
viruses

Review

Advances in Hepatitis E Virus Biology and Pathogenesis

Shaoli Lin and Yan-Jin Zhang *

����������
�������

Citation: Lin, S.; Zhang, Y.-J.

Advances in Hepatitis E Virus

Biology and Pathogenesis. Viruses

2021, 13, 267. https://doi.org/

10.3390/v13020267

Academic Editor: Susana Guix

Received: 28 December 2020

Accepted: 2 February 2021

Published: 9 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen
Research Institute, University of Maryland, College Park, MD 20742, USA; lsl1990@umd.edu
* Correspondence: zhangyj@umd.edu

Abstract: Hepatitis E virus (HEV) is one of the causative agents for liver inflammation across the
world. HEV is a positive-sense single-stranded RNA virus. Human HEV strains mainly belong to
four major genotypes in the genus Orthohepevirus A, family Hepeviridae. Among the four genotypes,
genotype 1 and 2 are obligate human pathogens, and genotype 3 and 4 cause zoonotic infections. HEV
infection with genotype 1 and 2 mainly presents as acute and self-limiting hepatitis in young adults.
However, HEV infection of pregnant women with genotype 1 strains can be exacerbated to fulminant
hepatitis, resulting in a high rate of case fatality. As pregnant women maintain the balance of maternal-
fetal tolerance and effective immunity against invading pathogens, HEV infection with genotype 1
might dysregulate the balance and cause the adverse outcome. Furthermore, HEV infection with
genotype 3 can be chronic in immunocompromised patients, with rapid progression, which has been
a challenge since it was reported years ago. The virus has a complex interaction with the host cells
in downregulating antiviral factors and recruiting elements to generate a conducive environment
of replication. The virus-cell interactions at an early stage might determine the consequence of the
infection. In this review, advances in HEV virology, viral life cycle, viral interference with the immune
response, and the pathogenesis in pregnant women are discussed, and perspectives on these aspects
are presented.

Keywords: Hepatitis E virus (HEV); virology; life cycle; pathogenesis; virus-cell interactions;
Hepatitis E in pregnancy

1. Introduction

Hepatitis E virus (HEV) is one of the causative agents of viral liver infections. It is
estimated that about 20 million HEV infections occur worldwide annually, with 3.3 million
symptomatic cases of HEV infection and approximately 44,000 deaths [1]. The virus is
usually transmitted via the gastrointestinal route from contaminated water or food of
animal origin. Currently, at least four genotypes of HEV are known to infect humans [2].
Genotypes 1 and 2 viruses cause acute hepatitis in the general population, with a case
fatality rate of 0.5–3%. Infection of pregnant women with genotype 1 HEV may cause acute
liver failure, leading to a case fatality rate of up to 30% (reviewed in [3]). Genotype 3 strains
are the main causes of chronic HEV infection in elderly or immunocompromised patients,
with a high risk of progressing to liver cirrhosis [3]. Sporadic cases of chronic infection by
genotype 4 are also reported. The exact mechanisms for the different disease outcomes
by genotypes are still unknown; however, recent research has provided some clues. The
virus-cell interactions are complex and may determine the outcome of infection. A section
below is dedicated to trying to shed light on this front, although there are many unknowns.

HEV is a positive-sense, single-stranded RNA virus with an icosahedral capsid. Two
forms of HEV virions are known: quasi-enveloped and non-enveloped. The peak density
of the naked, non-enveloped particles is 1.27 g/mL, while the quasi-enveloped particles
have a density of 1.15 g/mL [4,5]. The HEV genome is about 7.2 kb and encodes three open
reading frames (ORFs). An additional ORF, ORF4, is found only in genotype 1 strains [6].
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ORF1 encodes the non-structural proteins for genome replication, ORF2 encodes the capsid
protein, and ORF3 encodes a small multifunctional protein.

Contemporary studies have provided informative insights into the HEV life cycle.
HEV was once considered as a non-enveloped virus, but quasi-enveloped virions are
found in the blood circulation and cultured cells [7]. The lipid membrane shields the
virions from neutralizing antibodies. There are multiple forms of ORF2 product in patient
serum and cultured cells: the capsid protein associated with virions and the soluble
protein glycosylated and secreted. These results reveal an interesting feature of the capsid
protein biogenesis.

HEV infection interferes with cell signaling and evades the antiviral responses of
innate immunity. HEV inhibits the induction of type I interferons [8] and can persist in the
presence of type III interferons [9]. The viral proteins encoded by ORF1, 2, and 3 interact
with cellular partners to downregulate antiviral factors and recruit elements to generate a
conducive environment for HEV replication.

2. HEV Taxonomy and Distribution

HEV strains are classified into two genera: Orthohepevirus and Piscihepevirus, in the
family Hepeviridae [10]. The genus Orthohepevirus contains four species, namely A, B, C,
and D, which infect humans and animals. Piscihepevirus is isolated only from salmonid fish
in North America so far. Orthohepevirus A consists of the previously known genotype 1–4
and the newly recognized genotype 5–8. Genotype 1 and 2 are restricted to humans [11];
genotype 3 and 4 are zoonotic and have been detected in a wide spectrum of hosts, in-
cluding monkey, pig, sheep, cow, wild boar, deer, rabbit, and mongoose [12–22]; genotype
5 and 6 are reported to infect only wild boars [2], with genotype 5 having the potential for
zoonotic infection [23]; genotype 7 and 8 are isolated from camels, with a sole case report
of human infection from genotype 7 [23,24]. Orthohepevirus B consists of avian HEV [2].
Orthohepevirus C consists of rat and ferret HEV, while Orthohepevirus D contains only bat
HEV [2]. A rat HEV strain of Orthohepevirus C was found in a patient with persistent
hepatitis after liver transplantation, suggesting the zoonotic potential of this species [25].
The genomic variability and potential risk of cross-species infection of Orthohepevirus C
strains have been reviewed elsewhere [26,27]. Along with the isolation of HEV from more
wild and domestic animals, an evolution of the virus taxonomy is expected in the future.

