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Implication for health policy/practice/research/medical education:
In an experimental investigation on rats, we found, S-methylisothiourea not only prevent the kidney during ischemia/reperfusion 
injury, but also promotes kidney function disturbance and severity of renal injury.
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Introduction: Excessive production of nitric oxide (NO) via inducible nitric oxide synthase 
(iNOS) is associated in renal ischemia reperfusion injury (IRI).
Objectives: This study was designed to investigate the role of S-methylisothiourea (SMT) as 
selective inhibitor iNOS in renal IRI.
Materials and Methods: Male Wistar rats were subjected to 45 minutes of bilateral renal 
ischemia by occlusion of renal vessels of both kidney followed by 24 hours of reperfusion. 
Prior to renal IRI, the rats received either vehicle (saline, group 2) or SMT (50 mg/kg, group 
3), and were compared with the sham-operated animals (group 1). At the end of reperfusion 
period, the rats were sacrificed for kidney tissue pathology investigation. 
Results: Serum creatinine (Cr), blood urea nitrogen (BUN), nitrite levels, and kidney weight 
significantly increased in groups 2 and 3 (P < 0.05). Kidney tissue damage scores in groups 2 
and 3 were also higher than that in the sham-operated group (P < 0.05). 
Conclusion: SMT not only prevent the kidney during IRI, but also promotes kidney function 
disturbance and severity of renal injury.
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Introduction
Kidney ischemia is the most common disturbance in 
clinic, accompanied with renal failure (1). However, still 
there is no practical sufficient solution for amelioration 
of acute renal failure (ARF) as a consequence of ischemia 
reperfusion injury (IRI) (2,3). Usually, a decrease in renal 
blood for several minutes and then restoration of the blood 
flow may result in ARF (4,5). ARF is seen in different 
conditions such as gut ischemia (5), cardiopulmonary 
bypass (6), myocardial infarction (7) and stroke (8). 
Moreover, IRI plays a major role in short or long-term 
graft rejection in organ transplantations (5,9,10). It is 
reported that slight changes in total renal blood flow may 
lead to anoxic injury in the medulla, tubular dysfunction, 

salt wasting, and glomerular vasoconstriction (11,12). IRI 
also may disturb other organs such as circulatory (13) 
and pulmonary systems (14,15); therefore, it shows the 
complexity of the systemic response to kidney IRI (15). As 
IRI is a major cause of mortality, it is important to find a 
way for reducing harmful metabolites induced during IRI.
Nitric oxide (NO) is an important molecule both in 
physiological and pathophysiological conditions (16-18). 
NO is synthesized from L-arginine, and this free radical is 
produced from three isoforms of NO synthase (NOS). The 
inducible NOS (iNOS) can be produced in the kidney (19, 
20) by inducible factors; cytokines and lipopolysaccharide 
(21,22). It is reported that under IRI condition, the renal 
cell can induce iNOS (18). Although NO has important 
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roles in the homeostatic regulation of glomerular, vascular, 
and tubular functions (23-27), the excessive amount of NO 
result in pathophysiological conditions especially in IRI, 
and excessive NO worsens renal injury during ischemia. 
Accordingly, iNOS inhibition may improve or prevent 
destructive effects of IRI (28-31). A study indicated that 
S-methylisothiourea (SMT), an iNOS inhibitor, plays 
differential roles in sepsis-associated multiple organ 
dysfunctions (32,33).

Objectives
We hypothesized that SMT may protect the kidney against 
IRI. To confirm this hypothesis, SMT was administered 2 
hour before ischemia then the kidney was perfused for 24 
hours.

Materials and methods
Animals 
Male Wistar rats weighting 160-220 g were housed at the 
room temperature of 23-25°C with a 12‑hour light/dark 
cycle. The rats were fed with rat chow and water ad libitum. 
The experiment protocol was in advance approved by the 
Isfahan University of Medical Sciences Ethics Committee. 

Experimental protocol 
The rats were randomly assigned to IRI (group 2, n = 7) 
and IR + SMT group (group 3, n = 5). At the first day 
of the experiment, the animals in these groups received 
a single dose of saline or SMT (50 mg/kg), respectively, 
2 hours prior to ischemia. SMT was purchased from 
Sigma (St. Louis, Missouri, USA). To induce ischemia, all 
the rats were anesthetized with the mixture of xylazine 
(10 mg/kg, i.p) and ketamine (75 mg/kg, i.p). Incisions 
were made and the kidneys were excised with care. The 
renal artery and vein were occluded in both kidneys by 
placing a clamp around the vessels for 45 minutes. Then, 
the clamp was removed with care to make sure that blood 
flows into the kidneys. The same surgical procedure was 
done on the animals in group 1 except clamping the 
vessels. The animals were kept in the animal room and 24 
hours later, they were anesthetized again to obtain blood 
sample by heart puncture and then sacrificed. The kidneys 
were removed rapidly for histology procedures and 
measurement. The left kidney was fixed in 10% formalin 
solution, embedded in paraffin for histopathological 
staining. The hematoxylin and eosin staining was applied 
to examine the tissue injury. To consider the kidney 
damage, the pathologist evaluated presence of tubular 
atrophy, hyaline casts, ischemic necrosis, vacuolization, 
and debris. The damages were scored from 1-4, where 
0 was assigned to normal tissue. The right kidney was 
homogenized, and centrifuged at 6000 g for 10 minutes. 
The supernatant was removed and the sample was 
centrifuged again at 15 000 g for 2 minutes for measuring 
selected biochemical parameters.

