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Abstract

The complex architecture of adult brain derives from tightly regulated migration and differenti-

ation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional

level of genes that regulate migration and differentiation may lead to neurodevelopmental dis-

orders. Androgen receptor (AR) is a transcription factor that is already expressed during early

embryonic days. However, AR role in the regulation of gene expression at early embryonic

stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript

(Sox2OT) plays a crucial role in gene expression control during development but its transcrip-

tional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmaco-

logically inactivated AR, we investigated whether AR participates in the regulation of the

transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA bind-

ing region upstream of Sox2 locus containing three androgen response elements (ARE), and

found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic

brain. Our data suggest that through this binding, AR can promote the RNA polymerase II

dependent transcription of Sox2OT. Our findings also suggest that AR participates in embry-

onic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT.
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Introduction

In the developing telencephalon, a large number of neurons originate from neuroepithelial

cells and migrate across telencephalic regions. This occurs at approximately between embry-

onic day (E) E10.5 and E12 in mice when neuroepithelial cells transform into radial glia cells

that possess neural stem cells (NSCs)/progenitor cells features [1–3]. This process is tightly reg-

ulated at transcriptional level and abnormal gene expression lead to severe neurodevelopmen-

tal disorders such as autism spectrum disorders, seizure disorders, and intellectual disability

[4–6]. Thus, the understanding of molecular mechanisms that control gene expression in the

earliest stages of neurogenesis (E10-E12) is crucial to elucidate the etiology of neurodevelop-

mental diseases.

Androgen receptor (AR) is a ligand dependent nuclear transcription factor [7] that binds

with high affinity to cis-acting androgen response elements (AREs) located on nuclear chro-

matin adjoining androgen-responsive genes to directly regulate their transcription [8–9]. AR

is suggested to have a role in the regulation of transcription during early neurogenesis because

is expressed with no sex-dependent differences [10–11] both in rat embryonic neural stem

cells (embryonic NSCs) and rodents adult neural stem cells (aNSCs). Recent studies on AR-

mediated transcriptional programs led to the identification of molecular interactions between

AR and different classes of non-coding RNAs such as PSA, HOTAIR, KLK3, PRNCR1 and

PCGEM1 [12–16]. However, the identity of the AR-regulated non-coding RNAs that are criti-

cal for neurogenesis remain largely unknown.

Sox2OT is a long non-coding RNA, characterized by high degree of evolutionarily conser-

vation [17], that acts as an enhancer during brain development, participates in transcriptional

regulation of embryonic neurogenesis events [17–18] and also has a positive role in transcrip-

tion regulation of SOX2 gene that is one of the major regulator of pluripotency [17–18]. The

multi-exon Sox2OT has several transcription start sites (TSSs) [17,19], no open reading frame

(ORF) and is spliced into several mRNA-like transcripts with the longest one of approximately

3.5 kb in human [17]. Sox2OT gene contains transposon-free non-coding regions that encom-

pass regulatory sequences involved in the control of gene expression during early embryogene-

sis [17, 20].

Although Sox2OT is dynamically regulated in the mammalian embryogenesis, and it is

expressed in mouse and human brain, little is known about its transcriptional regulation

mechanisms.

We tested here the hypothesis that AR plays a transcriptional role in the expression of

Sox2OT in early mouse neurodevelopmental stages. To block the transcriptional regulation of

androgen responsive genes we used a pharmacological approach based on Bicalutamide treat-

ment. Bicalutamide is an FDA-approved non-steroidal AR pure antagonist [21,22], that binds

to cytoplasmic AR triggering its rapid degradation [23], thus it prevents AR activation and

nuclear translocation and, consequently, blocks the transcriptional regulation of androgen

responsive genes [23].

Materials and methods

Mice

Animal studies were approved by the Ethics Committee of the Carlo Besta Neurological Insti-

tute, and were conducted in accordance with the guidelines of the Italian Ministry of Health.

The use and care of animals followed Italian law DL 116/1992 and EU directive 2010/63/EU.

C57BL6J wild-type littermate mice (Charles River Laboratories) were used for all experiments.

The animals were housed in our pathogen free facility under 12 h light/12 h dark conditions.

Pharmacological inhibition of AR leads to Sox2OT downregulation
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Mice were given water and diet ad libitum. Mice were monitored daily by members of the lab-

oratory and by animal health technicians.

Bicalutamide treatments

Bicalutamide(N-[4-cyano-3-(trifluoromethyl)phenyl]-3-(4-fluorophenyl)sulfonyl- 2-hydroxy-

2-methylpropanamide) is non-steroidal AR pure antagonist that binds to cytoplasmic AR trig-

gering its rapid degradation[21,22]. According to the literature is more potent than other

antagonist such as OH-flutamide[22,24–27]; Bicalutamide was purchased from Ratiopharm-

Teva group. A working solution (10 mM) was created by dissolving the compound in dimethyl

sulfoxide (DMSO, Sigma).

Embryonic NSCs: the optimal concentration for all in vitro experiments was 1μM for 12h

supplemented after 3 days of embryonic NSCs culture. Treatments were applied daily without

media change. Control cells were cultured in appropriate culture media with 0.01% of DMSO.

Mouse treatments: according to the literature, AR activation in rats embryos depends on

mother testosterone serum levels [28–31]; at this stage testosterone production is mainly due to

a placental steroidogenic tissue and rats embryos do not contribute to the mother secrete testos-

terone levels. To pharmacologically inactivate AR in mouse embryos, Bicalutamide were admin-

istered to pregnant female mice on days E10 and E11 by intraperitoneal injection at the 200μg/

Kg in sterile water made up to a total volume of 200 μl. Subsequent injections of the same dose

of Bicalutamide in a lower volume of DMSO did not cause toxicity. Control embryos (untreated)

were obtained from pregnant female mice intraperitoneal injected at the equal volume of DMSO

alone for the same time course.