The regional prevalence of HEV genotypes is varied. Among the four major geno-
types that infect humans, genotype 1 is mainly distributed in South Asia and sub-Saharan
Africa [28,29], where the infection is predominantly due to poor sanitation and contami-
nated drinking water. Genotype 2 was initially discovered in Mexico and later found in
Africa [30–33]. Genotype 3 contributes to pockets of hepatitis E cases in industrialized
countries [34–36] and also widely spreads in some developing countries in Latin Amer-
ica [37,38] and China [39]. The most frequent route of transmission of genotype 3 HEV
in humans is the consumption of HEV-contaminated uncooked/undercooked pork or
sausage [40,41]. Genotype 4 is most prevalent in China but also detected in other countries,
such as South Korea, Japan, and France [42–44]. Like genotype 3, genotype 4 HEV can be
transmitted via contaminated food. The co-infection of genotypes 3 and 4 in patients with
acute hepatitis was reported in Japan [45].

In addition to the gastrointestinal route, HEV has been demonstrated to be transmitted
via blood transfusion in some countries [46,47]. Genotype 1 HEV has also been detected in
blood donors in India [48].

Despite the genetic difference, the four genotypes belong to a single serotype. The
antibody against the neutralization epitopes of the capsid protein of HEV genotype 3 can
neutralize the other different geographic HEV strains in genotype 1 and 2 [49]. Commercial
enzyme immunoassays and rapid immunochromatographic kits based on genotype 1 HEV
ORF2/ORF3 antigens can detect the presence of IgM or IgG antibodies induced by the four
major genotypes of HEV [50,51].
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3. HEV Genome and its Encoded Proteins

HEV has a 7.2 kb positive-sense, single-stranded RNA genome that has a 5′ cap and
3′ poly(A) tail [52] (Figure 1). The genome encodes three partially overlapping ORFs,
namely ORF1, ORF2, and ORF3. A newly-identified ORF4 that is embedded in ORF1 is
found in the genomes of only genotype 1 strains [6]. Also, the virus produces a 2.2 kb
sub-genomic RNA in infected cells [53]. Transcription of the sub-genomic RNA in genotype
1, 3, and 4 HEV starts with the common starting sequence of 5′GC [54]. Both ORF2 and
ORF3 are translated from the sub-genomic RNA [53]. The abundance of sub-genomic RNA
is much higher than the genomic RNA in HEV-infected cells, indicating that the expression
of ORF2 and ORF3 products must be higher [9].
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Figure 1. Schematic illustration of Hepatitis E virus (HEV) genomic and sub-genomic RNA. The
genome organization of genotype 1 HEV strain Sar55 (GenBank accession number: AF444002) is
shown. The numbers above and below the boxes denote the nucleotide position in the genome. ORF1
spans nucleotide (nt) 26–5107 and encodes a polyprotein of 1694 amino acids (aa) in length, which
contains several putative domains. ORF2 (nt5145–7127) and ORF3 (nt5131–5475) are translated from
the sub-genomic RNA, and ORF4 is only produced under endoplasmic reticulum (ER) stress and
solely in genotype 1 HEV.

3.1. ORF1

ORF1 of genotype 1 HEV is 5082 nucleotides (nt) long and encodes a 190 kDa polypro-
tein, which contains the following putative domains: methyltransferase domain (Met),
Y domain (Y), papain-like cysteine protease (PCP), hypervariable region (HVR), X (macro)
domain, helicase domain (Hel) and RNA-dependent RNA polymerase domain (RdRp)
(Figure 2) [55]. The polyprotein is putatively processed into several non-structural proteins
(NSPs), but this is still debated due to the lack of solid data [56,57]. A plasmid containing
ORF1 produces a protein of ~191 kDa in cell-free translation and cleaved products of 78 and
35 kDa in cultured cells [58]. A recent report describes the generation of an HA-tagged
full-length HEV replicon with transposon-based technology [59]. The infectious virus was
recovered from the replicon with an HA tag within the ORF1 HVR. In the replicon system,
only an uncleaved ~190 kDa ORF1 product was detected. Thus, protease processing the
ORF1 product remains inconclusive.

The major functions of ORF1 products are predicted to directly facilitate viral RNA
synthesis, involving RNA capping [60,61], RNA unwinding [62], tRNA metabolism [63],
orienting the viral RNA to replication factories, transcription, and replication [64] (Figure 2).
Currently, the mechanism of the involvement of the ORF1 products in viral genome repli-
cation remains unclear. However, due to the lack of efficient reagents, such as monoclonal
antibodies against the individual domains, and a highly permissive cell culture system,
some structural predictions have not been verified experimentally. Details of the ORF1
domains have been reviewed elsewhere [65].
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the box indicate the amino acid residues. The predicted or known functions of the domains are
indicated in upper and lower boxes.

