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Abstract
Alzheimer’s disease (AD) is a distinctive medical condition characterized by loss of memory, orientation, and cognitive 
impairments, which is an exceptionally universal form of neurodegenerative disease. The statistical data suggested that it 
is the 3rd major cause of death in older persons. Butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) inhibi-
tors play a vital role in the treatment of AD. Coumarins, natural derivatives, are reported as cholinesterase inhibitors and 
emerges as a promising scaffold for design of ligands targeting enzymes and pathological alterations related to AD. In this 
regard, the 3D QSAR pharmacophore models were developed for coumarin scaffold containing BChE and AChE inhibitors. 
Several 3D QSAR pharmacophore models were developed with FAST, BEST, and CEASER methods, and finally, statisti-
cally robust models (based on correlation coefficient, cost value, and RMSE value) were selected for further analysis for 
both targets. The important features ((HBA 1, HBA 2, HY, RA (BChE) HBA 1, HBA 2, HY, PI, (AChE)) were identified for 
good inhibitory activity of coumarin derivatives. Finally, the selected models were applied to various database compounds 
to find potential BChE and AChE inhibitors, and we found 13 for BChE and 1 potent compound for AChE with an estimated 
activity of  IC50 < 10 µM. Further, the Lipinski filters, and ADMET analysis supports the selected compounds to become a 
drug candidate. These selected BChE and AChE inhibitors can be used in the treatment of AD.
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Introduction

Alzheimer’s disease (AD) is one of the typical medical and 
social problems which is most widely prevalent in older 
people. Clinically, it is distinguished by increasing memory 
and orientation loss and also other cognitive impairments 
such as poor impulse control and decision-making, apraxia, 
and communication difficulties. It is a highly general form 
of neurodegenerative disease. According to the Alzheimer’s 
Association, 13% of individuals over 65 in growing coun-
tries have AD (Alzheimer’s Association 2021; Folch et al. 
2016). It is currently projected that AD may rank as the 
3rd primary cause of mortality in the United States, just 
behind heart disease and cancer, as a significant cause of 
death for the elderly (NIH National Institute of Aging 2021). 
Previous studies convey that this disease is also caused by 
genetics, environmental factors, and lifestyle changes (NIH 
National Institute of Aging 2021; Wang et al. 2021). At the 
time of the COVID-19 pandemic, researchers discovered 
that approximately 56% of patients had cognitive deterio-
ration (Healthline 2021; Alzheimer’s Association 2021). 
Several biological targets against AD have been identified  
recently, including acetylcholinesterase (AChE), butyryl-
cholinesterase (BChE),  N-methyl-d-aspartate (NMDA) 

receptor, tau protein, amyloid-beta plaques, and others. 
Among all these targets, the cholinergic pathways  has long 
been the most accepted pathogenesis in the drug discov-
ery of AD (Ferreira-Vieira et al. 2016; Francis et al. 1999; 
Hampel et al. 2018).

According to the cholinergic pathways, degeneration of 
cholinergic neurons and a deficiency of the neurotransmitter 
acetylcholine (Ach) are the reasons for the loss of memory 
and decline of cognitive functions (Contestabile 2011; Fran-
cis 2005; Francis et al. 1999; Hampel et al. 2018; Wilkin-
son et al. 2004). Cholinesterase catalyzes the breakdown 
of choline; hence inhibiting it can be an effective treatment 
for AD. Two cholinesterase enzymes are responsible for 
the hydrolysis of Ach in the central nervous system they 
are: butyrylcholinesterase (BChE) and acetylcholinesterase 
(AChE) (Atatreh et al. 2019; Coyle et al. 1983). In advanced 
AD, the level of AChE in the brain gradually decrease from 
its average value, whereas the level of BChE increase or 
remaine unchanged, indicating that BChE plays  a crucial 
role in hydrolyzing Ach in the late stages of the disease, 
whereas AChE only plays  a supplementary role (Nordberg 
et al. 2013; Yang et al. 2019a). Thus, considering the numer-
ous functions of BChE and AChE in different AD process 
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the discovery of BChE and AChE inhibitors provide a fea-
sible therapeutic approach to prevent AD.

