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Abstract

In science, it is a common experience to discover that although the investigated effect is very clear in some individuals,
statistical tests are not significant because the effect is null or even opposite in other individuals. Indeed, t-tests, Anovas and
linear regressions compare the average effect with respect to its inter-individual variability, so that they can fail to evidence
a factor that has a high effect in many individuals (with respect to the intra-individual variability). In such paradoxical
situations, statistical tools are at odds with the researcher’s aim to uncover any factor that affects individual behavior, and
not only those with stereotypical effects. In order to go beyond the reductive and sometimes illusory description of the
average behavior, we propose a simple statistical method: applying a Kolmogorov-Smirnov test to assess whether the
distribution of p-values provided by individual tests is significantly biased towards zero. Using Monte-Carlo studies, we
assess the power of this two-step procedure with respect to RM Anova and multilevel mixed-effect analyses, and probe its
robustness when individual data violate the assumption of normality and homoscedasticity. We find that the method is
powerful and robust even with small sample sizes for which multilevel methods reach their limits. In contrast to existing
methods for combining p-values, the Kolmogorov-Smirnov test has unique resistance to outlier individuals: it cannot yield
significance based on a high effect in one or two exceptional individuals, which allows drawing valid population inferences.
The simplicity and ease of use of our method facilitates the identification of factors that would otherwise be overlooked
because they affect individual behavior in significant but variable ways, and its power and reliability with small sample sizes
(,30–50 individuals) suggest it as a tool of choice in exploratory studies.
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Introduction

An Example of Individually Variable Effect
Sometimes reality is more complex than common effects found

in all individuals. Consider for example an experiment on visually-

guided reaching, designed to test the accuracy of human subjects.

Ten volunteers are asked to reach towards visual targets with their

unseen hand. The design involves repeated measures: each subject

performs a similar series of movements of various distances and

directions. The ratios between movement distance and actual

target distance (taken as a measure of individual performance) are

subjected to a paired t-test. The outcome is far from significance,

because 4 out of 10 subjects systematically overshot the targets,

whereas 2 others systematically undershot them. Although

individual tests show that the inaccuracy is significant for 6

subjects, the experimenter has no choice but to conclude that there

is no effect. Later, another experimenter interested in this

apparently unexplored issue is luckier with his subjects – or finds

good reasons to discard one or two outliers. He eventually reports

that human subjects tend to overshoot targets when reaching

without vision of the hand – or perhaps the opposite. Although the

epilogue of this story is fictitious, the rest is real, and may well

remind the reader of a similar situation in his or her research.

The true story ended differently since the first experimenter

(actually, two of us, [1]) assessed whether a set of individual tests

was globally significant, using a simple method. The result

supported the general inference that the human motor system

uses a visuo-motor gain to plan hand movements. This article

generalizes this method to all experimental designs with repeated-

measures, and thoroughly analyzes its power and reliability.

The Problem of the Publication Bias Towards
Stereotypical Effects

The example above points to a mismatch between usual

statistical tools and scientific aims - the question is often whether a

factor affects individual behavior, not whether it has a stereotyp-

ical effect. Research often drifts towards the latter question

because of a lack of adequate tools to answer the former. As we

show below, the problem is far from being circumscribed to a

specific test or scientific field. The statistically savvy experimenter

may resort to complex methods that can evidence individually

variable effects, especially using covariates and carrying out

multilevel mixed-effects analyses. However, these and others

methods have several drawbacks that limit their use. Instead, we

propose here a much simpler but usually as effective statistical
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procedure that answers the researcher’s original question. We first

need to realize that the difficulty raised in the example above

concerns all statistical methods based on the General(ized) Linear

Model. These tests have optimal power when individuals behave

identically, i.e. when the apparent inter-individual variability only

results from intra-individual variability. When there exists genuine,

idiosyncratic variations in the effect of a factor, the power of these

tests tends towards zero as inter-individual variability increases. In

the extreme, the effect of a factor can be significant for every

individual (compared to intra-individual variability) while Student

and Fisher tests yield a probability close to one if the population

average is small enough. In such a case, the experimenter has a

wrong tool for a right question – or a right tool for a wrong

question.

In statistical jargon, usual procedures assess the null average

hypothesis (that the average effect is zero), rather than the global null

hypothesis that there is no effect in any individual (the second is also

called conjunction of null hypotheses [2,3] or combined null hypothesis [4]).

This problem affects virtually all research in life and social

sciences. Indeed, all objects investigated in social and life sciences

are complex individual systems or subsystems. As such, their

behavior depends on multiple interacting components, and they

are all likely to display idiosyncratic variations of experimental

factor effects. Factor effects with small inter-individual variability

are much more likely to be reported than those with large

variability, although the latter would shed more light on the

underlying systems. In our aforementioned study, the systematic

inaccuracies revealed highly significant (F tests, p,0.001 for 6 out

of 10 subjects). However, the average gain error was not

significantly different from 0 (Wilcoxon and Student tests,

p..25): this apparently unbiased performance did not correctly

describe the behavior of 60% of the sample!

