2000; Chitwood, 2003). Some examples are the 
soybean-parasitic nematodes Heterodera glycines, the 
root-knot nematodes Meloidogyne incognita, and the 
potato-parasitic nematodes Globodera rostochiensis.

In nature, some organisms exhibit a singular 
survival strategy to droughts known as anhydrobiosis 
(life without water) − a very stable state of suspended 
animation into which some species are able to enter 
when subjected to desiccation, which induces 
substantial water loss, resulting in a cellular water 

content of less than 0.1 g g−1 dry mass and metabolism 
ceases (Tunnacliffe and Lapinski, 2003). This pheno-
menon is reported in bacteria, fungi, plants, and 
animals (Tunnacliffe and Lapinski, 2003), including 
some nematodes species, such as Aphelencus 
avenae (Madin and Crowe, 1975), Ditylenchus dipsaci 
(Perry, 1977), Panagrolaimus superbus (Aroian et al., 
1993; Shannon et al., 2005), among others.

Notoriously, in the dry state, anhydrobiotic 
organisms exhibit polyextremotolerance, i.e. tolerance 
to harsh conditions for life, such as high and low 
temperatures (from −273°C to +151°C) (Rahm, 1923; 
Becquerel, 1950); ionizing radiation (Keilin, 1959); high 
hydrostatic pressures (Seki and Toyoshima, 1998); 
vacuum (Rebecchi et al., 2009); and hyperacceleration 
(Souza and Pereira, 2018). Biological activity is 
fully restored after rehydration. Anhydrobiosis is an 
important phenomenon in nematodes since it may 
allow the long-term survival of plant-parasitic and/
or of free-living nematodes species during droughts, 
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which may tend to be more intense and frequent in 
the light of climate change.

An unresolved question is whether, in fact, meta-
bolism is completely interrupted during anhydrobiosis 
(Wharton, 2015). In order to answer this question, 
Barrett (1982) fed nematodes with radiolabeled 
glucose and searched for metabolic products during 
the period of desiccation. Similarly, Örstan (1998) 
stored desiccated bdelloid rotifers inside argon 
gas chambers and reported their survival even 
after several periods in the absence of oxygen – 
necessary for metabolism. Lastly, computer-based 
data revealed that the remaining water contents in 
desiccated colonies of Nostoc commune, bacterial 
cells, Artemia cysts, and plant seeds (i.e. less than 
0.1 g g dry mass−1) are insufficient to sustain an active 
metabolism (Clegg, 1978, 1986; Potts, 1994).

Gallium (Ga) is a soft metal categorized as a post-
transition metal, sharing some physicochemical 
characteristics with Aluminium, Indium, and Thalium. 
In particular, Ga has low melting point (29.76°C) 
(Jefferson Lab, 2003) and is slowly oxidized (Moskalyk, 
2003), when compared to other metals. Previously, we 
have shown that desiccated P. superbus nematodes 
are tolerant to temperatures up to 50°C (de Souza 
et al., 2017). This observation raised the possibility of 
immersing desiccated nematodes within liquid Ga (at 
30°C) to assess their tolerance to such abiotic stress.

Therefore, in the present study, our objective 
was to investigate the tolerance of desiccated (in 
anhydrobiosis) and hydrated (living) P. superbus 
nematodes to Ga metal.

Materials and methods

Nematode maintenance

Panagrolaimus superbus, first isolated from Surtsey 
Island (Iceland) (Sohlenius, 1988), was maintained 
in the dark, at 20°C, on Nematode Growth Medium 
(NGM) agar plates and fed with a layer of Escherichia 
coli (OP50 strain).

Population synchronization

Mixed populations of P. superbus (i.e. containing 
all developmental stages) were subjected to syn-
chronization using the bleaching protocol proposed 
by Stiernagle (2006). Briefly, these populations were 
exposed to a bleaching solution (NaOH 1 M and 
NaClO 40%) for 8 min, disintegrating all the worms, 
only eggs remained. The reaction was stopped by 
three consecutive washes with M9 buffer, intercalated 
with centrifugations at 2,000 × g for 30 sec. All the 

remaining eggs were deposited on agar NGM plates 
containing E. coli OP50 and maintained in the dark at 
20°C. After 36 hr, plates were rinsed with M9 buffer 
to collect L2 larvae, which were subjected to the 
desiccation process.

Desiccation challenge

Nematodes were subjected to desiccation assay 
according to Shannon et al. (2005). L2 larvae were 
immobilized on 0.45 µm Supor filter membranes 
(Sigma Aldrich) by vacuum filtration with a Sartorius 
funnel (n = 200 worms per membrane), which were 
stored in 1.5 ml open test tubes and then subjected 
to sealed chambers under the following conditions: 
pre-conditioning in 98% relative humidity (RH) for 
24 hr over a saturated copper sulphate solution and 
desiccation in 10% RH for 24 hr on dry silica gel.