3.2. ORF2

ORF2 encodes the capsid protein of HEV, with an estimated molecular weight of 72 kDa.
When expressed in two insect cell lines (SF9 and Tn5), aa 112-608 self-assemble into virus-like
particles (VLPs) [66,67]. Structural analysis shows that the capsid protein of HEV genotype
3 contains an N-terminal domain (aa 1–111), a VLP (aa 112–608), and a C-terminal domain
(aa 609–660) [68]. Analysis of the VLP crystal structure at a 3.5-Å resolution shows that it
consists of three definite domains, named S (shell), M (middle) and P (protruding), spanning
aa 129–319, 320–455, and 456–606, respectively [69] (Figure 3). S domain is the building block
of the capsid, exhibiting a “jelly roll” β-barrel fold that forms a tightly closed shell protecting
the viral RNA [70]. P domain is responsible for the binding of virions to susceptible cells
and contains virus-neutralizing epitopes [69]. Epitopes of several neutralizing monoclonal-
antibodies (mAb) against the capsid protein are mapped to the P domain [71–73]. Some of
the mAb were demonstrated to block HEV infection in rhesus monkeys [71]. Neutralizing
epitopes are also found in the M domain and the C-terminal domain [72,74]. P domain
also contains the motif for homo-oligomerization of the capsid protein [75]. Deletion of
aa 585–610 results in the loss of the oligomerization. Several residues (Y557, T564, V598,
A599, L601) within the P domain are crucial for the dimerization of the domain [76]. Because
VLPs are an efficient antigen for the detection of HEV-specific immunoglobulins (IgG and
IgM) and the predominant carrier of T- and B-cell epitopes [66,77], the VLPs are frequently
used for diagnostic ELISA of clinical samples [78–81].
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In cultured cells and patient samples, three forms of the ORF2 product of geno-
type 3 HEV have been identified: ORF2i (infectious form associated with virions), ORF2g
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(glycosylated and secreted), and ORF2c (cleaved and secreted) [82]. The first residues of
ORF2i, ORF2g, and ORF2c correspond to Leu14, Ser34, and Ser102, respectively [82,83].
ORF2c is likely a cleavage product of ORF2g protein and not a directly translated pep-
tide [83]. Among the three potential glycosylation sites, N1 (137NLS), N2 (310NLT), and
N3 (562NTT), of the ORF2 product, only the N1 and N3 sites in the ORF2g/c proteins
are glycosylated, whereas the ORF2i is not glycosylated [83]. Further mutation experi-
ments indicated that the N-glycosylation of the ORF2 product does not play any role in
the assembly and infectivity of HEV particles. Among the three forms, only ORF2i is pack-
aged into infectious particles. However, all of the three forms can be recognized by HEV
antibodies [83].

Another study determined the initiation codons for the secreted form of ORF2 product
and the actual capsid protein (Table 1) [84]. The secreted form of ORF2 product (ORF2s)
is initiated from the previously presumed start codon and has no association with the
viral genome. The actual capsid protein (ORF2c) is initiated from an internal AUG located
15 codons downstream of the first AUG [84]. ORF2s is glycosylated and lacks the binding
site of the cellular receptor, but the protein inhibits antibody-mediated neutralization of
HEV [84]. In terms of the functional similarity between these two studies, the ORF2s and
ORF2c correspond to the ORF2g and ORF2i, respectively, despite the different initiation
sites identified. However, this study [84] did not find the cleaved form ORF2c, presumably
due to its lower level [83]. These data reveal the complexity of ORF2 genesis and its
multifunctional roles in the HEV life cycle.

Table 1. Summary of the forms of ORF2 product [6].

Form a Start Codon Genome Association Glycosylation Secretion

ORF2c Met15 Yes No No
ORF2s Met1 No Yes Yes

a ORF2c: the actual capsid protein, ORF2s: the secreted ORF2 product.

Intriguingly, the secreted forms of ORF2 product are not involved in the virion pack-
aging. The exact function of the secreted forms is not understood yet. These findings
raise a series of questions: how long is the half-life of the secreted protein in the blood
circulation? What is the ability of the secreted protein to induce neutralizing antibodies?
Whether do the different forms of the ORF2 product contribute to the viral infectivity
during HEV infection?

3.3. ORF3

ORF3 is a small multifunctional 13 kDa protein (hereinafter called vp13). Its translation
starts upstream of ORF2, overlapping with ORF2 by 331 nt in a different frame. The small
regulatory viral protein contains a few B-cell epitopes [85,86], but the lymphoproliferative
response to the vp13 peptide pool is poor [77].

Vp13 is associated with the quasi-enveloped virions, but it dissociates from the naked
virus particles after the removal of the envelope [87,88]. Ser71 residue of vp13 is a phos-
phorylation site that is indispensable for the interaction with the capsid protein [89,90]
(Figure 4). However, a later study demonstrated that a mutant HEV lacking the phospho-
rylation in vp13 replicates in cells and induces viremia in the rhesus monkey, suggesting
that vp13 phosphorylation is dispensable for virus replication and infection [91]. While
vp13 is not required for virus replication or infection in cultured cells [53], it is needed
for infectivity in vivo [91,92]. During HEV replication, vp13 oligomerizes and associates
with the membranes through its N-terminal 28 residues [93]. Further study revealed that
vp13 is palmitoylated through modification of the N-terminal cysteine residues, assisting
its association with membranes and secretion of infectious virions [93]. The N terminal
hydrophobic domains of vp13 also mediate its association with microtubules, possibly
facilitating the viral egress [94].
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ion channel for the viral release [98]. Mutations of the two PXXP motifs of vp13 abrogate
the virus release but do not affect the ion channel activity. Notably, the mutations of vp13
(CCC11-13AAA and IFI59-61AAA) not only abolish the viral release but alter the protein
subcellular location, implying the involvement of the two motifs in the ion channel activity
and viral release. The data suggest another mechanism of viral egress other than the MVB
pathway [98].

Vp13 also plays a role in disturbing cellular signaling. Vp13 of genotype 1 and 3 HEV
can elevate retinoic acid inducible gene 1 (RIG-I) signaling by enhancing its stability, while
the vp13 from genotype 2 and 4 reduce the signaling [99]. Another study also shows the
vp13 of genotype 4 downregulates the induction of type I interferons (IFNs) via degrading
IRF7 [100]. The variation between vp13 of the different genotypes is intriguing and needs
further investigation.

3.4. ORF4

ORF4 is derived from ORF1 and located in a +1 frame of genotype 1 strains only,
spanning nt 2835–3311. ORF4 is produced only under endoplasmic reticulum (ER) stress [6].
The expression of the ORF4 protein is cap-independent and internal initiation-mediated.
This protein functions to stimulate viral polymerase activity [6].

For further details of all the viral proteins of HEV, one can refer to this review [56,101].
Although the structures and characteristics of some viral proteins have been defined, their
exact functions in HEV pathogenesis largely remain unclear. To better understand the
functions of the viral proteins, highly specific monoclonal antibodies are needed.