A Simple Solution
There are presently different methods for dealing with inter-

individual variability of factor effects, often by assessing the global

null hypothesis. Multilevel mixed effects modeling is the first of them,

and tends to become standard. A second solution is including

covariates in an analysis of covariance (Ancova). When repeated-

measures (RM) Anovas are appropriate, a third way to evidence

significant but variable effects is by testing interactions between

subjects and fixed factors with respect to the pooled intra-

individual variability. Last, a fourth procedure has been proposed

for fMRI and microarray studies [2,3,5–7] as well as social data

[4]; it consists in carrying out individual fixed-effects tests such as

Anovas, and then assessing whether the set of individual p-values is

significantly biased towards zero using meta-analytic methods for

combining p-values [8–10]. However, as will be shown below, each

of these four methods has specific drawbacks that limit their use.

The new method we propose is akin to this last procedure. It

consists in carrying out individual tests, and then assessing whether

the set of individual p-values is biased towards zero using the

Kolmogorov-Smirnov (KS) distribution test. Indeed, the global null

hypothesis implies that the p-values yielded by individual tests are

uniformly distributed between 0 and 1. As the one-sample

Kolmogorov-Smirnov test assesses whether a sample is likely to

be drawn from a theoretical distribution, the unilateral one-sample

Kolmogorov-Smirnov (UKS) test will assess the likelihood of

excess of small p-values in samples randomly drawn from the

uniform distribution between 0 and 1, and thus answer our

question. In the previous example on manual pointing, the UKS

test applied to the outcomes of individuals tests rejected the

hypothesis that humans do not make systematic movement

amplitude errors (TK = 0.676, p,.0001).

Compared to the existing methods for assessing the global null

hypothesis, the UKS test procedure has four desirable qualities.

First, it is of simple use. As it requires much less statistical expertise

than multilevel mixed-effects analyses, anyone interested in testing

the global null hypothesis can employ it. Second, the procedure is

practically assumption-free. As tests are individual, there is no

need for homoscedasticity across subjects. For the same reason,

individual effects need not have a Gaussian distribution (non-

parametric tests like the Kruskal-Wallis or Spearman’s rank

correlation test can be used in such a case). Thus, our procedure

can work in circumstances where RM Anovas and Ancovas would

be impossible and multilevel analyses particularly complex. Third,

this method has a rare quality: resistance. Indeed, using a

distribution test makes the procedure more robust with respect to

outlying individuals that any of the present methods (see Results
S1). RM Anovas or meta-analytic methods [8–10] for combining

p-values are all highly sensitive to outliers and can conclude to a

significant effect because of a single individual. Fourth, our

procedure works well with small samples, which makes it attractive

with respect to multilevel mixed-effects analyses that need at least

30 to 50 individuals to yield accurate estimates in regressions [11–

14] and RM Anovas (see Results S1).

The overall simplicity and robustness of this method being

attractive, we needed assess its power and reliability, especially in

actual usage conditions. The rest of this article formally establishes

the validity and generality of the method.

Organization of the Paper
We describe seven series of Monte-Carlo studies that assess the

power, reproducibility and robustness of the UKS test procedure

with individual one-way Anovas and Kruskal-Wallis tests, and

compare them with the outcomes of RM Anovas or multilevel

mixed-effects analyses applied to the same synthetic datasets. In

these simulations, unless stated otherwise, we systematically varied

the number of individuals, the number of factor levels, the number

of repetitions per level, the trial-to-trial variance (for a given factor

and individual), and the across-individual variance of the effect.

The factor effect was zero for all individuals in simulations aimed

at assessing type I errors, and non-zero in at least some individuals

(several scenarios were simulated) when assessing type II errors.

Part 1 and 2 evaluate the type II error rates when individual effects

have Gaussian (Part 1) or mixed Gaussian distributions (Part 2).

We then show that as a distribution test, the UKS test is less

sensitive to exceptional individuals than alternative tests (Part 3).

Next, we examine type I error rates when individual tests

assumption holds (Part 4), when the homoscedasticity assumption

is violated (Part 5), and when individual data is skewed or includes

outlier trials (Part 6). We also show that the UKS test can be used

in conjunction with non-parametric individual tests (Part 7). We

finally determine the designs for which the UKS test is more

appropriate than multilevel mixed-effects analyses (Part 8).

Altogether, these studies provide practical guidance as to 1) the

situations where UKS test procedure is better suited than RM

Anova and multilevel mixed-effects analyses, 2) the optimal

experimental designs for the UKS procedure, and 3) the violations

of assumptions that may increase type I errors.

Results

1. Power as a Function of Inter- and Intra-individual
Variances

This section and the following one investigate the power of the

UKS test procedure with Monte-Carlo studies. In this part, we

considered the usual hypothesis that individual differences in

Dealing with Interindividual Variations of Effects
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factor effect have a Gaussian distribution: this happens when these

differences result from multiple small variations. As a reference for

judging power, we provide the type II error rates of RM Anovas

for the same datasets. Note that both procedures are not

equivalent, as stressed above. Although UKS and Anovas apply

to the same doubly repeated measure experimental designs and

both test the effect of experimental factors on the variable of

interest, the UKS test assesses the global null hypothesis while RM

Anovas assesses the null average hypothesis to evidence main effects.

Comparing the two methods can help choosing between

hypotheses from preliminary or similar experiments, and optimiz-

ing the experimental design for either RM Anova or UKS test.