Isolation and culture of embryonic NSCs

Pregnant female were sacrificed by cervical dislocation under anesthesia at gestational E14

stage, embryos were dissected out of the amniotic sacs and the meninges were removed from

the telencephalon. The forebrains were triturated and dissociated into single-cell suspensions

by flushing through a p200 pipette tip and washed twice in Dulbecco’s modified Eagle’s

medium (DMEM):F12 supplemented with 2% B27 (Invitrogen). Cells were plated at a density

of 20 cells/μl in the embryonic NSCs medium: DMEM:F12 Glutamax supplemented with 2%

B27 (Invitrogen), 2 μg/mL heparin and 20 ng/mL EGF and 10 ng/mL FGF-2 (Peprotec). Cul-

tures were incubated at 37˚C in a humidified atmosphere containing 5% CO2. Four days after

plating, neurospheres were dissociated and subcultured as following typical neurosphere

growth protocols [32]. All conditions were done in duplicate and repeated 2–4 times. Cells

were re-plated at equal cell density for each condition, and numbers of neurospheres were

counted after 5 days by microscopy. For ICC embryonic NSCs at 3 days of cultures were placed

into 8-well chamber MATRIGEL (BectonDickinson)-coated, fixed and immunofluorescence

analyses were carried out.

RNA extraction and real-time PCR (RT-qPCR).

Total RNA was isolated from 1 × 106 embryonic NSCs and E12.0 forebrains using the RNeasy

microkit (Qiagen) according to the manufacturer’s instructions. cDNA was synthesized using

1 μg of total RNA and the first-strand cDNA synthesis kit (Biorad) according to the manufac-

turer’s instructions. Real-time PCR was performed using iTaq SYBR Green Supermix (Bio-

Rad) using CFX 96 Real Time System (Bio-Rad). All real time PCR reactions were performed

in triplicate.

Primer efficiencies was close to 100% for both target and reference gene. RT-qPCR was per-

formed using CFX 96 Real Time System (Bio-Rad) and melting curve analysis was always

Pharmacological inhibition of AR leads to Sox2OT downregulation
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performed at the end of each PCR assay to control specificity. The delta Ct (ΔCt) method was

performed to determine relative concentrations using the average of the Ct of mouse GAPDH

as normalizing value. High ΔCt values represent low levels of expression and vice versa. the

primers used in RT-qPCR were: mouse GAPDH 5’-aactttggcattgtggaagg-3’ and 5’-acacattgggg

gtaggaaca-3’; ar 5’-ttgcaagagagctgcatcagtt-3’ and 5’-actgtgtgtggaaatagatgggc-3’; Sox2OT 5’-tgc

tacaagacaacaccctga-3’ and 5’-ccaaagccatcaaccagatt-3’ [17].

Western blot analyses

1 × 106 embryonic NSCs s and 8 E12.0 forebrains were lysed with 500 μl ice-cold RIPA buffer

(50 mMTris-HCl, pH 7.4; 150 mMNaCl; 1% NP-40; 1 mM PMSF, 10 g/mL leupeptin, 10 g/mL

aprotinin, 1 mM Na3VO4), and placed on ice for 10 minutes. Upon incubation on ice, samples

were then centrifuged at 13000 rpm for 10 minutes at 4˚C, aliquots of each sample, containing

equal amount of proteins (500μg), were separated by SDS-PAGE and transferred onto PVDF

membranes, were probed with antibody against rabbit anti-androgen receptor (Thermo scien-

tific) or mouse anti-androgen receptor. To avoid blurring of specific signals resulting from a

possible cross-detection of precipitating antibodies with secondary antibodies of the Western

blot, we employed antibodies to rabbit or mouse IgG light-chain as secondary antibodies

(Santa Cruz). Proteins of interest were visualized with the Pierce ECL Western blotting. Densi-

tometry analysis wasdone by ImageJ software (NIH) by measuring levels of the protein of

interest relative to the internal control (β-actin), as previously described [33]. The control con-

dition was set to 1, and the y axis values show AR/ ACTIN ratio.

Immunocytochemistry (ICC) and fluorescence in situ hybridization

(FISH)

Immunocytochemistry: Cell preparations for analysis of embryonic NSCs were performed as

described in Ferri et al., [34] and Favaro et al., [35]. For the anti-AR Santa Cruz (Santa Cruz

Biotechnology Biotechnology) immunofluorescence, embryonic NSCs were fixed in 100%

methanol for 10 minutes at -20˚C. To test the specificity of the primary antibodies, negative

controls (samples treated in parallel without the application of the primary antibody) were per-

formed for each experiment. The z stacks of confocal images were taken with an optical slice

thickness of 0.1 μm, with a 60× objective on the spinning disk confocal microscope (ZEISS).

FISH. Procedure was adapted from Schaeren-Wiemers and Gerfin-Moser [36] and Hen-

rique et al.,[37] sense and antisense alexafluor 488-labelled RNA probes (lysis nucleic acid

labeling kit—life technologies) were synthesized from non coding Sox2OTcDNA amplified

sequence obtained using the following primers: 5’- tgctacaagacaacaccctga-3’ and 5’- ccaaagc

catcaaccagatt-3’. The cDNAsequence was verified by sequencing. After FISH, immunostaining

was performed for AR on neurospheres as describe above. Data were analyzed in 15–20 images

per experiment from 3 experiments with each antibody pair.