4. HEV Life Cycle

HEV virions are conventionally viewed as non-enveloped particles, ranging from
20–40 nm in diameter. However, HEV particles from cultured cells and serum samples
are found to be quasi-enveloped. HEV virions from cultured cells and monkey feces have
different densities and sedimentation coefficients. The virions from cell culture supernatant
possess lipid and vp13, while those from feces do not [88]. The non-enveloped virions
are enterically transmitted and possibly enter the bloodstream after the first round of
replication in an unknown cell type in the gut. The virions then reach hepatocytes from
the bloodstream. The enveloped virions in the uncooked/undercooked meat may also
be enterically transmitted and the envelop is presumably removed during passage in the
gastrointestinal tract. The enveloped virions that are transmitted via blood reach hepato-
cytes and extra-hepatic target cells from the bloodstream. The HEV cell entry has been
reviewed elsewhere [102]. Non-enveloped virions require heparan sulfate proteoglycan
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(HSPG) for attachment to target cells, but the enveloped virions (eHEV) attach to the cells
independent of HSPG [4]. Both types of virions enter the cells through clathrin-mediated
and dynamin-2-dependent endocytosis (Figure 5). During the endocytosis of HEV, low
pH is required but not enough for the uncoating of eHEV [4]. However, the mechanism of
uncoating is not well understood.
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Figure 5. Schematic illustrations of the HEV life cycle. HEV particles bind the cellular receptor and
enter cells via receptor-mediated endocytosis. After uncoating, the viral genomic RNA is released
and serves as mRNA for ORF1 translation. RdRp synthesizes negative-sense intermediate RNA,
followed by synthesis of genomic RNA (gRNA) and sub-genomic RNA (sgRNA). Structural proteins
are translated, followed by assembly and egress. The eHEV is released into biliary canaliculi, where
the envelope is removed, and naked virions are released into intestines and excreted in feces. The
eHEV is also released into the blood vessels. The ORF2s is glycosylated and secreted, followed by
circulation in the bloodstream.

After uncoating, the positive-sense RNA genome is released into the cytosol and
serves as the template for the translation of ORF1. The 7-methylguanosine cap structure at
the 5′UTR of the HEV genome recruits the 40S ribosomal subunit to initiate cap-dependent
translation. Once produced, RdRp will initiate transcription of the viral genomic RNA
by binding to its 3′UTR to produce the negative-sense intermediate RNA [64]. This in-
termediate RNA serves as the template for the synthesis of progeny positive-sense viral
genomes. HEV replication requires Golgi-specific brefeldin A-resistant guanine nucleotide
exchange factor 1 (GBF1) [101,103]. The ubiquitin-proteasome system also contributes to
HEV replication as inhibition of the system abolishes the viral replication [103,104]. For
viral encapsidation and assembly, the capsid protein interacts with a 76nt region specifically
in the 5′ end of the HEV genome [104]. The N-terminal 111 amino acid residues of the
capsid protein appear to not be involved in the interaction.

Following the assembly, the viral progeny are transported by multivesicular bodies
and released by the cellular exosomal pathway [105]. The HEV assembly and release are
reviewed elsewhere [106]. Most infectious HEV particles in the form of eHEV are released
from the apical side of the hepatocytes into the biliary canaliculi, where the eHEV are
converted to non-enveloped particles by the detergent in the bile (Figure 5). A small portion
of eHEV particles is released into the blood via the basolateral side of the hepatocytes. After
the virion release, only non-enveloped HEV can be detected in bile and feces, but in blood
and urine virions are likely to be enveloped [107,108]. The eHEV envelope possesses the
trans-Golgi network protein 2 (TGOLN2), one of the markers of the trans-Golgi network,
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suggesting that the membrane-associated HEV particles are derived from the intracellular
membrane but not the cell surface [7]. The eHEV particles are shown to contain the capsid
and vp13 proteins, while the non-enveloped particles only contain the capsid protein. It
is important to note that, due to the surrounding of an envelope, the eHEV cannot be
neutralized by capsid-specific monoclonal antibodies. The absence of vp13 in the naked
virions suggests that this protein is only required for the release but not the entry of the
virus. In addition to the reduced recognition by antibodies, the attachment efficiency of
the eHEV virions to hepatocytes is one-tenth that of the naked virions [4]. Conversely, the
infectivity of the eHEV particles is shown to increase after the removal of the lipid layer.
Considering the gastrointestinal transmission route for HEV, the eHEV is the source of
naked virions and may contribute to dissemination.

During the formation of eHEV in the cells, the virus acquires the envelope mainly
from the intracellular membrane. During this process, how the virus alters the process of
the host fatty acid is still unknown. The presence of the lipid envelope seems to assist the
virus in evading neutralizing antibodies. However, the shorter duration of viremia than
the presence of non-enveloped virions in feces suggests that the eHEV might have a minor
role in HEV transmission. The HEV life cycle has been reviewed elsewhere [109].

HEV infection can evoke a series of physiological and immunological alterations in
the host. Viremia in acute hepatitis E patients normally lasts for one month, during which
the anti-HEV IgM is the major antibody produced [110,111]. Anti-HEV IgM can still be
detected in about 40% of patients until 12 months. Viral RNA can become undetectable
when the patients come to clinical attention (reviewed in [110]). However, with the newly
developed pan-genotypic PCR-based assay that is more sensitive than the commercial kits
and detects the entire spectrum of the genotypes in Orthohepevirus A [112], detection and
quantification of HEV in clinical samples could be significantly improved. Thus, HEV
infection might be less underestimated, and viral RNA can be detectable in clinical settings
with a better possibility. IgG production usually peaks at 20 weeks post-infection and can
be detected after two years, in around 37% of cases. Immunohistochemical analysis of liver
biopsies shows the infiltration of activated CD8+ T cells, which may lead to liver damage
during acute liver failure [113,114].

Both innate and adaptive immune responses are needed to clear the virus. HEV has
evolved a series of strategies to evade immune responses. HEV-specific T-cell responses in
patients with chronic hepatitis E are absent but detectable after viral clearance, suggesting
an association with impaired T-cell immune response [115,116]. Robust HEV-specific T cell
responses predominantly targeting the capsid protein are present during acute infection,
while low-level response is seen in immunosuppressed patients [117]. A recent study
defines the T cell receptors that target HEV-specific CD8+ T cell epitopes in HEV helicase
and RdRp, which are explored for immunotherapy of chronic hepatitis E [118].