In this study, we first assessed how the median probabilities

yielded by UKS tests and RM Anovas varied as a function of intra-

and inter-individual variability for a ‘typical’ design (a single two-

level fixed factor, 10 individuals and 10 trial repetitions). Random

datasets were obtained by adding three values: a constant effect

(21/!2 in level 1, +1/!2 in level 2); a random individual effect

drawn for each level from a Gaussian distribution with null mean

and variance sint
2; and a random trial error drawn from a

Gaussian distribution with null mean and variance serr
2. We

computed the median probability yielded by 100000 UKS tests

and RM Anovas for every combination of 41 values for sint, the

standard deviation of the interaction between individuals and fixed

factor, and 46 values for serr, the standard deviation of trial-to-

trial errors (see Methods for details). The results are displayed in

Figure 1, with axes units chosen to give a cylindrical symmetry to

the median probability of RM Anovas. The scales of the

horizontal axes correspond to a unitary effect size Seff. The shapes

are invariant if Seff and the scale of the two horizontal axes are

multiplied by a common factor. This enables results from any

preliminary study to be situated in Figure 1 after dividing estimates

of sint
2 and serr

2 by an estimate of Seff (see Methods). Red to green

surfaces and lines denote median probabilities between 0 and 0.05,

i.e. type II error rates below 0.50 at the 0.05 threshold.

The most salient feature of Figure 1 is the difference in extension

between the red-to-green surfaces of RM Anovas (panel A, circular

colored lines in panel D) and the UKS test procedure (panel B, colored

surface in panel C, thick colored lines in panel D). It highlights the limits

of testing the null average hypothesis to evidence stereotypical effects. For

RM Anovas, the expected values of the F numerator and denominator

are respectively equal to E(Num)~Seffz(s2
intzs2

err

�
N)
�

I and

E(Den)~(s2
intzs2

eff

�
N)
�

I where N is the number of within-level

repetitions and I the number of individuals. A rough computation

shows that RM Anovas have type II error rates above 50% at the.05

threshold as soon as sint
2 exceeds I|Seff=(F:05{1) where F.05 is

the 0.05 threshold of the F. In the present design with 2 levels and 10

individuals, this limit is reached when the standard deviation sint is

approximately equal to the average difference between levels (!2).

Except with high population size, RM Anovas are powerless for

evidencing factors whose individual effect distribution has second

moment sint
2 two or three times larger than the first moment

defined as Seff.

By contrast, the UKS test procedure is suited to evidence factors

that show up through the inter-individual variance of their effects

sint
2. Its outcome essentially depends on the ratio of sint to serr/

!N. This is shown by the convergence of the rightward part of the

thick colored curves in Panel D towards a point close to the origin.

These curves indicate constant median probability for the UKS

procedure. Their asymptotes for large sint are lines that converge

towards the point of coordinate (-Seff/2, 0). This geometrical

feature would be observed for any experimental design (see

Supporting Information for details). Therefore, it demonstrates

that the UKS procedure can yield low type II error rate with

moderate number of within-level repetitions as soon as serr is small

enough compared to sint.

The left part of Panel C in Figure 1 enables to compare the type

II error rates of the two procedures when there is not any inter-

individual variability (sint = 0). In these situations, the global null

hypothesis and the null average hypothesis are equivalent, i.e. both of

them are either true or false in the population. When the level of

trial-to-trial variability is large (relatively to effect size), the RM

Anovas’ advantage of averaging individual effects and pooling

errors is clearly visible as a median probability lower than that

yielded by the UKS test. However, as serr/!N decreases, the

advantage decreases and eventually disappears. Thus, the UKS

test procedure has higher type II errors rates than RM Anovas

when both tests have little chance to evidence factor effects. When

the median p-value of RM Anovas is equal or smaller than.05, the

range of (serr, sint) duplets where the UKS test has higher median

p-value shrinks as serr decreases (areas between thin and thick

homologous lines in Panel D). Eventually, when serr/!N is low

with respect to effect size, the UKS test procedure have better

sensitivity than RM Anovas (Panel C) if serr varies across

individuals, as in the present simulation (see Methods) and in

most experiments. The advantage of pooling residual errors may

turn to a disadvantage when residual errors arise from a mixed

Gaussian distribution [15].

To explore the effect of the experimental design, we finally

carried out 40 additional simulations varying the numbers of

individuals (4 to 40), factor levels (2 to 5) and intra-level repetitions

(2 to 100). We first found that increasing the number of individuals

beyond 8 benefits similarly to the UKS test and RM Anovas, while

decreasing it below 8 increases more the type II error rates in RM

Anovas than in the UKS test. A second – more expected – finding

was that increasing the number of trials by individual (numbers of

levels multiplied by the number of within-level repetitions)

decreased more the type II error rate for the UKS test than for

RM Anovas. We conclude that when high inter-individual

variability of the effect suggests using the UKS test procedure, it

is sensible to plan a large number of trials by individual rather than

a large cohort of individuals, if the total number of trials is a

constraint.

As a general conclusion to this Part 1, our Monte-Carlo analyses

show that the UKS method is largely as powerful for testing the

global null hypothesis as is the standard RM Anova for the null average

hypothesis.