Immersion within Gallium

Three membranes containing around 600 desi-
ccated L2 larvae were placed in test tube caps 
containing 100 µl solid Ga 99.99% (Sigma Aldrich). 
Subsequently, 180 µl liquid Ga 99.99% (Sigma 
Aldrich), at 50°C, was added to the test tube caps 
fully covering the membranes (Fig. 1A, B). To check 
the ability of metal Ga in blocking external moisture, 
Ga cages containing nematodes were exposed to 
different levels of relative humidity. Test tube caps 
were separated into five groups, in the following 
conditions: negative control 1 (NC1) – membranes 
with desiccated worms, without Ga, kept at 10% RH; 
Ga treatment 1 (GT1) – membranes with desiccated 
worms, covered by Ga and kept at 10% RH; 
hydrated control (HC1) – membranes with hydrated 
worms, covered by Ga, kept at 100% RH; negative 
control (NC2) – membranes with desiccated worms, 
without Ga, kept at 99% RH; Ga treatment 2 (GT2) – 
membranes with desiccated worms covered by Ga, 
kept at 99% RH. All groups were maintained under 
these same conditions for 7 d, at 20°C in the dark.

Survival assay

To investigate nematode viability after treatments, 
we performed worm survival assay using a modified 
version of Krause et al. (1984) protocol, which was 
first used for isolated cells but has already been 
successfully used for nematodes by Evangelista et al. 
(2017). Briefly, solid Ga blocks (placed within test 
tube caps) (Fig. 1) were heated at 50°C for 15 min, in 
order to melt the metal cages. Subsequently, most 
of the liquid metal was collected from the tube caps 



3

JOURNAL OF NEMATOLOGY

by using a micropipette. Finally, we used tweezers 
to collect the membrane from the residual liquid Ga 
inside the tube caps. All membranes were deposited 
in 1.5 ml open test tubes, which remained in 99% RH 
for 24 hr, for pre-rehydration. Then, one membrane 
per treatment (n = 200) was transferred to other 1.5 ml 
test tubes containing 1 ml erythrosine B dye (0.4% 
w/v in M9 buffer). After 1 hr, samples were washed 
three times with M9 buffer, to remove the dye excess. 
Totally and partially dyed worms were scored as 
dead.

Population growth analysis

Two membranes per treatment (n = 400) were 
submerged in 1 ml M9 buffer and the worms were 
rehydrated. About 100 worms were placed on new 
NGM plates with E. coli OP50 and maintained at 
20°C in the dark. Population growth was measured 
after 20 d, as well as the survival percentages, and 
about 100 worms of each treatment were placed 
on new NGM plates with E. coli OP50 for more 20 d 

(until day 40). Population growth was determined as 
follows: [(number of worms − output) × (final survival 
percentage)] divided by [(number of worms − input) × 
(initial survival percentage)].

Data analysis

All experiments were performed in biological and 
technical triplicates with around 100 individuals. 
Mean values and standard deviations were generated 
for each experimental group. Shapiro–Wilk’s and 
Levene’s tests were first performed (P > 0.05) and, 
then, statistical analyses were performed using one-
way ANOVA and Tukey’s post hoc test. Statistical 
differences were considered significant at P < 0.05.

Results

Survival assay

Desiccated P. superbus survival percentages (Fig. 2A) 
after 7 d fully immersed in Ga confinements did not 
show statistically significant differences compared to 
NC1. The experimental group GT2 (66%) displayed 
differentially (P < 0.05) higher survival percentages 
compared to NC2 group (31%), but statistically 
equivalent to NC1 and GT1 groups (73 and 72%, 
respectively). Lastly, HC1 group showed no survival 
(0%) after immersion in Ga for 7 d.

Population dynamics

Likewise, NC1, GT1, and GT2 population growth 
values (Fig. 2B) did not significantly (P  > 0.05) differ 
within 40 d (58.8, 55.6, and 63.9-fold at day 40, 
respectively). Over 40 d, NC2 group showed stati-
stically significant lower population growth (15.3-fold 
at day 40) compared to all experimental groups. No 
population growth was observed in group HC1.

Discussion

Under hydrated settings (i.e. group HC1), we show 
that the P. superbus is unable to survive a seven-day 
confinement in Ga-rich due to metal toxicity, hypoxia, 
and/or food shortage, resulting in natural death by 
starvation. Conversely, desiccated worms that were 
kept in exposure to external moisture in the absence 
of Ga (i.e. group NC2) gradually rehydrated, and thus 
were challenged by food shortages.