5. Manipulation of Host Factors by HEV for Its Replication
5.1. Interference with Innate Immune Response

Innate immunity includes immune cells in the first line of defense, such as macrophages
and dendritic cells, and soluble factors, such as interferons (IFNs) [116,119]. IFNs play
vital roles in early antiviral defense. For efficient replication, HEV needs to antagonize
IFN induction and downstream signaling. Strains of different virulence may have a vari-
able antagonizing effect on IFNs and the effect might contribute to the different disease
manifestations. There are three types of IFNs: type I, type II, and type III. Although all
of the three types of IFN exert inhibition of HEV replication, the effect is less potent than
for hepatitis C virus (HCV) restriction [119]. To survive the innate immune defense, HEV
also significantly attenuates the production of downstream antiviral IFN-stimulated genes
(ISGs) [119]. The HEV interference with the IFN signaling reported by previous studies is
described below.
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5.1.1. Interplay with Type I IFNs

Type I IFNs include IFN-α, IFN-β, IFN-κ, IFN-ω, and IFN-ν [120,121]. IFN-α and
IFN-β play antiviral roles by inducing the production of many IFN-stimulated genes
(ISGs) [122], which arm cells against virus infection and activate the immune cells, such
as macrophages and dendritic cells [123]. Induction of IFN production in the cells is
mainly through pattern recognition receptors (PRRs), such as retinoic-acid-inducible gene
I (RIG-I)-like receptors (RLR) and Toll-like receptors (TLRs) [124]. Activation of RIG-I
leads to the conversion of mitochondrial antiviral signaling protein (MAVS) into prion-like
polymers [124,125]. The polymerized MAVS then bind several E3 ligases, such as TNF
receptor-associated factors 2, 3, and 6 (TRAF2, 3, and 6) [126], followed by recruitment
and activation of the serine/threonine-protein kinase TANK-binding kinase 1 (TBK1).
Activated TBK1 then phosphorylates MAVS, leading to the recruitment of IFN regulatory
factor 3 (IRF3) to MAVS for phosphorylation. Upon phosphorylation, IRF3 is dimerized,
dissociated from MAVS, and translocated into the nucleus to activate the expression of
IFNs [127]. RNA helicase DDX3 couples with MAVS to promote the transcription of IFNs.
Knockdown of DDX3 reduces IFN production [128,129].

IFNs exert their functions by binding to their receptors on target cells and activating
the Janus kinases (JAK)-signal transducer and activator of transcription (STAT) pathway,
leading to transcription of a myriad of ISGs [128]. Many ISGs function as restriction factors
of virus replication at various steps. In vitro experiments show that type I IFNs present the
strongest inhibition of HEV replication [119]. However, immunohistochemistry analysis
of the expression of IFN-α and IFN-inducible GTP-binding protein Mx in livers of pigs
experimentally infected with swine HEV discovered that the expression of IFN-α and Mx
in Kupffer cells, lymphocytes, and hepatocytes was inversely correlated with the number
of HEV-infected cells [130], suggesting the virus must have certain strategies to dampen
the IFN response. In Huh7.5 cells that have a defective RIG-I, HEV replication efficiency is
higher than in HepG2/C3A cells that have intact PRRs for IFN induction. Meanwhile, the
reconstitution of RIG-I in Huh7.5 cells significantly restricts the replication of HEV [131],
indicating an essential role of type I IFNs in the inhibition of HEV replication.

HEV antagonizes the production of both type I and III IFNs [8,132]. The ORF1-
derived X domain and PCP mediate blocking of the phosphorylation of IRF3 and the
de-ubiquitination of RIG-I and TBK-1, respectively [8]. However, HEV does not cleave
MAVS to inhibit RIG-I signaling [9]. The capsid proteins of both genotypes 1 and 3
impair the production of type I IFNs [132]. Mechanistically, the capsid protein blocks the
phosphorylation of IRF3 via interaction with the multiprotein complex consisting of MAVS,
TBK1, and IRF3. The N-terminal domain of the capsid protein appears to be responsible
for the inhibition of IRF3 activation. Further study shows that the arginine-rich-motif in
the N-terminal domain is essential for inhibition as mutations of the arginine residues
abolished the blockage. As the capsid protein is produced at a much higher level than
the ORF1 products and vp13 in infected cells, the capsid protein is expected to play a
major role in antagonizing interferon production. The capsid protein interacts with RNA
helicase DDX3 [133]. The DDX3 C-terminal domain is found to interact with the capsid
protein. Knockdown of DDX3 compromises the capsid protein-mediated blockage of
interferon induction. These results provide further insight into HEV interference with
innate immunity.

5.1.2. Induction of Type II IFN

The type II IFN has only one subtype, IFN-γ. IFN-γ is produced by NK cells, NKT
cells, CD4+ T, and CD8+ T cells [134]. IFN-γ stimulates undifferentiated CD4+ T cells to
differentiate into Th1 cells and helps to activate NK or NKT cells. In peripheral blood
mononuclear cells (PBMC) from patients with acute HEV infection, stimulation with HEV
capsid protein induces the elevation of IFN-γ level but does not change the proportion
of CD4+ T and CD8+ T cells, which indicates that HEV infection sensitizes NKT cells to
produce IFN-γ [135]. Meanwhile, in HEV-infected pregnant women, IFN-γ, TNF-α, and
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IL-6 are elevated compared to non-pregnant women [136]. Compared to type I and III
IFNs, IFN-γ only exerts moderate inhibition of HEV replication, according to an in vitro
experiment [119].

5.1.3. Interplay with Type III IFNs

The type III IFNs are composed of IFN-λ1, -λ2, -λ3 and -λ4 [137,138]. HEV can survive
in the presence of type III IFNs [9,139]. Different from type I IFNs, whose receptor is
distributed on all nucleated cells, the receptor of IFN-λ is constricted to epithelial and
immune cells, such as neutrophils and NK cells [140,141]. Production of type III IFNs
is similar to, but has a minor difference from, type I IFNs. Type I IFNs are induced via
the mitochondrial-associated MAVS, while type III IFNs are produced via activation of
the peroxisome-associated MAVS [142,143]. IRF1, IRF3, and NF-κB mediate the signaling
leading to IFN-λ production from the peroxisome-bound MAVS [142,143]. The signaling
cascades downstream of the IFN-λ receptor complex are very similar to those of type I IFNs
and are transmitted by the JAK-STAT pathway [144]. IFN-λ protects epithelial layers and
mucosal barriers from the invasion of pathogens [145] and regulates adaptive immunity
through activating dendritic cells [146].