2. Power in a Heterogeneous Population
In the above simulation studies, we assumed that individual

effects had Gaussian distribution. However, in many situations

mixed Gaussian distributions are more plausible. For example, the

behavior of individual subjects may depend on their gender or

cultural origin; the investigated system may have two or more

equilibrium states or local minima; the experiment may be carried

out by several experimenters; morning experimental sessions may

provide different results than afternoon ones because of differences

in room temperature or subject’s arousal. The principle of mixed

Gaussian distributions of individual effects encompasses all these

situations and many others. In such circumstances, one can

wonder at which point inferences drawn from RM Anovas and

UKS test are reproducible and generalizable. To get insight into

this issue, we carried out simulations to assess type II error rates for

a design with 10 individuals, a 2-level factor and 8 within-level

repetitions. In these simulations, we modeled population hetero-

geneity as the mixture of two subpopulations of subjects, a

subpopulation showing an effect d of the factor, and one showing

no effect. A third subpopulation of subjects showing on average an

Dealing with Interindividual Variations of Effects
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opposite effect was occasionally added. Thus, in our Monte-Carlo

simulations the trial-to-trial variability was constant while two

parameters varied: the effect size, defined as the difference d

between the two factor levels, and the proportions of population

that displayed the average effect d, no effect, or occasionally an

average opposite effect –d (see Methods for details).

Panels A and B in Figure 2 show the proportion of significant

RM Anovas (continuous line) and UKS tests at the.05 (dashed)
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Figure 1. Comparison of type II error rates in UKS test and RM Anovas. Results of a simulation study based on over one billion datasets. Each
dataset represents the data of 10 individuals performing 10 trials in each of the 2 levels of a factor. Each data point was obtained by adding to the
fixed central value of the level (21/!2 or +1/!2) two random Gaussian values representing individual idiosyncrasies and trial-to-trial errors (see
Methods). Panel A: Median probability (Z-axis) yielded by RM Anovas as a function of the standard deviations of subject-factor interaction (X-axis,
rightwards) and average of 10 trial-to-trial errors (Y-axis, leftwards). Panel B: Median probability yielded by the UKS test for the same random data.
Panel C: superimposition of the surfaces displayed in panel A and B. Note that in conditions when UKS test is less powerful than ANOVA (larger
median p), the difference in power is never dramatic; the converse is not true. Panel D: 2D-isolines of the surfaces in panel C for median probabilities.
001 (red), .01 (orange), .05 (green), .10 (light blue) and .20 (dark blue). Black line: projection of the intersection of the two surfaces; RM Anova is more
powerful (smaller median probability) than the UKS test for points leftwards of the black line. Note that scaling the X-axis to the SD of within-level
averages of trial-to-trial errors gives a symmetrical aspect to RM Anova surface and projection.
doi:10.1371/journal.pone.0039059.g001
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and.01 thresholds (dotted) for two simulation studies where the

experimental effect was null in 10 and 20% of the population,

respectively, and equal to d in the rest of the population. As the

value of the effect size d in the bulk of the population increased

from 0 to 8, all three lines increased from the nominal type I error

rate to the value 1 associated with null type II error rate and

perfect reproducibility. The horizontal shift between curves

reflects decreasing power from RM Anova to UKS test at the.01

threshold (the power difference would be smaller if non-null

individual effects were variable rather than all equal to d). Grey

lines indicate low reproducibility defined as probability beyond 1/

3 that two independent experiments yield conflicting outcomes. If

p is the proportion of significant outcome, low reproducibility

occur when p2 + (12p)2 .1/3, i.e. for p between 0.211 and 0.789.

In panel A and B, all three tests have low reproducibility (grey line)

for a similar span of experimental effect values. In panel C (10% of

the population with effect equal to –d) and D (40% with 0), RM

Anovas has reproducibility below 2/3 (grey zone) for a larger

range of effect values than UKS test. In addition, for whatever

large effect in 90% (C) or 60% (D) of the population, the type II

error rates cannot decrease beyond 20% (C) or 10% (D) for RM

Anovas, while the minimum is 0% (C) or smaller than 10% (D) for

the UKS test. The reproducibility advantage of the UKS test is

even higher when 20% of the population display a –d effect and

80% a +d effect (E), as well as when 10% display a –d effect, 20% a

0 effect and 70% a +d effect (F). As a whole, these simulations

studies demonstrate that in situations where individual effects are

have mixed Gaussian distributions, the UKS test yields more

reproducible outcomes than RM Anovas and has lower type II

errors when the effect size is large enough.

These simulations also provide an insight into the proportion

of individuals in the population that show a significant effect

when UKS tests are significant at the .01 or .05 level. In panel D

(60% of significant effects), it can be seen that type II errors

never disappear as d increases. Other simulations (not shown)

indicate that for this specific design the probability for the UKS

tests to be significant cannot exceed 50% when the effect is null

in 60% or 72% of the population when the .01 and .05 threshold

are used, respectively. This is not unexpected for a test designed

to assess differences between distributions. Moreover, the

probability for the UKS test to be significant cannot exceed

5% for the 0.01 threshold (16% for 0.05) when the effect is null

in more than 88% of the population. This shows that the UKS

procedure is fairly resistant to outlying individuals. We will

develop this point in Part 3.

We carried out additional Monte-Carlo studies to determine the

population size and UKS threshold level for which it could be

stated that ‘‘at least 10% of individuals show an effect’’ with less

than 5% chance of being wrong. For less than 22 individuals, the

statement holds if the UKS test yields a p-value smaller or equal to

.01. For population size between 23 and 43 individuals, the UKS

test must yield a p-value smaller or equal to .005. These 10%

statements do not depend on the experimental design except for

population size, because they rely on the p-values of individual

tests but not on the nature of the tests. In addition, our estimations

were obtained using high values for the experimental effect d (8

times the s.d. of levels’ average). With smaller experimental effects,

it would need more than 10% of the population to make the UKS

test significant at the .01 threshold with less than 5% chance of

being wrong. To summarize, when the UKS test rejects the global

null hypothesis, beyond the formal conclusion that there is at least

one non-null individual effect, it seems legitimate to infer that

individual effects are not null in a non-negligible proportion of the

population.