Computational tools are currently used in the drug dis-
covery process to identify and develop a potential lead/hit 
(Arya and Coumar 2021). Nowadays, computational tech-
niques are becoming popular in the academic and pharma-
ceutical industries (Sliwoski et al. 2014).  Pharmacophore 
modeling is one of the most common methods, which deals 
with the common chemical functions and maintain a simi-
lar spatial arrangement, resulting in biological activity on  
targets. A pharmacophore model can be constructed based 
on ligands or structures. Pharmacophore approaches have 
been broadly used in virtual screening, de novo design, and 
other applications such as lead optimization and multitarget 
drug design (Khedkar et al. 2007). The objective of virtual 
screening is to identify molecules (hits) with physicochemi-
cal characteristics that are similar to those substances from 
which the models are developed. Some of the hits may be 
comparable to known active compounds, and some may be 
completely new scaffolds (Yang 2010; Sun 2008). Moreover, 
pharmacophore modeling is used to facilitate and promote 
the efficiency of the drug discovery process. In addition, 
this approach is a low-cost and rapid alternative to high-
throughput  screening (Lu et al. 2011).

Coumarin is an important class of natural compounds and 
has been reported to have various biological activities such 
as anti-viral, anti-tumor, anti-cancer, anti-inflammatory, 
anti-bacterial, anti-fungal, anti-alzheimer, etc. (Menezes and 
Diederich 2019; Abdelmohsen et al. 2021; Buran et al. 2021; 
Pibuel et al. 2021; Yang et al. 2022; Yun et al. 2020). Nota-
bly, earlier research has shown that coumarin can reduce 
cholinesterase activity. The possible chemical substitution in 
the basic nucleus of coumarin structure makes them interest-
ing molecules in drug discovery (Abu-Aisheh et al. 2019). In 
this regard, we have considered several coumarin derivatives 
reported in various literatures (Piazzi et al. 2008; Yang et al. 
2019b; Heo et al. 2020; Hu et al. 2019; Pisani et al. 2017; 
Hirbod et al. 2017) as model data and subjected to pharma-
cophore modeling. Further, the models were used for virtual 
screening to find potential BChE and AChE inhibitors for 
the treatment of AD.

Materials and methods

Preparation of datasets

At the beginning of this research work, a total of 136 cou-
marin derivatives with BChE and AChE inhibitory activity 
were gathered from different literatures (Piazzi et al. 2008; 
Yang et al. 2019b; Heo et al. 2020; Hu et al. 2019; Pisani 
et al. 2017; Hirbod et al. 2017). The dataset collection was 
done considering different parameters such as donepezil as 

standard drug, Ellman’s method (Ellman et al. 1961) for 
the biological evaluation etc. Further, the enzymes used in 
collected dataset reported the diffrernt source of enzymes 
(BChE and AChE) like human BChE, human AChE, 
eeAChE, eqBChE, etc. These all data were gathered in this 
study because they (collected literatures) used the extract of 
enzymes and hence the extracted enzymes were pure BChE 
and AChE. Further, it is reported the eeAChE and eqBChE 
are highly homologous and cheaper surrogate for human 
enzymes (Rullo et al. 2019). Hence there is no or less chance 
of error in results of in silico study. In this way all the data 
were gathered for this study. Further, the collected dataset 
were subjected to data curation (deletion of qualitative data 
and influential compounds for modeling) to refine the data-
set. Finally, 58 and 100 compounds for BChE and AChE, 
respectively, were used for further analysis. The structures 
of the collected dataset were drawn using ChemDraw Ultra 
12.0. Finally, ligand preparation was done by a different pro-
cess, such as addition of hydrogen and energy minimization 
of ligands. The 2D structures of total collected compounds 
(n = 136) with  IC50 value were reported in the supplementary 
file (Table S1).