HEV induces type III IFNs via RIG-I and MDA5 and elevation of the two PRRs [9].
However, elevated RIG-I or MDA5 do not enhance type I IFN production, possibly due to
the inhibitory roles of HEV viral proteins [8,132]. Although type III IFNs can suppress the
replication of HEV to a certain extent, the virus can still survive and persist in the presence
of low-level type III IFNs. The continuous activation of IFN signaling renders the infected
cells resistant to extra exogenous IFN treatment, probably due to the consistently activated
JAK/STAT pathway [9]. HEV inhibits poly(I:C)-induced type III IFNs, albeit weaker than
the inhibition of type I IFNs [132].

5.2. Manipulation of Cellular Factors for a Conducive Environment for Replication

HEV can manipulate cellular proteins to create a conducive environment for replication
and to reduce immune response. Liver samples from swine infected with genotype 3 HEV
revealed the upregulation of apolipoprotein E [147]. In patients infected with HEV, the
triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) are elevated in the
serum, suggesting an imbalance of lipid homeostasis caused by HEV [148]. Golgi brefeldin
A resistance factor 1 (GBF1) is a lipid regulator that participates in vesicle transport, Golgi
morphogenesis, and lipid droplet metabolism. The depletion of GBF1 impairs the replication
of HEV; however, the location of GBF1 is not changed upon HEV infection. GBFI does not
co-localize with the ORF1 proteins of the virus, suggesting that GBF1 may not be recruited
to the replication sites [101].

The mass spectrometry analysis of proteins interacting with the HEV RNA at its
putative promoter region and the RdRp reveals a number of protein candidates, most
of them localized to ribonucleoprotein granules, secretory granule lumen, and endocytic
vesicle lumen [149]. The functional category of the proteins includes translation elongation,
RNA binding, and RNA stem-loop binding. The highest number of proteins are involved
in nucleic acid-binding activity, which further confirms the dependence of HEV on the host
for viral RNA metabolism [149].

A yeast hybrid assay against partial HEV capsid protein (aa 112–660) reveals 59 proteins
involved in various biological processes, such as homeostatic process and oxidation. The
major portion of these are membrane proteins associated with ER, Golgi, mitochondrion,
and transportation vesicles [150].

BioID, a method to screen for physiologically relevant protein interactions in living
cells, and mass spectrometry (BioID/MS) were conducted to determine the host proteins
in close proximity to the capsid protein of a genotype 3 strain [133]. A total of 145 potential
proximal interactors was identified. Gene ontology analysis shows that the capsid protein
is associated with the mitochondrion proteins and ribonucleoprotein granules, suggesting
that the capsid protein may interfere with some mitochondrial processes and has a role
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in the post-transcriptional regulation of cellular RNA. The ORF2 proximal interactors are
highly enriched in proteins of RNA metabolism, regulation of translation, and proteolysis.
The BioID/MS data analysis shows the top candidate is DDX3, suggesting a strong interac-
tion with the capsid protein. Notably, DDX3 silencing led to a significant reduction in HEV
replication [133]. The ATPase activity of DDX3 is also required for HEV replication. These
results demonstrate a pro-viral role of DDX3 in HEV replication, providing further insights
into the virus-cell interactions.

Recent protein-protein interaction analysis revealed that a series of translation initia-
tion factors, such as eIF4A2, eIF3A, eEF1A1, and RACK1, are required for virus replication.
Proteins assemble with viral nonstructural proteins like RdRp, X, and PCP, suggesting that
the virus utilizes the cellular translation complex for viral protein translation [151].

The STAT3 transcription factor is a major regulator of the acute-phase response (APR)
in the liver, which contributes to host defense [152]. The ORF3 product vp13 decreases
the nuclear translocation of p-STAT3, possibly through the delayed post internalization
trafficking of the epidermal growth factor receptor (EGFR) [153]. The delayed post in-
ternalization trafficking was later found to be mediated by the interaction between vp13
and CIN85, a multidomain adaptor protein implicated in the downregulation of recep-
tor tyrosine kinases [154]. vp13 also interacts with α1-microglobulin/bikunin precursor
(AMBP), an immune response suppressor, and promotes its cleavage and secretion out of
hepatocytes [155]. The immune regulation may create an immune-tolerant environment
for HEV replication.

Collectively, HEV can modulate host factors, such as lipid-associated molecules,
translational factors, and immune components, to generate a conducive environment for
replication. However, it is unclear whether different HEV genotypes modulate the host
factors differently, leading to distinct disease manifestations. This variation may also be
true for different strains with variable virulence in the same genotype. Further research
is needed to compare the variable effects of the different genotypes, especially between
genotype 1 causing acute infection with potential adverse outcome in pregnant women
and genotype 3 causing chronic infection.

6. Clinical Manifestations of Hepatitis E

Common clinical signs of HEV infection include vomiting, nausea, fever, jaundice,
and elevated liver enzyme [156]. Genotype 1 and 2 HEV mainly cause acute hepatitis after
infection and are generally more virulent than genotype 3 and 4 in terms of causing diseases
in the immunocompetent population [157]. Data from patients with confirmed acute
HEV genotype 1 infection in England and Wales suggest that the incubation time ranges
from 10–71 days, with a median of 29.8 days [158]. Viremia peaks within the incubation
period or concurrent with the symptom onset [159,160] but can be prolonged in certain
patients [161,162]. Viral RNA in the blood can become undetectable after three weeks from
the disease onset, while the RNA in feces can be detected for a longer period [160].