DNase I hypersensitivity (DHS) analysis

Approximately 2 × 107 of embryonic NSCs and 10 E12.0 embryos freshly dissected mouse fore-

brains, were using for each DHS assay adapted from Ling and Waxman [38] and Ling et al.,

[39] for embryonic NSCs and brains nuclei preparation respectively. Optimization protocol

provided five tubes of equally amount of chromatin incubated in parallel wherein four con-

tained 2 units of DNase I (Sigma-Aldrich) in 100μl of the DNase I digestion buffer for 4 differ-

ent incubation time (6, 8, 9, 10 minutes) at room temperature (RT) and one without enzyme

(control sample) prepared in the same way by incubating in digestion buffer for 10 minutes a

RT. The control DNase I digestion sample that yielded a smear of DNA fragments ranging from
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100 bp to 1.5 kb was selected. digested chromatin was purified and amplifying with ARSO-

Sox2OT 5’gaaatcggtggccagtgatc -3’ and 5’- ggtggacttgcttttactagagtgc -3’. For validation of DNAse

digestion the following PCR primers were used:GAPDHpromoter: 5’- accagggagggctgcagtcc -3’

and 5’-tcagttcggagcccacacgc -3’ as a positive control (DNAse I hypersensitive region); CRISP

enhancer 5’- agttcaattctctggctgatgct-3’and 5’-gaaggtgagccttatctggatagtt 3’ as a negative control

(DNAse I insensitive region) [40].We calculated the intensities of PCR-bands using ImageJ, veri-

fying for non-saturation and subtracting background.

Chromatin immunoprecipitation (ChIP) assay

ChIP was performed using approximately 2 × 107 of embryonic NSCs at passages between 2–4

and 10 E12.0 forebrains for each assay (n = 1).

Embryonic NSCs. The pellet was resuspended in 5 ml PBS containing 1% final concentra-

tion formaldehyde and incubated for 10 min at room temperature with rotation. Cross-linking

reactions were stopped with 0.125 M glycine for 8 min at room temperature and washed twice

with ice-cold PBS.

Forebrains. Mouse embryos were harvested from timed pregnant females (Charles River)

at E12.0. The forebrains were dissected in cold PBS and batches of eight forebrains each were

collected in a tube (n = 1), washed twice, cut to<1mm size and crosslinked with 1% formalde-

hyde for 10min stopped with 0.125 M glycine for 10 min at room temperature. Chromatins

from forebrain tissue and embryonic NSCs were isolated following this procedure: Nuclei

were isolated and chromatin was sheared to approximately 600 bp using a sonicator (Bande-

line SONOPLUS). Cross-linked chromatin was immunoprecipitated using ChIP-grade anti-

bodies: 5 μg anti Androgen Receptor (C-19 Santa Cruz Biotechnology), 3 μg anti Phospho-

Rpb1 CTD pSer2+5 (Thermo scientific) and 2 μg IgG control antibodies (Pierce) overnight at

4˚C. immunoprecipitation and DNA recovery were obtained according to the manufacturer’s

protocol pierce magnetic chip kit (pierce). Aliquots of the purified DNA were diluted and ana-

lyzed by PCR with the following primer pairs: arso-Sox2OT 5’-ctattttcccctcgctta
acctc-3’ and 5’-tctgggtctaaagtgggcat -3’; primers for non target sequence

(negative control) were 5'-attaagacacaaaggagagaggtcc-3' and 5'-tgtcatgta
tcaagtttccaaaacc-3'.These non target sequence primers were previously used in ChiP-

seqexperiments aimed at mapping genome-wide AR binding site in mouse caput epididymis

[40]. The primers for a positive control are included in magnetic ChIP kit (Pierce). Amplifica-

tion was performed for a predetermined optimal number of cycles. PCR products were sepa-

rated by electrophoresis on 2% agarose gels, and stained with ethidium bromide.Relative level

of chromatin was determined by quantitative densitometry using ImageJ software (NIH,

Bethesda, MD). ChIP densitometry data were normalized to input (20% of total chromatin),

and shown as box-plot. Fold enrichments minimum and maximum percentage are depicted

by black dots, the box signifies the upper and lower quartiles, and the median is represented by

a short black line within the box for each group. Validation of ARSO genome DNA sequences

was performed by PCR amplification, followed by Sanger sequencing. All PCR products were

sequenced in both directions using Big Dye Terminator reactions and loaded on an ABI

PRISM 3730xl DNA analyzer. Sequences were analyzed using the Sequencing Analysis 5.2

software.

RNA immunoprecipitation (RIP) assay

Approximately 1 × 107 of embryonic NSCs and 10 E12.0 freshly dissected mouse forebrains was

using for each RIP assay performed as previously described [41]. Total RNA was immunopre-

cipitated with following antibodies: 5 μgr Androgen Receptor (C-19 Santa Cruz Biotechnology),

Pharmacological inhibition of AR leads to Sox2OT downregulation
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3 μg anti Phospho-Rpb1 CTD pSer2+5 (Thermo scientific) and 2 μg rabbit IgG control anti-

body (Pierce) overnight at 4˚C.The immunoprecipitated RNA was treated with DNase (Turbo

DNase, Life Technologies, Ambion1) at 37˚C for 10 min and extracted using the TRIZOL

reagent (Life technologies), and reverse-transcribed using Superscript II and oligo(dT) primers,

as described in the manufacturer’s protocols (BIORAD). An equal volume of RNA incubated

without Superscript II was used as negative control (RT–). cDNA samples were analyzed by

semiquantitative PCR with following primers: Sox2OTRNA 5’-aaaagcaagtccaccagcag -3’ and 5’-

tctgggtctaaagtgggcat -3’; Amplification was performed for a predetermined optimal number of

cycles (30–35). PCR products were separated by electrophoresis and stained with ethidium bro-

mide. The PCR for Sox2OTRNA was verified using automated direct sequencing (ABI 3730,

Applied Biosystems Inc., CA, USA). All PCR products were evaluated on a 2% agarose gel,

sequenced in both directions using Big Dye Terminator reactions and loaded on an ABI PRISM

3730xl DNA analyzer. Sequences were analyzed using the Sequencing Analysis 5.2 software. To

normalize our data the quantitative densitometry ImageJ software was used. Quantification of

PCR products was performed over three independent experiments using ImageJ software

(described above). All RIP densitometry results were normalized to input (20% of total RNA).