3D QSAR pharmacophore model development

To develop a statistically robust pharmacophore model, the 
original dataset was divided into training and test set com-
pounds in the ratio of (50–70% training set and 50–30% test 
set). The training set compounds were used for the model 
development, and the developed models were applied to 
test set compounds to validate the developed models. After 
dividing the dataset into training and test set compounds, 
the feature mapping was done to find the possible features 
responsible for BChE and AChE inhibitory activities of the 
coumarin derivatives (Jiang and Gao 2018). In this regard, 
the two most active compounds were selected for the feature 
mapping (Ambure and Roy 2014), and based on these two 
compounds, the five most probable features were identified, 
which include hydrogen-bond donor (HBD), hydrogen-bond 
acceptor (HBA), hydrophobic (HY), ring aromatic (RA), 
positive ionizable features. After feature mapping, for both 
BChE and AChE inhibitors, the uncertainty value of 1.5 
was set in the training set, which states that the biologi-
cal activity of the training set is in the range of 1.5 times 
more than or less than the reported value (Ambure and Roy 
2014; Lu et al. 2011; Ma et al. 2014). Then, considering 
these features, the pharmacophore models were developed 
by using the FAST, BEST, and CEASER algorithms. Ini-
tially, 10 hypotheses were generated by each algorithm. 
The results of the FAST, BEST, and CEASER algorithms 
were reported in supplementary (Table S2). Among the 10 
hypotheses, the best models were selected based on dif-
ferent internal and external validation parameters such as 
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total cost value, null cost value, fixed cost value, cost error, 
features, feature weight, maximum fit value, correlation (r) 
value, cross-validation correlation (q), root mean square 
error (RMSE), mean absolute error value (MAE), accuracy, 
precision, sensitivity, specificity, F-measure and precision 
(Fawcett 2006), the area under the curve-receiver operating 
characteristics (AUC-ROC) (Fawcett 2006), Matthews cor-
relation coefficient (MCC) (Matthews 1975), and geometric 
mean (G-means). The details of the different parameters are 
given below:

Cost analysis

It is an essential parameter in evaluating a good pharma-
cophore model. Three cost values were kept in mind to 
calculate cost analysis, i.e., fixed cost, null cost, and total 
cost. Δ Cost (Null cost-Total cost) If the difference is in 
the range of (i) > 60–90%, it shows 90% statistical signifi-
cance (ii) ~ 30–40%, it shows 70–80% statistical significance 
(iii) < 20%, it shows 40–50% statistical significance (Jiang 
and Gao 2018; Ma et al. 2014).

Fischer’s randomization test

It is a statistical validation test used to evaluate the signifi-
cance level of generated models. Fischer's randomization 
test is used to assess if there is a substantial relationship 
between chemical structures and biological activity. The 
desired confidence level for Fischer's randomization test are 
90%, 95%, 98%, and 99%, and the selected confidence level 
in this study was set to 95%, where 19 random spreadsheets 
(random hypothesis) were generated (Chhabria et al. 2012).

The other validation parameters were reported in Table 1. 
From dataset division to pharmacophore model develop-
ment, all steps were completed in BIOVIA Discovery Studio 
Client 4.1 software on a windows operating system.

Pharmacophore‑based virtual screening

The final step of this research work was the pharmacoph-
ore-based virtual screening to get potent BChE and AChE 
inhibitors, the developed pharmacophore models were uti-
lized for the virtual screening (Chhabria et al. 2012). A total 
of 2428 compounds were retrieved from different  database, 
which upon the data curation, i.e. deletion of duplicate and 
structural error compounds, 1884 molecules were used 
for virtual screening (Fourches et al. 2010; Ambure et al. 
2019). Finally, the ligand preparation was done for 1884 
curated molecules. After the ligand preparation, the selected 
pharmacophore models were applied to these curated 1884 
compounds for the virtual screening using the ligand phar-
macophore mapping tool in Discovery Studio Client 4.1. 
Finally, the active compounds were selected and subjected 
to ADMET characteristics and the Lipinski filters (Lipin-
ski 2000) for drug-likeness property analysis. The whole 
methodology is represented in Fig. 1

Heat map ligand profiler

The heat map of the Ligand profiler is displayed using differ-
ent colors. The various colors represent the degree of match-
ing. The red one with the maximum fit value means good 
matching; the blue one with the minimum fit value shows 
imperfect matching (Jiang and Gao 2018).