HEV genotype 3 and 4 can infect both immune vulnerable and competent popula-
tions. Strains of these two genotypes can cause foodborne zoonotic infection and can be
transmitted via uncooked or undercooked meat and products from swine, wild boars or
deer [163]. The majority of cases caused by genotype 3 HEV are asymptomatic, while some
cases in older adults and immunocompromised patients can result in chronic infection. The
incubation period varies from 5–7 weeks after infection with a median period of 5.4 weeks,
which is similar to genotype 1 [41]. In developed countries, HEV genotype 3 infection
occurs mostly in the population around the age of 60 and older [157]. Infection of genotype
3 HEV in immunocompromised individuals bears a high risk of developing into chronic
hepatitis, and in some cases the outcome can be accelerated cirrhosis, especially in organ
transplant recipients [164–166]. Chronic infection with genotype 3 strains may last for
3–6 months after the onset of illness. Genetic heterogeneity analysis in 16 solid-organ-
transplant patients showed that, after HEV infection, eight patients progressed to chronic
hepatitis following the acute phase, and the ORF2 sequences from these eight patients
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possess greater diversity than others who cleared the virus during the acute phase. This
higher genetic heterogeneity may help to evade immune surveillance and account for
the disease chronicity [167]. Infection with genotype 4 is mostly autochthonous [168,169],
which may be asymptomatic or present typical liver dysfunctional signs, such as vomiting,
nausea, jaundice, elevated alanine aminotransferase (ALT), and even ascites. The clinical
manifestations and chronicity determinants of chronic HEV infection have been reviewed
elsewhere [170]. Genotype 3 and 4 infection in pregnant women does not cause fatal
consequences, based on current reports [171,172].

Aside from the typical liver symptoms, HEV infection is also implicated in neurological
disorders, which distinguish HEV infection from other forms of hepatitis [173]. Neurological
manifestations, such as Guillain-Barré syndrome [174], Bell’s palsy [175], and neuralgic
amyotrophy [176], have been observed in both acute and chronic HEV-infected patients.
HEV has been detected in cerebrospinal fluid [177]. In an HEV genotype 4-infected Mon-
golian gerbils, the virus is detected in the neuron, ependymal epithelium, and choroid
plexus area [178]. The data suggest that HEV is able to pass the blood-brain barrier to
invade the brain and spinal cord. In genotype 3 HEV infected patients with neurological
disorders, most of them appear to suffer no severe hepatic failure. Neurological pain is
more frequently observed in immunocompetent patients over 50 years old [179]. In a recent
clinical study, among 141 cases of acute HEV infection in Southern Switzerland, 43 (30.4%)
had neurological symptoms within six months [180]. In the 141 cases, 15 (10.6%) showed
neuralgic amyotrophy, and 28 (19.8%) presented myalgia. All 15 patients with neuralgic
amyotrophy were immunocompetent, and men have higher odds of developing it. It is
recommended that patients with acute neurologic manifestations and aminotransferase
abnormalities should be screened for HEV infection. The reason for HEV-associated neuro-
logical manifestations remains inconclusive. One possible reason could be the neurotropism
of the circulating HEV. Other extra-hepatic manifestations like acute pancreatitis can be
seen in HEV infection [181]. A plausible reason for virus-associated acute pancreatitis is the
direct inflammation and destruction of pancreatic acinar cells by the virus. The extra-hepatic
manifestations associated with HEV infection are reviewed elsewhere [182].

HEV infection of patients with ongoing hepatitis can potentially accelerate disease
progression. Co-infection with HEV exacerbates the disease progression of the other viral
forms of hepatitis [183]. Co-infection of HAV and HEV has been found in Poland, and
patients with HAV are more prone to be exposed to HEV infection [181]. Distribution of
the dual infection is widespread, such as in Egypt [184], Iran [185], South Korea [186], and
Italy [187]. The prevalence of co-infection is predominant towards the end of monsoons
and the beginning of the winter in India [188]. HEV co-infections in chronic hepatitis B
patients are also reported [189,190]. A clinical study shows that the co-infection of HBV and
HEV has exacerbated complications and liver failure [183]. HEV infection causes severe
adverse outcomes in both cirrhotic and non-cirrhotic chronic hepatitis B patients [191,192].
For patients with HBV and HEV co-infections, anti-HBV treatment does not decrease the
mortality rate or improve the prognosis of liver failure [183]. In patients with chronic
HCV infection who receive liver transplantation in the US, a high prevalence of HEV is
detected [193]. The co-infection of HCV and HEV is also reported in China [194] and may
exacerbate the disease progression.

HEV infection in animals is generally subclinical except in chickens. Avian HEV is
associated with the hepatitis-splenomegaly syndrome, a disease with big liver and spleen
in chickens [195], yet the majority of the infected chickens are subclinical.

7. HEV Infection of Pregnant Women

HEV infection during pregnancy can result in poor prognosis [196] and vertical
transmission. Unlike HBV and HCV, which normally do not cause death cases in acute
infection of pregnant women [197,198], HEV infection by genotype 1 strains in pregnant
women results in up to 30% case fatality, while infection by genotype 3 strains is usually
subclinical [3].
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A fine balance is maintained during pregnancy between maternal-fetal tolerance
and mounting an effective innate and adaptive immunity against invading pathogens.
Dysregulation of the mechanisms maintaining the balance can lead to disorders. Early
studies show that the number of T cells decreases during pregnancy [199–201]. There is a
clear shift of the Th1:Th2 paradigm with an apparent Th2 bias, which could create maternal-
fetal tolerance for fetus development [202]. Regulatory T cells are also considered to play a
role in maternal-fetal tolerance during pregnancy [203]. Th2 bias in pregnant women with
acute hepatitis E due to genotype 1 HEV is more prominent than in non-pregnant patients
with acute hepatitis E and healthy pregnant women [204]. The obvious Th2 alteration
might attribute to the physiological changes of pregnancy or the consequence of virus
infection. These data suggest that genotype 1 HEV might be able to dysregulate the balance
between tolerance and immunity.