Statistical methods

All statistical analyses were performed using GraphPad Prism 7.0 Software. Data were ana-

lyzed by Student’s two-tailed, paired t-test and results were expressed as the mean value ±
SEM. All experiments were carried out on a minimum of 4 occasions unless stated otherwise

(n = number of independent experiments). The asterisks in each graph indicate statistically

significant changes:� p < 0.05, �� p< 0.01, ��� p<0.001.

Results

AR downregulation by Bicalutamide elicits Sox2OT downregulation

Previous data suggested that AR mRNA in CNS is detectable at mouse embryonic day 12.5

(E12.5) shortly before embryonic hormone production [42]. To confirm that AR is expressed at

early embryonic stage, we analyzed AR mRNA and protein levels in E12.0 mouse forebrains

(telencephalon and diencephalon) in basal condition and after treatment with the non-steroidal

AR pure antagonist Bicalutamide [21] that binds to cytoplasmic AR thus triggering its rapid

degradation [23]. We found that AR mRNA is expressed in E12.0 mouse forebrains and that

Bicalutamide significantly reduced AR mRNA levels (mean value±SEM of Δct (ctAR-ctGAPDH):

Δct control = 11.46±0.46, ΔctBicalutamide = 14.97±0.19; t-test p = 0.0004;2-ΔΔCtcontrol = 1.00,

2-ΔΔCt Bicalutamide = 0.09; Fig 1A). To confirm this data we analyzed AR protein levels. We

found detectable AR protein levels in E12.0 mouse forebrains; Bicalutamide significantly

reduced AR protein levels (normalized mean value±SEM, AR/actin: control = 1.00±0.05; Bica-

lutamide = 0.71±0.06; t-test p = 0.0079; Fig 1B). Since in E12.0 forebrains embryonic neural

stem cells (embryonic NSCs) are the primary progenitor cells that initiate lineages leading to

the formation of differentiated neurons [43,44], we hypothesized that AR is also expressed in

embryonic NSCs. To test this hypothesis we evaluated AR mRNA and protein levels in mouse

embryonic NSCs in basal conditions and after treatment with Bicalutamide. Our data con-

firmed that AR mRNA and AR protein are expressed in embryonic NSCs (mean value±SEM

ofΔct (ctAR-ctGAPDH):Δct control = 13.09±0.19; Δct Bicalutamide = 16.17±0.17, t-test p = 0.0005;

2-ΔΔCt control = 1.00, 2-ΔΔCt Bicalutamide = 0.12.Normalized mean value ± SEM AR/actin: con-

trol = 1.00±0.02; Bicalutamide = 0.57±0.009 t-test p = 6.4 x10-7;Fig 1C and 1D). This result

agrees with previous data showing that AR is expressed in rodent adult NSCs [10, 45]. The
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Fig 1. AR antagonist Bicalutamide reduces AR and Sox2OT levels in mouse E12.0.

https://doi.org/10.1371/journal.pone.0180579.g001
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presence of the transcription factor AR at early embryonic day and in embryonic NSCs, led us

to hypothesize that AR has a role in transcriptional events regulating early neurogenesis [46,47].

Sox2OT is a lncRNA transcribed in the same orientation of Sox2 that can act as an enhancer

during brain development and participate in Sox2 transcriptional regulation [17,18]. To test

whether AR expression modulates Sox2OT expression we pharmacologically inhibited endogenous

AR by Bicalutamide treatment in embryonic NSCs and E12.0 forebrains and analyzedSox2OT

mRNA level using primers designed to probe Sox2OT last exon [17]. Bicalutamide significantly

decreased Sox2OT mRNA levels (mean value ± SEM of Δct (ctSox2OT-ctGAPDH): for E12.0:Δct con-

trol = 4.26±0.20; Δct Bicalutamide = 6.51±0.32, t-test p = 0.010; 2-ΔΔCtcontrol = 1.00,2-ΔΔCtBicaluta-

mide = 0.21; for eNSCs control = 4.51±0.18; Δct Bicalutamide = 6.00±0.16, t-test p = 0.0009;2-ΔΔCt

control = 1.00, 2-ΔΔCtBicalutamide = 0.36; Fig 1E). To confirm this result, we analyzed AR by im-

munofluorescence and Sox2OT mRNA by in situ hybridization in embryonic NSCs and found that

Bicalutamide treatment decreased both AR and Sox2OT signals (mean value±SEM of % Sox2OT

positive cells: control = 54.87±1.69, Bicalutamide = 2.19±0.70, t-test p = 5.9 x10-11; Fig 1F). Hence,

these results show that AR and Sox2OT are expressed in E12.0 forebrains and in embryonic NSCs

and that AR downregulation elicits Sox2OT downregulation. This result suggested that AR is

directly involved in the transcriptional regulation of Sox2OT in embryonic NSCs and E12.0

forebrains.

Forebrains and embryonic NSCs (eNSCs). (a) Real-time quantitative RT-qPCR analysis

of AR mRNA in E12.0 forebrains. E12 embryos were exposed daily to Bicalutamide 200μg/Kg

from E10.0 onwards. AR expression was higher in control samples than in Bicalutamide

treated samples. Data are expressed as mean value ± SEM of delta ct (Δct is the Ct value for any

sample normalized to the endogenous housekeeping gene): Δct control = 11.46±0.46; ΔctBica-

lutamide = 14.97±0.19; two-tailed t-test p = 0.0004, n = 4 samples analyzed for each condition.

(b) Representative western blot showing AR expression in control E12.0 forebrains and

E12.0 forebrains treated with Bicalutamide. Bicalutamide significantly decreased AR pro-

tein levels. The histograms represent the mean of densitometry calculations for western

blot data. Data were normalized to β-actin expression. Values are expressed as normalized

mean value ± SEM of triplicate experiments: control = 1.00±0.05; Bicalutamide = 0.71

±0.06; p = 0.0079 two-tailed t-test.