Results and discussion

Development of 3D QSAR pharmacophore model

3D QSAR pharmacophore models were developed by using 
all three confirmation methods available in the software, 
i.e., FAST, BEST, and CEASER. The BEST method pro-
duced superior results based on various validation parameter 
values for the BChE and AChE datasets. Moving further 
with this method, ten quantitative hypotheses were gener-
ated and ranked based on the "total cost" values. Results 
obtained from the BEST method were considered for further 
analysis. The BEST method identified the four pharmaco-
phore features: HBA, HBA, HY, and RA for the BChE. The 
significant statistical parameter values such as total cost, 
correlation coefficient (r), pharmacophore features, maxi-
mum fit value, cross-validation correlation, and root-mean-
square deviation (RMSD) for each selected hypothesis from 
FAST, BEST, and CEASER methods have been enumer-
ated in Table 2. The statistical parameters for the remaining 
hypotheses from FAST, BEST, and CEASER methods were 
reported in Table S2. The Hypo 5 of the BEST method (for 
BChE), shown in Table 2, was categorized best among all 
the 10 hypotheses. It showed the lowest total cost (130.85), 

Table 1  Validation parameters of pharmacophore models

NOTE: TP True positive, TN True negative, FP False positive, FN 
False negative, TN True negative

Name of the parameter Formula

Sensitivity Sensitivity =
TP

TP+FN

Specificity Specif icity =
TN

TN+FP

Accuracy Accuracy =
TP+TN

TP+FN+TN+FP

Precision Precision =
TP

TP+FP

F-measure F − measure =
2

1∕Precision+1∕Sensitivity

MCC MCC =
(TP∗TN)−(FP∗FN)

√

(TP+FP)∗(TP+FN)∗(TN+FP)∗(TN+FN)

G-means G − means =
√

sensitivity ∗ specif icity
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the highest cost difference (54.55), the lowest RMSD (0.61), 
the lowest error (111.50), and the best correlation coefficient 
(0.80). The other cost values, such as fixed cost and null cost, 
were 85.02 and 185.40 bits. The total cost value of hypo 5 
was relatively close to the fixed cost and was lower than 
the null cost. This evidence suggests that Hypo 5, which 

accounts for three pharmacophore features, first HBA, sec-
ond HY, and third RA, has a high level of predictability. The 
structural features, feature distance, and angles of the Hypo 
5 pharmacophore model were shown in Fig. 2a. The features 
of Hypo 5 were mapped completely with the most potent 
compound (compound no. 108) having a maximum fit value 

Fig. 1  Flow diagram of the entire work

Table 2  Statistical parameters for each selected hypothesis from the FAST, BEST, and CEASER methods of BChE and AChE

Sl no Method of con-
former generation

Hypoth-
eses no.-

Total cost Cost error RMSE Fixed cost Null cost Features Correlation

BChE
 1 FAST 3 135.78 120.50 1.89 81.74 185.40 HBA, HY, HY, RA 0.76
 2 BEST 5 130.85 111.50 1.71 85.02 185.40 HBA, HBA, HY, RA 0.80
 3 CEASER 1 147.61 123.53 1.94 85.42 185.40 HBA, HBA, HY, RA 0.76

AChE
 1 FAST 1 371.36 350.32 2.23 190.12 706.22 HBA, HBA, PI, RA 0.81
 2 BEST 9 384.39 356.68 2.30 189.91 706.22 HBA, HBA, HY, PI 0.80
 3 CEASER 6 376.10 354.62 2.26 189.94 706.22 HBA, PI, RA, RA 0.81
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Fig. 2  The structural features of Hypo 5 of BChE (a) and Hypo 9 of AChE inhibitor (b)

Fig. 3  Most and Least active compounds mapped with developed models of BChE a most active (compound no 108) and b least active (com-
pound no. 13)) and AChE c most active (compound no 81) and d least active (compound no. 10))
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of 4.85 of the training set, whereas one of the hydrogen bond 
acceptor feature of Hypo 5 was not mapped with the least 
active compound (compound no. 13), having a maximum fit 
value of 3.10 and was illustrated in Fig. 3a, b respectively. 
According to the parameters mentioned above, in BChE, 
Hypo 3 of the FAST algorithm and Hypo 1 of the CEASER 
algorithm were selected as good hypotheses. The structural 
features of the selected models were represented in the sup-
plementary Fig. S1.