3. Robustness of UKS Test with Respect to Outlying
Individuals

Robustness with respect to outlier individuals, namely resis-

tance, is the first quality required for a statistical test intended to

support population inference. Indeed, one would not trust a test

that yields false positives by rejecting the null hypothesis when

there is a large effect in only one or two individuals. Symmetri-

cally, a trustful test should reject the null hypothesis when there is a

large effect in all individuals except one or two. In this Part, we

investigate the impact of outlying individuals, i.e. exceptional

individuals for which the effect of the investigated factor is

genuinely different from the effect in the population. We show

here that the UKS have the required robustness against this source

of type I and type II errors. We also establish that this robustness is

lacking to all of the numerous methods for combining p-values

proposed to date for meta-analytic studies or for the same purpose

as the UKS test.

The one-sample Kolmogorov-Smirnov test assesses whether a

sample is likely to be drawn from a theoretical distribution. It is

based on the largest difference between the empirical and

theoretical cumulative distributions. We use it to assess whether

p-values are uniformly distributed between 0 and 1: the unilateral

test allows rejecting the hypothesis that there is no individual effect

by showing that the distribution of individual p-values is

abnormally biased towards small p-values. The UKS test statistic

is TK ~ max ( i=n { pi ) where pi is the ith p-value in increasing

order and n the population size. The UKS test is resistant because

TK cannot reach the .05 threshold unless at least three or more p-

values are below a low limit that varies with population size. For

example, with a sample of 10 p-values, the UKS test is not

significant at the .05 threshold (TK ,0.369) unless there are 4

individual p-values below .031 (4/10 – 0.369). Based on the

Kolmogorov distribution, we computed for different population

sizes the minimum number of p-values necessary for the set to be

significant at the .01 and .05 threshold (Table 1). This minimum

number of p-values asymptotically tends towards 1.2246!N for the

.05 threshold, and towards 1.5176!N for the .01 threshold [16].

The formula for computing TK makes the test robust also with

respect to type II errors: it is clear that one, two or three high

outlier p-values cannot prevent the UKS test to yield a significant

outcome if most individual tests result in low p-values. This two-

sided robustness of the UKS test with respect to outlier p-values is

unique among numerous alternative methods for combining

independent p-values.

Many methods have been proposed for combining independent

p-values in meta-analytical studies (reviews in references [17–19]).

The most popular ones were devised by Fisher [8] and Stouffer

and colleagues [9]. These two methods deserve special attention

because two independent groups have proposed them to be used in

fMRI studies for the same purpose as UKS test here, i.e. as

alternative to mixed-effects analyses [2,3,5–7]. The Fisher’s

statistic is TF = –26log (P), where P is the product of n independent

p-values. TF follows a x2 distribution with 2n degrees of freedom. It

is easy to see that a single arbitrary small p-value can make TF

arbitrary high and its probability arbitrary close to 0. The method

proposed by Stouffer and colleagues [9] is based on the

statisticTS~
Pn
i~1

W-1 (1-pi)
� ffiffiffi

n
p

where F-1 is the inverse normal

cumulative distribution function. If the global null hypothesis holds,

TS follows the standard normal distribution. The formula for

computing TS shows the high sensibility of Stouffer’s to for both

small and high outlier p-values. On the one hand, a sufficiently low

p-value can make TS significant even if the other p-values have

uniform distribution between 0 and 1. On the other hand, a p-
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value arbitrary close to 1 can pull down TS below the significant

threshold even if all other p-values are close to 0. Almost all other

methods for combining p-values are similarly sensitive. A single

individual outlier may cause type II error in methods based on the

sum of the p-values [20], the maximal p-value [10] and the

product of the p-values minus one [21], and type I error in a

method based on the minimal p-value [10]. Only a method based

on the number of p-values below the .05 threshold [22] is robust

with respect to both types of error. However, the fixed .05

threshold of this method similar to the UKS test makes it clearly

less appropriate for the goal of evidencing individually variable

effects. Overall, the UKS test is probably the most robust method

to combine the results of individual tests.

4. Reliability with Equal within-level Variances and
Gaussian Data

Researchers who are not professional statisticians may wonder

whether it is safe to make statistics on statistics. More specifically,

although the reliability of both independent-measures one-way

Anovas and KS tests are beyond any doubt if their respective

assumptions are met, it may be asked whether chaining them

yields a normal rate of rejection of the null hypothesis. From a

theoretical viewpoint, this is not an issue. If the global null hypothesis

holds and Anovas’ assumption are fully met, then individual p-

values will be uniformly distributed between 0 and 1, and the UKS

test at the .05 threshold will yield 5% of false positive To illustrate

this point, we begin with a Monte-Carlo study of type I error rates

when assumptions for all tests are met. Specifically, we estimated

the type I error rate of the UKS test procedure for 168 one-way

Anova designs with different numbers of individuals, factor levels

and repetitions, and with trial-to-trial errors drawn from a single

Gaussian distribution. In this and other type I errors rate studies

involving comparison with RM Anovas, both the effect and its

variability across individuals sint were set to zero (see Methods
for details).