(c) AR expression in eNSCs analyzed by real-time PCR. Bicalutamide significantly decreased

AR expression. Values are expressed as mean±SEM of Δct (ctAR-ctGAPDH). Δct control = 13.09

±0.19, ΔctBicalutamide = 16.17±0.17; two-tailed t-test p = 0.0005; n = 5 samples for each condition.

(d) Representative western blot showing AR expression in control eNSCs and eNSCs treated

with Bicalutamide. Data are normalized to β-actin protein. Values are expressed as normalized

mean value±SEM of triplicate experiments, n = 5 samples for each condition. AR/actin: con-

trol = 1.00±0.02; Bicalutamide = 0.57±0.01, two-tailed t-test p = 6.4 x10-7.

(e) Sox2OT mRNA expressions analyzed by Real-time quantitative RT-PCR in E12.0 brains

And eNSCs treated or untreated with Bicalutamide (data are expressed as mean value±SEM of

Δct). For E12.0 brains: Δct control = 4.26±0.20; ΔctBicalutamide = 6.51±0.32, p = 0.010; for

eNSC: control = 4.51±0.18; ΔctBicalutamide = 6.00±0.16, p = 0.0009; n = 4 samples analyzed

for each condition, two-tailed t-test.

(f) Representative images showing AR protein signal (immunofluorescence with AR anti-

body in red) and Sox2OT mRNA (in situ hybridization for Sox2OT in green) in eNSCs. The

histograms show the percentage of Sox2OT positive cells normalized to total nuclei counted

for each neurosphere. Bicalutamide decreases both AR protein levels and the number of

Sox2OT positive cells. Values are expressed as mean±SEM of %Sox2ot positive cells: con-

trol = 54.87±1.69, Bicalutamide = 2.19± 0.70, two-tailed t-test p = 5.9 x10-11; n = 5 samples

analyzed for each condition. Scale bar is 50 μm.
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AR downregulation decreases the DNase hypersensitivity of

ARSO-Sox2OT

The evidence showing that AR downregulation elicits Sox2OT downregulation (Fig 1E and 1F)

led us to hypothesize that AR may interact with chromatin of Sox2OT gene. To test this hypothe-

sis we first analyzed the presence of androgen response elements (AREs) in the 5000 bps upstream

of the Sox2 translational start site (ATG) that encompass the Sox2OT locus. High density hits

with a score over 0.80 and elevated conservation (over 50% of identity) of the candidate AREs

sites were considered. By JASPAR motifs, we identified a sequence located -2356 bps upstream to

Sox2 ATG (hereafter called ARSO-Sox2OT; chr3:34,647,650–34,648,214) containing 3 neighbor-

ing putative ARE sites including 5’-tagtacaccccgatt-3’ at site -1995, 5’-gagaaaacaatgctt-3’at position

-1977 and 3’-aaggacttatagaaa-5’ at site -1933 (Fig 2A). Accordingly, comparative genomic analysis

using the VISTA Browser (http://genome.lbl.gov/vista/index.shtml), showed high conservation

among the species for ARSO-Sox2OT sequence (Fig 2A and S1 Fig). Data from Fig 2A suggested

that ARSO-Sox2OT sequence containing the AR DNA-binding sites, is a domain of euchromatin.

To further clarify aspects of the accessible chromatin landscape, we explored the epigenetic fea-

tures of ARSO-Sox2OT sequence in the ENCODE Project database (http://genome.ucsc.edu/

ENCODE/) focusing on whole brain, cortex and cerebrum tissues of E14.5, E18.5 and adult mice

(8 weeks) (S2 Fig). The results obtained by ENCODE Open Chromatin by DNase-Duke Univer-

sity and Open Chromatin by DNase-Washington University showed that ARSO-Sox2OT is a

region of chromatin highly sensitive to cleavage by DNase I (Fig 2B). Because DNase I hypersen-

sitive sites (DHS) are structural landmarks indicative of regulatory chromatin regions involved in

the cell-type-specific regulation [48,49], and frequently arise as a result of transcription factor

binding, these results suggested that ARSO-Sox2OT is an open chromatin region [50]. Because

AR downregulation elicited Sox2OT downregulation (Fig 1E and 1F), we hypothesized that AR

modulates the DNase I hypersensitivity of ARSO-Sox2OT. To test this hypothesis, we performed

a DNase hypersensitivity assays in embryonic NSCs and E12.0 forebrains in basal conditions and

after Bicalutamide treatment. The size distribution of DNA short fragments released by DNase I

digestion of isolated nuclei was determined by DNA electrophoresis (Fig 2C) followed by PCR

amplification with sequence specific primers. We found that ARSO-Sox2OT chromatin region in

basal condition is highly sensitive to cleavage by DNase I both in embryonic NSCs and E12.0 fore-

brains (Fig 2D). This result confirmed the data obtained from epigenetic analysis (Fig 2B). We

also found that Bicalutamide treatment significantly decreased the hypersensitivity to DNase I

(mean value ± SEM of densitometric AU; for E12.0 forebrains control: initial time of diges-

tion = 0.83±0.04, final time of digestion = 0.36±0.07, t-test p = 0.00002; for E12.0 forebrains Bica-

lutamide: initial time of digestion = 0.91±0.04, final time of digestion = 1.06±0.07; control vs

Bicalutamide at final time of digestion t-test = 0.0000075. For embryonic NSCs control: initial

time of digestion = 0.87±0.08, final time of digestion = 0.37±0.09; t-test p = 0.00018; for embry-

onic NSCs Bicalutamide: initial time of digestion = 0.85±0.09, final time of digestion = 0.89±0.20;

control vs Bicalutamide at final time of digestion t-test p = 0.0026. Fig 2C).