Similarly, for AChE inhibitors, 10 hypotheses were gen-
erated and validated using various statistical parameters 
reported in Table S2. Among the 10 hypotheses of the BEST 
algorithm, Hypo 9 was selected for further analysis as it 
has the lowest total cost value (384.39), the highest cost 
difference (321.83), the lowest RMSE (2.30), and the best 
correlation coefficient (0.80) as compared to all hypotheses 
reported in Table 2. The fixed cost was 189.91, and the null 
cost was 706.22 bits. The features generated by the Hypo 
9 model were HBA1, HBA2, one HY, and one PI, which 
were given in Fig. 2b. The training set was perfectly mapped 
with all four features of Hypo 9 after mapping with the most 
potent compound (compound no. 81), with a maximum fit 
value of 4.00 (Fig. 3c). While mapping with the least active 
compound (compound no. 10), a maximum fit value of 1.75 
was observed, and the feature PI was not mapped with the 
least active compound, as shown in Fig. 3d. On the basis of 

validation parameters, Hypo 1 in the FAST algorithm and 
Hypo 6 in the CEASER algorithm were chosen as good, 
and the selected models Hypo 1 in FAST and Hypo 6 in 
CEASER, were shown in Fig. S1.

Validation of pharmacophore models

Cost analysis

A "cost difference" is the difference between a null cost and 
a total cost. The importance and significance of cost values 
were already mentioned in materials and methods section.  
The fixed cost represents the simplest model, and it fits with 
all the predicted data ideally in the training test compounds, 
while the null cost has no features with the high-cost value, 
and the experimental activities are usually spread around 
their mean value (Chadha and Silakari 2017). According to 
these parameters, the values of Hypo 5 and Hypo 9 of BChE 
and AChE could be selected as the best hypotheses with a 
greater cost difference of 54.55 and 321.83, respectively, as 
reported in Table 2. Thus, this data indicates that the prob-
ability of correlation was more than 90%. Figure 4a, b shows 
the cost analysis results for Hypo 5 of BChE and Hypo 9 of 
AChE inhibitors. Figure S2 depicts the cost analysis results 
of FAST and CEASER for BChE and AChE inhibitors.

Fig. 4  Cost analysis of BEST for Hypo 5 of the BChE inhibitors (a) and Hypo 9 of the AChE inhibitors (b)
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Fischer’s randomization test

A Fischer randomization test was performed to validate the 
developed pharmacophore model’s significance. For all the 
developed models, the confidence level was assigned to 95%, 
and 19 random spreadsheets were generated, which suggests 
the statistical robustness of Hypo 5 in BChE and Hypo 9 
in AChE. The fisher correlation of BEST Hypo 5 in BChE 
inhibitors and Hypo 9 in AChE inhibitors were shown in 
Fig. 5a, b. The result suggests that the models were not gen-
erated by chance. Also, Fischer’s correlation of FAST and 
CEASER algorithms for BChE and AChE was represented 
in Fig. S3.