As expected, for the nominal 0.05 threshold, we found that

UKS test wrongly rejected the null hypothesis for 4.9931% of the

random sets, while the rejection rate was 4.6346% for the RM

Anova (the smaller rejection rate for the RM Anova reflected loss

of power due to inter-individual variations of serr, the standard

deviation of trial-to-trial errors [15]; running the same Monte-

Carlo analyses with the same standard deviation for all individuals

Figure 2. Type II errors and reproducibility with heterogeneous experimental effects. Each panel displays the proportion of significant
hypothetical experiments as a function of the difference d between the constant values of experimental effect in 2 (panels A–E) or 3 sub-populations
(panel F). The lines show the proportion of significant tests in 10000 hypothetical experiments for 41 values of d from 0 to 8 by .2 steps for RM Anovas
(continuous line) and the UKS test at both the .05 (dashed line) and.01 threshold (dotted line). The gray part of lines indicates the 0.211–0.789 range
of proportion of significant tests for which the probability that two subsequent experiments yield conflicting outcomes exceeds 1/3. Each experiment
consists in 10 individuals performing 8 trials in a baseline condition and in an experimental condition. Trial errors are drawn from a Gaussian
distribution with parameters 0 and !8, so that the average of the experimental condition has a Gaussian distribution centered on –d, 0 or +d (Insets)
with unitary variance. The proportion and center of the subpopulations varied across studies. In the first study (panel A), the experimental effect was
set to 0 for 10% of the population, and to d for the remaining 90%. In the other studies (Panels B–F), the effects and proportions were as follows: [0,
20%; d, 80%]; –d, 10%; d, 90%]; [0, 40%; d, 60%]; –d, 20%; d, 80%]; [–d, 10%; 0; 20%; d, 70%]. For each hypothetical experiment, the 10 individual effects
were drawn with replacement from a set of –d, 0 and +d values in the above proportions (for d = 0, the proportion of significant tests is equal to the
nominal type I error rate). We conclude that when factor effects vary across individuals as modeled by a mixture of Gaussians, UKS tests yield more
reproducible outcomes than RM Anovas and have lower type II errors.
doi:10.1371/journal.pone.0039059.g002
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yielded average type I error rates of 4.9981 and 4.9893% for the

RM Anovas and the UKS test procedure, respectively). For a .01

threshold, the average type I error rates amounted to 0.9965%

and 0.8503% for UKS test procedure and RM Anova, respec-

tively. The behavior of the UKS test conforms to what is expected

when the assumptions of individual tests are met. The question

now arises how the UKS test behaves when these assumptions are

violated.

5. Reliability in the Presence of Violations of
Homoscedasticity in Individual Anovas

Independent-measures (IM) Anovas rely on the assumption that

residual errors have Gaussian distribution with equal variance

across factor levels, but they are robust with respect to non-

normality and to moderate heteroscedasticity [23]. However, it is

not clear whether and how much violation of either assumption

can affect the outcome of the KS test applied to the probabilities

yielded by individual Anovas. In this section, we focus on

violations of the homoscedasticity assumption. When the factor

effect is null, the probabilities of individual Anovas with unequal

variances are not uniformly distributed on the [0 1] interval.

Rather, they have more than 5% chance to be smaller than 0.05.

This systematic bias might be enhanced because the Kolmogorov-

Smirnov tests assess whether individual probabilities are signifi-

cantly smaller than they should if drawn from uniform distribution

on [0 1]. To investigate this issue, we computed the type I error

rates of UKS test, IM and RM Anovas for 216 different random

datasets to assess how these rates varied as a function of the level of

heteroscedasticity and of the numbers of individuals, fixed-factor

levels and within-level repetitions. The levels of heteroscedasticity

were defined by the ratio of the largest to the smallest variance (2,

3, 4 or 8). The results confirmed that in individual IM Anovas the

rate of false positives is abnormally high and increases as the

heteroscedasticity increases (Figure 3, panel A, line IND).

However, this bias, far from being enhanced, was watered down

by the UKS test (see Supporting Information for further

explanation).

On average, both UKS test procedure and RM Anova proved

robust with respect to violation of the assumption that trial-to-trial

variability was constant across factor levels (Figure 3, panel A).

However, the reliability of the two procedures appeared to be

slightly affected in specific and different contexts (Table 2). In line

with the biased distribution of individual Anova probabilities, the

UKS test was more sensitive to heteroscedasticity when there were

only few trials per individual. The rate of false positives was

abnormally high when there were less than 10 repetitions in 2-level

factors (example in Table 2) or less than 3 repetitions in 3-level

factors. The excess of type I errors increased as the number of

individuals increased from 5 to 20. Additional analyses show that

assessing heteroscedasticity with Levene’s or Bartlett’s tests was of

little help to prevent this risk (Supporting Information). In contrast

with the UKS test, RM Anovas was perfectly reliable for designs

with 2-level factor, but was less robust with 3-level factor, and

clearly sensitive to heteroscedasticity with 4-level factor (example

in Table 2). This excess of false positives was due to violations of

the sphericity assumption: unequal trial-to-trial within-level

variances resulted in unequal inter-individual variances of level-

averaged data.

6. Reliability in the Presence of Violations of Normality in
Individual One-way Anovas

Skewness and outlier trials in individual Anovas can affect the

UKS test type I error rate as heteroscedasticity. In the Monte-

Carlo simulations of this section, we systematically investigated

non-normality with 13 types of non-Gaussian distributions of

individual data (Gaussian distributions were also used as a

baseline). Non-Gaussian distributions included 8 skewed distribu-

tions (gamma, lognormal, Weibull and exponential distributions,

each with two different set of parameters), as well as 5 Gaussian

distributions with different proportions and levels of outliers.