Measurements 
Serum creatinine (Cr) and blood urea nitrogen (BUN) 

levels were determined using quantitative kits (Pars 
Azmoon, Iran) and autoanalyzer (Technicon, RA1000). 
Levels of nitrite (stable NO metabolite) in the serum and 
kidney were measured using a colorimetric assay kit. The 
serum level of malondialdehyde (MDA) was quantified 
according to the manual method. 

Statistical analysis 
The data are presented as mean ± standard error of the 
mean. The groups were compared with each other by 
one‑way analysis of variance (ANOVA), followed by 
the least significant difference (LSD) with regard to the 
serum levels of BUN, Cr, nitrite, and MDA; and kidney 
tissue levels of MDA and nitrite, kidney weight (KW), 
and bodyweight (BW) changes. The Mann‑Whitney or 
Kruskal‑Wallis tests were used to compare the pathological 
damage score of the groups. P < 0.05 was considered 
statistically significant.

Results 
Effect of IR or IR + SMT on serum BUN and Cr levels 
The serum levels of BUN and Cr significantly increased 
in the control group (IR + saline) (P < 0.05). However, 
administration of SMT did not decrease the serum levels 
of Cr and BUN toward normal. The serum levels of BUN 
and Cr in IR + SMT group (group 3) was significantly 
higher than those in the control group (P < 0.05). This 
data did not show any protective role of SMT against 
kidney IRI (Figure 1).

Effect of IR or IR + SMT on kidney weight and damage
The KW significantly increased in IR + saline and IR + 
SMT groups when compared with the sham-operated 
group (P < 0.05). The results of renal histopathology 
demonstrated significant increase of tissue damage in IR 
+ saline and IR + SMT groups compared with the sham-
operated group (P < 0.05). In addition, this result shows 
that administration of SMT can lead to further damage in 
kidney in addition to the renal IRI (Figure 1). 

Effect of IR or IR + SMT on serum MDA and nitrite levels
The nitrite levels in the serum and kidney tissue of IR + 
saline and IR + SMT groups were higher than those in 
the sham-operated group. However, this increase was 
statistically significant for kidney tissue (P < 0.05). The 
groups were not significantly different in terms of serum 
and kidney tissue levels of MDA (Figure 2).

Discussion
In the current study, we investigated the effect of SMT, a 
potent and selective iNOS inhibitor, on renal IRI. Renal 
IRI induced ARF in animal model, which is characterized 
by increase in serum BUN and Cr levels, KW, and KTDS. 
Other findings were in agreement with these observations 
(34,35). During IRI reactive oxygen species are produced 
and alter tubular permeability, which result in tubular 
damage, glomerular injury, and renal dysfunction (36-38). 
Shoskes et al showed 60 minutes of ischemia followed by 
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2 hours of reperfusion increased NOS activity (39). Some 
evidence has shown excessive NO production during IRI 
is related to renal dysfunction (39,40). Administration of 
SMT promoted renal damage induced by IRI. Contrary to 
our findings, Guven et al showed that administration of 
SMT 6 hours prior to renal ischemia followed by 6 hours 
of reperfusion ameliorated renal dysfunction (33). This 
contrast may be related to the different protocols used. 
Although reperfusion is necessary for survival in ischemic 
kidney, it leads to further injury in the tissue (41,42) 
probably due to distribution of harmful metabolites (4,43). 
In the present study, renal reperfusion was achieved for 24 
hours that may lead to further injury. 
Administration of SMT increased lipid peroxidation and 
hepatic injury, however, it seems that NO has cytoprotective 
and cytotoxic roles. For example, L-Arg as the NO donor 
ameliorates cisplatin-induced nephrotoxicity in male rats 
(44,45), and S-Nitroso-N-acetylpenicillamine (SNAP) as 
another NO donor abolished hepatic injury (45) while 
L-NAME as the NO inhibitor accelerated nephrotoxicity 
induced by cisplatin (46). Inhibition of NO by SMT 
reduced renal dysfunction induced by IRI (33). Hsu et 
al reported the protective effect of iNOS in hepatic IRI, 
which was proved via NO donor effect on increment of 
iNOS activity and consequent decrement of MDA level 
(45). It seems that in our study, SMT inhibited beneficial 
effect of iNOS. On the other hand, in this study, despite 

Figure 1. The serum levels of Cr and BUN in three experimental 
groups. *indicates significant difference from the sham-operated 
group (P < 0.05); # and + show significant difference from IR + 
saline group at the level of P < 0.05 and P < 0.1, respectively.

Figure 2. Sample images of kidney tissue in three experimental 
groups. Higher tissue damage was observed in the IR + SMT 
group. 

inhibition of iNOS, SMT did not decrease kidney nitrite 
level. It is reported that iNOS and eNOS participate in 
production of nitrite during IRI (40). Therefore, increased 
kidney NO level in SMT-treated group possibly originated 
from eNOS.
Our findings showed that SMT reduced the enhanced 
serum NO induced by IRI, although it was not significant. 
Other investigations demonstrated decrement in plasma 
nitrite/nitrate levels by iNOs inhibitors (30). They 
indicated that iNOS inhibitors reduce peroxynitrite 
formation possibly due to inhibition of iNOS activity, 
which in turn led to decreased NO levels. Finally, the 
increased KW by IRI is probably related to edema and 
renal cell proliferation (40,47) and SMT did not affect it.

Conclusion
ARF due to IRI is a complex disorder which is involved 
many physiology and pathology pathways including NO 
system that need to be determined. NOS inhibition by 
SMT during IRI increased kidney injury possibly due to 
disturbance of renal blood flow and oxidative stress. 
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