Early antiviral response is critical for the host to control virus infection. In pregnant
women with acute infection of genotype 1 HEV, the expression of TLR3, 7, and 9 in
monocytes and macrophages is upregulated. But when acute liver failure (ALF) develops,
their expression is reduced, which may account for the defective immune response in
ALF patients [205]. Also, the IFN response in placental cells is reported to be weaker
than hepatocytes for genotype 1 but not genotype 3 HEV [206]. These data suggest that
genotype 1 HEV might be able to evade the early antiviral response in a certain population
of pregnant women and cause an adverse consequence.

Genotype 1 HEV infection might interfere with adaptive immunity in some subjects.
One study shows that in the second and third trimester of pregnancy, HEV-infected preg-
nant women with fulminant hepatic failure (FHF) have lower CD4+ T cell counts and
higher CD8+ T cell counts than HEV-negative women with FHF [207]. Other studies show
a significant infiltration of activated CD8+ T cells containing granzymes in liver biopsies
from HEV-infected patients with FHF, which suggests the role of CD8+ T cells in the liver
injury [113,114]. Clinical investigation in HEV-infected women with acute liver failure
revealed that the cytokine level, such as TNF-α, IL-6, and IFN-γ, is higher than in non-
infected pregnant women, and the level of these cytokines are positively correlated to
adverse pregnancy outcome [136]. These data suggest that genotype 1 HEV induces an
overactive inflammatory response leading to a poor prognosis in a certain population of
pregnant women.

The genotype 1 HEV is also implicated in invading the placenta more effectively than
genotype 3. A recent study demonstrates that the genotype 1 HEV grows much more
dynamically than genotype 3 HEV in the ex vivo maternal-fetal interface model using
the decidua basalis and fetal placenta [208]. Genotype 1 HEV induces a higher level of
apoptosis of decidua and placenta cells than genotype 3 HEV and provokes a higher level
of IL-6, CCL-3, and CCL-4, which positively correlates with the viral load. Meanwhile,
UV-treated culture supernatant harvested from genotype 1 HEV-infected explants causes
more tissue injury in fresh decidua and placenta organ culture than the genotype 3 HEV-
infected cultures [208]. Further studies are needed to compare the genetic characteristics
of genotype 1 and 3, and identify the key factors in genotype 1 infection that determine
severe disease outcome.

In addition to immunological factors, hormone variation during pregnancy may
contribute to viral replication. Pregnant women with acute HEV hepatitis have increased
estrogen and progesterone level [207]. These hormones are known to dampen the cell-
mediated immune response [209,210]

Similarly, the estradiol level in HEV-infected pregnant women during the third
trimester is significantly higher than HEV-negative pregnant women. An in vitro experi-
ment shows that the estradiol treatment facilitates HEV replication in A549 cells [211]. Thus,
the variation in hormone level is also speculated to be one of the factors that contribute to
the severe disease progress of HEV-infected pregnant women.

Collectively, the immune-tolerant environment may subject pregnant women to be-
come more vulnerable to HEV infection. HEV infection with genotype 1 might dysregulate
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the balance maintaining the maternal-fetal tolerance and effective immunity, or alter the im-
munological mechanisms that maintain the balance, which leads to the dire consequence of
FHF in pregnant women. The potential mechanisms that genotype 1 HEV employs to pro-
duce the mortality of pregnant women need to be investigated. Why infection of different
genotypes results in different disease outcomes and what determines the chronicity of HEV
infection remain unclear. Both virus and host factors possibly contribute to the disease’s
progress. In terms of the viral factors, genetic variations of the different genotypes and
host adaptability may account for the different outcomes. Conversely, the immune-tolerant
environment and associated factors that may be better exploited by genotype 1 HEV in
a certain vulnerable population might contribute to the development of ALF in infected
pregnant women. So far, most fatality cases of HEV infection during pregnancy are found
in South Asia. Due to the different geographical environments and food habits, the gut
microbiota in South Asia might vary from other areas and might be a risk factor for ALF
development in HEV-infected pregnant women. Further research on this front is needed to
address this speculation.

8. Concluding Remarks

HEV infection causes large outbreaks of hepatitis across the world. In pregnant
women or patients with immunosuppression, the prognosis of HEV infection can be poor.
The reason that genotype 1 HEV causes mortality in pregnant women needs to be further
investigated. Infection of different genotypes results in different disease outcomes, and
the determinants of the chronicity of the HEV infection remain unclear. Both the virus and
host factors can contribute to the process. In terms of the virus factor, the genetic variations
and host adaptability may account for the different symptoms. In terms of host factors, the
compromised immune system may lead to FHF development in HEV-infected pregnant
women or provide a tolerant environment for persistent infection.

In the virus life cycle, for the formation of eHEV in the cells the virus acquires the
envelope mainly from the intracellular membrane. It is not known whether HEV alters the
process of the host fatty acid metabolism for its replication and whether the lipoproteins are
employed in the viral life cycle. The presence of a lipid envelope lowers the entry efficiency
of the virus. Although HSPG is demonstrably required for HEV entry, the specific receptors
for non-enveloped or enveloped HEV remain to be elucidated. Host factors are essential for
HEV replication, and the complex virus-cell interactions lead to a conducive environment
for the viral proliferation. There remain many unknowns in this process.

Recent studies assist the understanding of HEV biology and pathogenesis. However,
there are still many open questions. For instance, what is the receptor for the viral entry?
What is the location of the viral replication complex? What are the cellular factors that HEV
manipulates to generate a conducive environment for replication? How does the virus
recruit the cellular factors for its replication? Does HEV influence liver lipid metabolism?
What are the roles of different forms of the capsid protein? What is the role of the quasi-
enveloped virions in HEV transmission? What are the differences between genotype 1 and
3 that account for the difference in host range and disease outcomes? Are there any host
factors or other conditions in a certain population of pregnant women in South Asia that
are prone to the genotype 1 HEV-induced FHF? In order to answer these questions, an
efficient cell culture system and a competent animal model, as well as specific antibodies
against individual viral proteins, are needed. A recent report in cell culture for high yield of
HEV [212] and the rabbit model for HEV-induced adverse pregnancy outcome [213] will be
useful to address some of these questions. Further study on HEV biology and pathogenesis
is warranted.
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