These results show that accessible chromatin landscape of ARSO-Sox2OT correlates with

the presence of AR. Since AR binding is frequently associated with significant increase in DHS

signal [51] these data also suggested that AR may bind to ARSO-Sox2OT and regulates

Sox2OT expression during neural development.

AR binds the Sox2OT gene at ARE sites and modulates RNA

polymerase II-driven Sox2OT gene expression

Data from Fig 2 strongly suggested that AR can bind the Sox2OT gene at the ARE sites. To test

this hypothesis, we performed chromatin immunoprecipitation (ChIP) using specific ChIP-
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Fig 2. AR chromatin occupancy site (ARSO-Sox2OT) in mouse E12.0 forebrains and eNSCs. (a) AR consensus

sites in the genomic context of SOX2 upstream region. White box, Sox2 gene; gray boxes, region tested by ChIP with
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grade antibodies against AR and activated RNA polymerase II (Rbp1-CTD-p) in E12.0 fore-

brains and embryonic NSCs (Fig 3A). AR occupancy was readily detected at ARSO-Sox2OT

region in concert with RNA polymerase II which transcribes the Sox2OT gene (mean value

±SEM of fold enrichment normalized to input. For Rbp1-CTD-p in E12.0 forebrains: con-

trol = 0.51±0.06, Bicalutamide = -0.18±0.06, t-test p = 0.0023. For AR in E12.0 forebrains: con-

trol = 0.51±0.13, Bicalutamide = -0.26±0.08, t-test p = 0.0003. For Rbp1-CTD-p in embryonic

NSCs: control = 1.36±0.21, Bicalutamide = 1.28±0.07, t-test p = 0.0002. For AR in embryonic

NSCs: control = 1.28±0.07, Bicalutamide = -0.15±0.09, t-test p = 0.000017; Fig 3B). In tissues

and cells treated with Bicalutamide neither AR nor RNA polymerase II were enriched in

ChIPs (Fig 3B). Treated and control templates were verified using automated direct sequenc-

ing (see material and method). These results demonstrate that AR physically binds the

Sox2OT gene at new identified ARE site, suggesting that AR positively modulates the tran-

scription of Sox2OT via recruiting and/or stabilizing the transcription complex.

To further confirm that AR mediates Sox2OT transcription, we assessed whether AR interact

with Sox2OT transcript. We conducted AR- and RNA Polymerase II-directed RNA immunopre-

cipitation (RIP) coupled with qPCR using primer sets targeting the ARE elements at the sense

Sox2OT RNA (Fig 3A). We found that AR formed a ribonucleoprotein complex with active form

of RNA polymerase II that was not detected in Bicalutamide treatment. These results show that

AR binds Sox2OT RNA in embryonic NSCs and E12 forebrains. These data also show that the

interaction between Rbp1-CTD-p and lncRNASox2OT depend on AR presence (mean value ±
SEM of fold enrichment normalized to input. For Rbp1-CTD-p in E12.0 forebrains: control = 1.66

±0.26, Bicalutamide = -0.60±0.27, t-test p = 0.0084. For AR in E12.0 forebrains: control = 0.51

±0.09, Bicalutamide = -0.20±0.16, t-test p = 0.016. For Rbp1-CTD-p in embryonic NSCs: con-

trol = 0.75±0.18, Bicalutamide = 0.16±0.11, t-test p = 0.032. For AR in embryonic NSCs: con-

trol = 0. 85±0.07, Bicalutamide = 0.13±0.06, t-test p = 0.0002; templates treated with Bicalutamide

and controls were verified using automated direct sequencing; Fig 3C).

Discussion

The present study shows that AR is expressed in embryonic NSCs and E12.0 forebrains, first

describe a novel androgen response element (ARE) located at Sox2OT gene and show that AR

binds the Sox2OT transcript in E12.0 forebrains and embryonic NSCs.

ChIP-grade antibodies; vertical red lines, AR consensus site (ARE). The arrow show the direction of Sox2 gene trans-

cription. The phylogenetic conservation (CNS) mouse-human of ARSO-Sox2OT sequence is shown below the gene

diagram (derived from the VISTA browser). High sequence conservation of ARE (UCSC browser) at aligned sites across

the species (shown at the left). Identical nucleotides are shown in the color pink. (b) Integration at Sox2 locus of ENCODE

high-throughput experiments performed in mouse cerebral tissues. Rectangular heading shows theARSO-Sox2OT

chromatin region. From top to bottom, row reports the genomic coverage obtained by DNAse-Seq and ChIP-Seq against

different histone modifications. The image was generated using Wash U Epigenome Browser. (c) Right panel: Pulsed-

field electrophoresis of genomic E12.0 subjected to time course digestion with DNase I (0.2 U/ml) for 6, 8, 9 and 10

minutes. (d) Left panel: DNA extracted from samples untreated or treated with Bicalutamidewas used as template for

PCR for ARSO-Sox2OT sequence, one negative control (CRISP enhancer, neg) and one positive control (GAPDH

promoter, pos). The image show representative ethidium bromide-stained gels. The data show that in control samples the

ARSO-Sox2OT region is digested by DNase I whereas in samples treated with Bicalutamide the ARSO-Sox2OT region

was more resistant to DNase I digestion. This result show that AR allows the chromatin accessibility of ARSO-Sox2OT

region. Right panel: densitometry values of amplicones assessed by PCR for E12.0 forebrains and eNSCs. Data are

expressed as mean value ± SEM of densitometry arbitrary units (AU); for E12.0 forebrains control: initial time of

digestion = 0.83±0.04, final time of digestion = 0.36±0.07, t-test p = 0.00002; for E12.0 forebrains Bicalutamide: initial

time of digestion = 0.91±0.04, final time of digestion = 1.06±0.07; control vs Bicalutamide at final time of digestion t-

test = 0.0000075. For embryonic NSCs control: initial time of digestion = 0.87±0.08, final time of digestion = 0.37±0.09;

t-test p = 0.00018; for embryonic NSCs Bicalutamide: initial time of digestion = 0.85±0.09, final time of digestion = 0.89