These samples were simulated in 84 one-way Anova designs to

encompass most practical situations (designs were characterized by

5 to 20 individuals, 2 to 4 factor levels and 2 to 32 within-level

repetitions). For every couple of distribution and design, we

computed the type I error rates of UKS test, IM and RM Anovas.

We compared them with nominal rates and with the rates

computed for 3 baseline Gaussian distributions. We found that the

UKS test had excessive type I error rates for a large range of

designs. Nevertheless, the type I error rates was brought back to

nominal level by prior logarithmic transformation of individual

data.

We first report results for skewness. RM Anova revealed

perfectly robust, with rates of type I errors that never exceeded

5.1%. By contrast, we found that the UKS test was not robust for

skewed data (see Supporting Information for explanations). More

specifically, type I error rates were particularly abnormal when the

number of individuals was high (e.g. 20), the number of factor

levels low (e.g. 2), and the number of repetitions in the 5–10 range.

As concerns distributions, type I error rates increased as the

coefficient of correlation of the normal probability plot decreased

(insets in Figure 3). Table 3 displays the rate of false positives for 3

representative experimental designs with the distributions dis-

played in Figure 3B. With 5 individuals, 4 factor levels and 32

repetitions, the UKS test was quite robust against positive

skewness. However, for the distribution with the smallest

coefficient of correlation of the normal probability plot (lognormal

distribution, column 2), the type I error rates already exceeded the

across-design maximal rate observed with the 3 baseline Gaussian

distributions (5.19%). With 10 individuals and 3 factor levels, the

error rates exceeded this maximal value even for the least skewed

distribution (gamma, column 1). In the worst case that we found

Table 1. UKS test thresholds and associated p-value limits.

Pop. size .05 threshold .01 threshold

TK thresh. Min nb p-value TK thresh. Min nb p-value

5 0.50945 3 .09055 .62718 4 .17282

6 0.46799 3 .03201 0.57741 4 .08926

7 0.43607 4 .13536 0.53844 4 .03299

8 0.40962 4 .09038 0.50654 5 .11846

9 0.38746 4 .05698 0.47959 5 .07596

10 0.36866 4 .03134 0.45662 5 .04338

12 0.33815 5 .07516 0.41918 6 .08082

15 0.30397 5 .02936 0.37713 6 .02287

20 0.26473 6 .03527 0.32866 7 .02134

30 0.21756 7 .01577 0.27023 9 .02977

For ten population sizes I from 5 to 30 individuals, the table indicates the
Kolmogorov-Smirnov test threshold Kth for type I error rates equal to .05
(column 2) and .01 (column 5). Column 3 and 6 indicate the minimum number
nmin of p-values required for the UKS test to be significant. These p-values have
to be lower than the limit pmin indicated in columns 4 and 7. Note that the UKS
test is significant as soon as nmin + m p-values are below pmin + m/I for any m
between 0 and I-nmin. By construction, the limit for I p-values is equal to 1-Kth.
doi:10.1371/journal.pone.0039059.t001
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(20 individuals, 2 factor levels, 5 trials), the rate of type I errors was

strongly biased for all 4 distributions shown in Figure 3B and for

the 4 other distributions covered by our simulation study. We

conclude that the UKS test should not be applied to IM Anovas of

skewed individual data except in designs similar to the line 1 in

Table 3. When skewness is suspected, one of the two following

methods can be safely applied. First, and simplest, the individual

Anovas can be carried out after a logarithmic transformation of

the data. After such a transformation, for all skewed distributions

and all designs we tested, the rate of false negative dropped to the

nominal values of the .01 and .05 thresholds (see Table 3 and

bottom values in Figure 3B). Second, and most powerful when the

data is strongly skewed and when there are at least 15 or 20 trials

per individual, the UKS test can be applied with individual

Kruskal-Wallis tests instead of one-way Anovas (see below).

Regarding the effect of outliers on the reliability of the UKS test

with one-way Anovas, we found that 2.5% or 7.5% of

indiscernible outliers between +2 and +3 standard deviations from

the mean did not increase the rate of type I errors. The same

proportions of unilateral removable outliers (between +3 and +4

Figure 3. Violations of homoscedasticity and normality assumptions in one-way Anova design: compared robustness of RM Anova
and UKS test. Panel A: Violation of equal variance assumption. Curves display trial-to-trial errors distributions in the factor levels with the smallest
and largest variance for the 4 degrees of heteroscedasticity investigated in simulation studies (see Methods). The numbers under the curves indicate
the average percentage of type I errors (false positives) for RM Anovas, individual Anovas and the UKS test procedure, respectively. Numbers above
5% indicate an excess of significant datasets with respect to the tests threshold (0.05). We observe that the UKS test, as the RM Anova, is robust to
heterogeneity of variance. Panel B: Violation of normality assumption. Curves display the empirical distributions of trial-to-trial errors drawn from the
following 4 distributions: gamma with k = 4; lognormal with m= 0 and s= 1/!2; Weibull with k = 1.2 and l= 0.5; exponential with l= 0.4 (see
Methods). Boxes: Normal probability plots of typical residuals from an Anova applied to skewed data randomly drawn from the above distribution.
For the displayed residuals (10 individuals 6 3 levels 6 10 repetitions with a median coefficient of correlation r), skewness is significant at the .01
threshold when r ,0.9942. The numbers under the boxes indicate the across-designs average percentage of type I errors (false positives) for
individual Anovas and UKS test applied to raw data or after a logarithmic transformation. Numbers above 5% indicate an excess of significant
datasets with respect to the threshold used (0.05). When data is skewed, the UKS test should be used in conjunction with individual nonparametric
tests (see text, Part 7), or data should be (log-)transformed.
doi:10.1371/journal.pone.0039059.g003
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s.d.) increased the rate up to 6.6%, and 2.5% of removable outliers