Training and test set validation

The training and test datasets were used to verify the best 
pharmacophore model. Hypo 5 and Hypo 9 of the known 
BChE and AChE inhibitors were found best after the screen-
ing of different validation parameters. Based on experi-
mental activity  (IC50 μM), the training and test sets were 
classified into three activity scales: highly active =  +  +  + , 
 IC50 < 1 μM; moderately active =  +  + ,  IC50 ≤ 1 μM; low 
active or inactive =  + ,  IC50 ≥ 10 μM. The experimental Vs. 
predicted activity of training and test set in BChE and AChE 

inhibitors of FAST, BEST, and CEASER was highlighted in 
Table S3. In the training set, the strongest correlation (r) of 
0.80 was observed between the experimental and estimated 
activity of Hypo 5 of BChE (Fig. 6a). Table S3 revealed that 
two highly active compounds and five inactive compounds 
based on experimental value were predicted as moderately 
active and two moderately active compounds as inactive 
by the developed model based on BEST method (Hypo 5). 
While in the case of test set compounds, one moderately 
active compound based on experimental value was predicted 
as inactive (Table S3). The correlation of the experimental 
Vs. predicted activity by Hypo 5 for training and test set 
were represented in Fig. 6a, b, respectively.

Similarly, for AChE inhibitors, as reported in Table S3, 
the training set of AChE inhibitors showed nine highly 
active compounds and three inactive compounds based on 
experimental value were predicted as moderately active, and 
ten moderately active compounds were predicted as inactive 
by the developed model based on the BEST method (Hypo 
9). In the test set compound, two highly active and five inac-
tive compounds based on experimental value were predicted 
as moderately active and one moderately active compound as 
inactive. The correlation of the experimental Vs. predicted 
activity by Hypo 9 for training and test set were represented 
in Fig. 6c, d, respectively.

Fig. 5  Fischer correlation of the BEST algorithm for Hypo 5 of the BChE inhibitors (a) and Hypo 9 of the AChE inhibitors (b)
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Based on these outcomes, Hypo 5 and Hypo 9 were not 
only capable of appropriately predict the training sets inhibi-
tory activity, but it was also appropriate for the test set or 
unknown compounds. Thus, both the hypothesis of BChE 
and AChE has been proven to be reliable pharmacophore 

models for identifying potential BChE and AChE inhibitors 
through database screening. The correlation of the experi-
mental and predicted activity for BChE and AChE based 
on selected models of FAST and CEASER methods were 
represented in Fig. S4 and Fig. S5.

Fig. 6  Log experimental Vs. log predicted activity  (IC50) by Hypo 5 of BChE in the training set compounds (a), test compounds (b), Hypo 9 of 
AChE in the training set compounds (c), and test set compounds (d)

Table 3  Statistical quality of the developed pharmacophore models with BEST method for training and test sets of BChE and AChE inhibitors

Sl. no. Sets AUC_ROC Sensitivity Specificity Accuracy Precision F-means G-means MCC

BChE
 1 Training 0.84 0.6 0.84 0.75 0.66 0.63 0.71 0.45
 2 Test 0.84 0.72 0.83 0.79 0.72 0.72 0.77 0.56
AChE
 1 Training 0.88 1.00 0.68 0.77 0.56 0.72 0.82 0.62
 2 Test 0.81 0.70 0.83 0.78 0.70 0.70 0.76 0.53
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Some other validation parameters were also applied to 
check the robustness and predictive activity of the selected 
models, and the obtained results for the BEST method were 
reported in Table 3. The ROC curves of the selected models 
(Best method: Hypo 5 for BChE and Hypo 9 for AChE) were 
given in Fig. 7. The results of these parameters for FAST and 
CEASER methods were reported in supporting information 
(Table S4 and Figs. S6, S7).

Pharmacophore‑based virtual screening

The validated hypo 5 and hypo 9 of the BEST method for 
BChE and AChE were used as 3D structural queries to find 
new lead compounds from different databases. Using the pro-
tocol Ligand Pharmacophore Mapping, 1884 finally selected 
ligands were subjected for virtual screening with Hypo 5 of 
BChE and Hypo 9 of AChE. After screening, 90 compounds 
for BChE and 6 compopunds for AChE were obtained. Fur-
ther, the compounds with an estimated activity of less than 
10 µM were selected as the potent BChE inhibitors. As a 
result, 15 compounds (estimated  IC50 = 1.13–9.08 µM) for 
BChE and one compound (estimated  IC50 = 6.90 µM) for 