±0.20; control vs Bicalutamide at final time of digestion t-test p = 0.0026. Results derived from five independent

experiments. M: molecular size marker (base pairs, bps); No DNAse I: chromatin not digested. Ctr: no Bicalutamide

treatment. Samples were treated with Bicalutamide as described in Fig 1.

https://doi.org/10.1371/journal.pone.0180579.g002
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Fig 3. AR binds ARSO-Sox2OT chromatin region and allows Sox2OT transcription. (a) AR consensus sites in the

chromosome 3 and in Sox2OT ncRNA. Grey arrows indicate DNA region tested by ChIP with ChIP-grade antibodies (ChIP
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Our evidence for AR expression in embryonic NSCs and E12.0 forebrains agrees with pre-

vious papers showing AR expression in the neurogenic territories of most vertebrate groups

[52–57,45] such as rodents hippocampus, and ventricular wall of embryonic and adult rodent

brains [58,45]. AR activation in rats embryos depends on mother testosterone serum levels

[59–61]. In fetal life, placental and local production of sex steroids plays an important role in

the expression of neuronal development genes [62,63].

To induce AR inactivation we used Bicalutamide treatment. Although this pharmacological

approach have intrinsic limitations, it is an established methods to decrease AR protein and

mRNA levels. Indeed, Bicalutamide triggers rapid AR degradation at a nuclear location and

promotes AR turnover [64]. The mechanism of action by which Bicalutamide can decrease AR

mRNA is not fully understood but evidence shows that testosterone regulates the stability of

the AR mRNA by sequestering it in polyribosomes and consequently increasing its translation

[65]. In this context, Bicalutamide- mediated inhibition of AR transactivational functions can

lead to down regulation of its mRNA levels[66]. Alternative methods to in vivo inactivate AR

include the in vivo delivery of small interfering RNA(siRNA) and the use of AR knock out

mice. siRNAs are very efficient tools for in vitro mRNA silencing, however siRNA use in mam-

malian adult central nervous system is limited, because in vivo delivery technology such as

intravenously and intraperitoneally administration of synthetic siRNAs is not fully safe and

efficient. Additional important limitations exist when siRNA have to be delivered to both preg-

nant mice and their embryos. Regarding the possibility to perform experiments on mouse

models of AR deficiency, the brain-specific models, nestinCre ARKO [67]and synapsinI Cre

ARKO [68] are useful tools to study the effects of AR deficiency in adult neurons, however, in

these models the conditional ablation of AR starts in the neural tube at E12.5. Thus it is diffi-

cult to assess the degree of deletion of the AR and its consequences at early stage of brain devel-

opment using these models. Global AR knockout mouse (ARKO) also exist [69,70], however

they are not fullycharacterized at embryonal stages. Moreover, by performing studies on

mRNAs and chromatin immunoprecipitation, it is impossible to distinguish the contribution

to the phenotype of loss of AR function from that resulting from the wide gene expression

changes these models have.

site); vertical red lines indicate AR consensus site (ARE); green arrows indicate the sequence on Sox2OT RNA tested by

RIP (RIP site); (b) Representative images showing Chromatin Immuno Precipitation of AR and RNA Polymerase II. The

images show PCR of antibody–precipitated E12.0 forebrains and eNSCs chromatins with primers amplifying ARSO-

Sox2ot region. The lower panels show the quantification of AR and RNA Pol ChIPs. Values are mean±SEM of ratios

between PCR signal intensity of the AR and RNA Pol II antibodies–precipitated sample and input chromatin (IN). Notably,

RNA pol II binds ARSO-Sox2ot sequence in an AR-dependent manner. For RNA pol II in E12.0 forebrains: control = 0.51

±0.06, Bicalutamide = -0.18±0.06, t-test p = 0.0023. For AR in E12.0 forebrains: control = 0.51±0.13, Bicalutamide =

-0.26±0.08, t-test p = 0.0003. For RNA pol II in embryonic NSCs: control = 1.36±0.21, Bicalutamide = 1.28±0.07, t-test

p = 0.0002. For AR in embryonic NSCs: control = 1.28±0.07, Bicalutamide = -0.15±0.09, t-test p = 0.000017. Results

derived from four independent experiments. Data were analyzed by two-tailed t-test. (c) RNA Immunoprecipitation

(RIP) assay of eNSCs and E12.0 forebrains. RNA was subjected to IP assays with anti-AR and anti-Rpb1 CTD

phosphorylated at Serine 2 and Serine 5 (RNA Pol II) antibodies or normal rabbit IgG as described in Materials and

Methods section. RNA immunoprecipitates and input lysate RNAs were reverse transcription-PCR (RT-PCR)–

amplified to measure the abundance of Sox2OT RNA present in the eNSCs and forebrains (control). Agarose gel of

RT-PCR products from RIP and input (upper panel). Molecular weight marker sizes (base pair lengths; bps) are

shown at the right. Values are mean± SEM of ratios between PCR signal intensity of the AR and RNA Pol II

antibodies–precipitated sample and input (lower panel). For RNA pol II in E12.0 forebrains: control = 1.66±0.26,

Bicalutamide = -0.60±0.27, t-test p = 0.0084. For AR in E12.0 forebrains: control = 0.51±0.09, Bicalutamide = -0.20

±0.16, t-test p = 0,016. For RNA pol II in embryonic NSCs: control = 0.75±0.18, Bicalutamide = 0.16±0.11, t-test

p = 0.032. For AR in embryonic NSCs: control = 0.85±0.07, Bicalutamide = 0.13±0.06, t-test p = 0.0002. Results are

average of four independent experiments. Data were analyzed by two-tailed t-test. Lane RT+ contains an aliquot of

the PCR sample. In the RT- lane, the reverse transcriptase was omitted from the RT reaction. Input are 20% of total

RNA. IgG: rabbit IgG as negative control. Bicalutamide treatment were performed as described in Fig 1.

https://doi.org/10.1371/journal.pone.0180579.g003
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Hence, we choose a model for pharmacological inactivation of AR using because this com-

pound has high specificity for AR. Indeed, it was used in many studies aimed at inactivate AR

[23,71,72]. Moreover, the use of Bicalutamide in the maternal system has some advantages: i)

permits AR nuclear localization also in a neuronal population, ii) binds to the ligand-binding

domain of the AR to inhibit its transcriptional activity [73], iii)is rapidly absorbed and it has a

short plasma elimination half-life [74], iv)in our experiments, Bicalutamidewas injected intra-

peritoneally in the mother and no teratogenic effects were observed (data not shown).