On the other hand, the NC1 group remained 
desiccated in a Ga-free dry condition (10% RH) and 
kept in suspended animation ensuring a high survival 
rate, which is expected since Panagrolaimus sp. are 

Figure 1: Gallium confinements. 
A: Gallium metal-containing test tube 
caps, B: metallic confinement (gray) 
scheme showing the membranes 
(white) with nematodes.
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to metallic stress due to anhydrobiosis (equivalent 
survival percentages to its control group, NC1). 
Lastly, since the desiccated GT2 group inside Ga also 
had a high survival percentage even at 99% RH, we 
showed that Ga cages are able to isolate nematodes 
from external moisture; otherwise, nematodes would 
be rehydrated over time and, consequently, would 
starve to death.

Therefore, our results show for the first time, the 
high tolerance of desiccated P. superbus nematodes 
after full immersion in 99.99% Ga metal cage, with 
no negative effects on its survival and population 
growth. It suggests the operation of intrinsic stra-
tegies of anhydrobiotic repair machinery against a 
hypoxic/anoxic and metal-rich condition, such as 
hypoxia inducible factors (Sorathia et al., 2019) and, 
possibly, metalloproteins (Vijver et al., 2004; Li et al., 
2016). Importantly, the cuticle also probably plays an 
important role in the protection against the metal.

Since Ga-based semiconductors production has 
attracted attention of the microelectronics industry 
(Flora, 2000), an increase in Ga concentration in 
soil has been evidenced (Angelone and Bini, 1992; 
Kabata-Pendias and Pendias, 1984) and possibly 
correlated with its increasing global consumption 
(Jaskula, 2018), which may result in toxic levels of Ga 
in terrestrial and aquatic environments, threatening 
the local biodiversity. Therefore, we should encourage 
studies related to Ga toxicity and biological tolerance 
to heavy metals.

Although Ga toxicity has not been widely explored, 
its acute and chronic lethal concentrations (LC50) 
have already been investigated in a few prokaryotic 
and eukaryotic organisms (Bireg et al., 1980; Lin 
and Hwang, 1998; Onikura et al., 2005; García-
Contreras et al., 2014). Here, we show that more 
than a half of the desiccated P. superbus population 
tolerated an exposure to 5.9 × 106 mg/L of liquid Ga, 
a concentration which is 6 × 104 times higher than 
the 96 hr-LC50 revealed for the fish Cyprinus carpio 
(Betoulle et al., 2002), for comparison.

Heavy metal tolerance can be observed in 
different nematodes species. Metals may stimulate 
sensorial apparatus (e.g. metal-ion receptors) 
(Sambongi et al., 1999) which, subsequently, trigger 
physiological responses (e.g. pharyngeal pumping 
ceasing) (Jones and Candido, 1999). In addition, 
as reported here, this tolerance can be strongly 
enhanced by anhydrobiosis. More importantly, 
some plant-parasitic nematodes, such as D. dipsaci 
(Perry, 1977), also exhibit anhydrobiosis as a survival 
strategy, which could guarantee similar tolerance 
mechanisms and render them even more difficult to 
control for agronomic purposes. Finally, the increased 

Figure 2: P. superbus tests after 7 d of 
Ga immersion. A: Survival (percentage) 
of L2 nematode larvae, B: population 
growth (output/input ratio) over 20 
and 40 d after treatments. Legends: 
negative control 1 (NC1) – membranes 
with desiccated worms, without 
Gallium, in 10% RH; Gallium treatment 
1 (GT1) – membranes with desiccated 
worms covered by Gallium in 10% RH; 
hydrated control (HC1) – membranes 
with hydrated worms covered by 
Gallium in 100% RH; negative control 
(NC2) – membranes with desiccated 
worms, without Gallium, in 99% RH; 
Gallium treatment 2 (GT2) – membranes 
with desiccated worms covered by 
Gallium in 99% RH. Different letters 
(a and b) means statistical difference 
(P < 0.05) between treatments.

able to remain viable even after 8 yr in desiccation 
(Aroian et al., 1993). We also showed that the 
desiccated GT1 group inside Ga, which was also kept 
in a dry condition (10% RH), displayed high tolerance 
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tolerance of desiccated anhydrobiotic nematodes 
to Ga might result in changes in their abundance in 
metal polluted areas.

Anhydrobiosis is a singular biological state promoted 
by desiccation, which renders some orga nisms tolerant 
to diverse physicochemical stresses. This phenomenon 
is especially important in the current scenario of a 
global warming threat, when droughts tend to occur 
more frequently. Therefore, understanding the process 
of anhydrobiosis in nematodes is crucial since several 
species play important roles in soil and aquatic 
substrate chemistry, and others impact economically 
important crops.
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