AChE were identified as potent inhibitor. Finally, Lipinski 
filters and ADMET analysis were done for these identified 
potent BChE and AChE inhibitors. Upon the ADMET and 
Lipinski filters 13 compounds for BChE and 1 compound for 
AChE were obtained with good ADMET and drug-likeness 
properties (Table S5). The 2D structures of all 13 hits for 
BChE and 1 hit for AChE with their IDs and estimated activ-
ity were reported in Table S6. The fitting of identified thir-
teen potent compounds with the pharmacophore model was 
represented in Fig. 8, which indicates that all the identified 
compounds were fitted properly with selected pharmacoph-
ore model. The most active compounds for BChE and AChE 
mapped with pharmacophore models were represented in 
Fig. 9a, b. These hit compounds could be promisingly used 
as a better alternatives to the currently used pharmaceuticals 
for the treatment or management of AD.

Heat map ligand profiler

The pharmacophore model was further validated with the 
protocol "Ligand Profiler". The ligand profiler results were 
displayed as a heat map, a two-dimensional table in which 

Fig. 7  The ROC curve of the training set (a), test set (b) of BChE, and ROC curve of the training set (c), test set (d) of AChE
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the x-axis represents the 3D QSAR pharmacophore models 
hypotheses, and the y-axis means compounds. Figure 10a 
shows the heat map generated by the ligand profiler for the 
best 15 compounds obtained by virtual screening of BChE, 
and Fig. 10b shows the heat map generated by the ligand 
profiler for the one compound obtained by virtual screening 

of AChE. The color difference indicated the fit value; the 
color scale was represented in Fig. 10a, b. In the color scale, 
red suggests the best matching of ligands and blue color with 
a low fit, while in between blue and moderate red fitting. The 
selected compounds (15 for BChE and 1 for AChE) for the 
ligand profiler were good to moderately fitted on hypothesis 

Fig. 8  The fitting of the 13 hits with the pharmacophore model of BChE along with the most potent compound of the BChE

Fig. 9  Most active compounds mapped with pharmacophore features (a BChE and b AChE)
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5 for BChE and hypothesis 9 for AChE which also supports 
the selected hypothesis were robust enough and this results 
suggests that the model can be useful for the discovery of 
new BChE and AChE inhibitors.

Overview and conclusion

The rate of new AD cases is continuously increasing and 
need to slow or to stop with the help of effective drug 
treatment. BChE and AChE are the two primary promis-
ing targets mainly involved in AD, and inhibitors of these 
two targets are the choice for anti-alzehimer drug develop-
ment. Coumarins, natural derivatives, are reported as cho-
linesterase inhibitors and emerges as a promising scaffold 
for design of ligands targeting enzymes and pathological 
alterations related to AD with minor structural alterations 
or finding of similar compounds through virtual screening. 
With this aim, statistically robust, significant, and predictive 
3D QSAR pharmacophore models were developed for BChE 
and AChE structural data with three different confirmation 
methods. The best features extracted were HBA, HBA, HY, 
RA (BChE) and HBA, HBA, HY, and PI (AChE). Over-
all, the BEST method generated the best quality model and 
was further utilized for identifying potent BChE and AChE 
inhibitors from different database (DrugBank, ChEMBL 
drug candidate clinics, Zinc fragments, ChEMBL approved-
drugs, MiniMaybridge, ChemBridge, Bioactive ligandexpro-
Bioactive, and ChEMBL complete database). The screen-
ing result yields thirteen new BChE inhibitors with  IC50 of 
less than 10 µM and one potent AChE inhibitor with  IC50 of 

6.90 µM. Besides potency, these compounds have a good 
ADMET (drug-like) profile. They can be utilized as a drug 
of choice for the treatment of Alzheimer’s diseases or certain 
neurodegenerative diseases upon some experimental investi-
gations. The study is useful for filling current needs and may 
optimize future discovery of novel anti-alzheimer's agents. 
Additionally, BChE and AChE have crucial roles in some 
other neurodegenerative diseases, and such advantages can 
be utilized to design polypharmacological or multi-targeted 
drug candidates.
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