The second novelty of our manuscript involvesthe AR binding on Sox2OT locus.AR bind-

ing to specific DNA motifs in the promoters [75–78] and in the regulatory sequences modu-

lates many biological processes in normal and cancer cells[75–78]. Our data indicate that AR

binds new identified ARE element within Sox2OT locus both in E12.0 forebrains and embry-

onic NSCs. ARE elements were identified by genome-wide in silico screening and Chip-seq

analysis. These very same analyses prompted in the past to the identification of ARE sites in

the genome of various human cells type [79]. At ARE sequences, AR facilitates interactions

with the general transcriptional machinery leading to gene transcription of androgen respon-

sive genes [80]. We show here that ARSO-Sox2OT sequence contains three ARE sites located

in the intron of Sox2OT [17] and that AR promotes Sox2OT transcription. This result is

strongly supported by evidence showing that Bicalutamide treatment decreases Sox2OT tran-

scription. Our results also suggest that the underlying molecular mechanism involves the inter-

action between RNA polymerase II and AR. Previous study showed that RNA polymerase II

(Pol II) binds to a large number of intergenic AR-bound enhancers marked by histone H3

lysine 4 monomethylation (H3K4me1) and lysine 27 acetylation (H3K27ac) to produce

enhancer-derived long non-coding RNAs (eRNAs) [81–84]. We can therefore speculate that

AR mediates the expression of Sox2OT through interacting with Pol II [85]. This hypothesis is

supported by evidence showing that AR interacts with nuclear ribonucleoprotein particles

from target tissues [86] and that AR activation regulates the abundance of specific RNA

sequences in rat prostate, mouse liver and kidney [87–89].

Our RIP results show that AR interacts with Sox2OT mRNA. This data agrees with previous

studies demonstrating that AR regulates non-coding RNAs by means of mechanisms common

to protein-coding transcripts. Sheflin and colleagues [90] demonstrated that AR can act post-

transcriptionally toregulate the 3’UTRs of mammalian HIF 1 alpha and EGF mRNA. More-

over a fraction of long unspliced intronic RNAs may have a role in post-transcriptional regula-

tion of gene expression by modulating transcript stability and alternative splicing [14]. AR

might function as the detachment of nascent RNA from DNA template to process Sox2OT

precursor transcript [91]. Our findings represent the first evidence that AR participates in the

control of Sox2OT transcript forming.

Our findings support the hypothesis that AR has a pivotal role in controlling the transcrip-

tion of Sox2OT during mouse early neurodevelopmental stages. The physiological significance

of the regulation of Sox2OT by AR remains open. AR-regulated Sox2OT in NSCs may regulate

stemness, cell proliferation, differentiation, cell fate (into neurons or glia).

Because Sox2OT is transcribed in the same orientation of Sox2, Sox2OTcan act as an

enhancer during brain development and participates in Sox2 transcriptional regulation

[17,18], we can speculate that AR may play a role in the regulation of SoxB1 transcription fac-

tors including Sox2. Because Sox2, that is expressed in NSCs, it is not only involved in neuro-

genesis but also in gliogenesis [92] we can postulate that this pathway can modulate

differentiation of neural progenitor cells versus neuronal or glial phenotypes. Finally, through

shedding light on a physiological AR role in mouse embryos, our report suggests that

AR-Sox2OT pathway may have a role in neurodevelopmental diseases and provide the basis
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for future studies aimed at clarifying the autocrine or paracrine effects of sex steroids on AR

expression and function during neurodevelopment.

Supporting information

S1 Fig. AR consensus sites in the genomic context of Sox2 upstream region. White box,

Sox2 gene; gray boxes, region tested by ChIP with ChIP-grade antibodies; vertical red lines,

AR consensus sites (ARE). The direction of Sox2 gene transcription is shown with arrow. The

phylogenetic conservation (CNS) Mouse-human of ARSO-Sox2OTsequence is shown below

the gene diagram (derived from the VISTA browser). High sequence conservation of ARE

(UCSC browser) at aligned sites across the species (shown at the left). Identical nucleotides are

shown in the color pink.

(TIF)

S2 Fig. Epigenetic features of ARSO-Sox2OT sequence. Integration at ARSO-Sox2OT site of

ENCODE high-throughput experiments performed in mouse cerebral tissues. Respect to Sox2

locus at top, vertical rectangular shows the ARSO-Sox2OTchromatin region. From top to bot-

tom, row reports the genomic coverage obtained by DNAse-Seq and ChIP-Seq against differ-

ent histone modifications. Letters on the right column indicate the tissues analyzed, row by

row. Sample information isreported at bottom. Top panel shows results obtained by ENCODE

Open Chromatin by DNase-Duke University and Open Chromatin by DNase-Washington

University. Is evident a peak in the ARSO-Sox2OT sequence, which is more present in embry-

onic than adult tissues.H3K4me3/1, H3K36me3, and H3K27ac are modifications associated

with active chromatin and H3K27me3 and H3K9me3 for silenced heterochromatic region.

The image was generated using Wash U Epigenome Browser.

(TIF)
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