on both sides of the distribution also resulted in a small excess of

false positives. However, the excess of type I errors was negligible

for designs with 15 or 32 within-level repetitions, or with 4 levels

and less than 10 individuals. We conclude that it is safe to

systematically remove outliers beyond 3 standard deviations before

applying the UKS test to individual Anovas.

7. UKS Test with Individual Kruskal-Wallis Tests
Applying the UKS test to the p-values yielded by non-

parametric tests is an appropriate solution when individual data

violate the assumptions of parametric tests. In this respect, three

points deserve attention. First, non-parametric tests are not fully

free of assumptions. For example, the Kruskal-Wallis test requires

that the investigated variable have an underlying continuous

distribution. Second, statistical packages often provide approxi-

mate statistics that do not suit the UKS test. The possibility to

compare the Kruskal-Wallis statistic to the critical values of a chi-

square distribution when there are more than 5 trials in each

condition level [24] does not imply that the distribution of the

Kruskal-Wallis statistic is identical to that of a chi-square with the

appropriate number of degrees of freedom. To corroborate this

point, we computed the type I errors with approximate and exact

p-values for a large number of random datasets with 7 trials in

each of 3 factor levels. We found that the rate of type I errors at

the .05 threshold amounted to 6.2 or 4.9% depending on whether

the probability of the individual Kruskal-Wallis statistic was

derived from the chi-square approximation or from the exact

distribution. As a general rule, we recommend to use exact

distributions, or good Monte-Carlo approximations of them, when

applying the UKS to the p-values of individual non-parametric

tests. Third, the power of a non-parametric test can be higher than

that of a parametric test.

To illustrate the latter point, we estimated both type I and type

II error rates of the UKS test with individual Kruskal-Wallis tests

for a variety of skewed distributions and single-factor experimental

designs. As expected, we found that the procedure was fully

reliable, with rates of type I error that never exceeded 5.2% across

the 384 tested combinations of designs and skewed distributions.

Table 3 indicates the rates obtained for the 206265 design with

the skewed distributions shown in Figure 3B. In addition, we

compared the type II error rates of the UKS test when the same

individual datasets were assessed with a Kruskal-Wallis test or with

Anovas before and after logarithmic transformations. With

Gaussian data, as expected from the loss of information between

interval and ordinal measures, the procedure with the Kruskal-

Wallis test was always less powerful than the 2 others, specially for

designs with few repetitions and levels. However, with skewed

data, the procedure with the Kruskal-Wallis test was the most

powerful as soon as the number of repetitions exceeded 4 or 5 (4-

and 3-level designs) or 9 (2-level). It remained less powerful than

with Anovas for designs with few repetitions and levels, especially

for the 262, 362, and 263 designs. We conclude that if individual

data are skewed, applying the UKS test to individual Kruskal-

Wallis tests is the best way for assessing the global null hypothesis,

provided that the experimental design includes at least 15 trials (in

total) per individual.

8. Choosing UKS or Multilevel Mixed-effects Analyses
According to Sample Sizes

In addition to RM Anovas and UKS test, repeated-measures

designs datasets can also be analyzed using multilevel mixed-effects

(ME) models. However, it is unknown whether the latter

procedure is suited for designs with small number of individuals

or repetitions. Indeed, while ME analyses have been shown to

require at least 30 to 50 individuals for yielding accurate estimates

in regressions [11–14], we are not aware of similar investigations

for RM Anovas designs. Therefore, we used Monte-Carlo

simulations to compare the type I and type II error rates in ME

analyses and UKS tests. These investigations lead us to the

conclusion that the UKS test should be preferred to ME analyses

in studies that include less than 30 to 50 individuals.

From the viewpoint of ME analyses, RM-Anova designs involve

datasets with three hierarchical levels and as many random

variables: trials are nested in experimental conditions that are

themselves nested in individuals. For example, in educational

Table 2. Robustness with violations of heteroscedasticity
assumption.

Designs Ratio of the largest to the smallest variance

2 3 4 8

3 trials 62 levels:

RM Anovas 4.67 4.72 4.74 4.72

UKS test 5.32 5.76 6.11 7.37

10 trials 63 levels:

RM Anovas 4.90 4.94 5.20 5.50

UKS test 4.78 4.65 4.43 4.17

5 trials 64 levels:

RM Anovas 4.98 5.28 5.54 6.13

UKS test 4.79 4.81 4.69 4.64

Rates of type I errors in repeated-measures Anovas and UKS test for 3
representative experimental designs (lines) and the same 4 degrees of
heteroscedasticity as in Figure 3A (columns). Rates are averages of designs with
5, 10 and 20 individuals. The rates of each design are equal to the percentages
of 60000 random datasets found significant at the 0.05 threshold as the effect
of factor was set to zero. Bold values indicate large excess of type I errors. UKS
(and RM Anova) are globally robust to violations of heteroscedasticity.
doi:10.1371/journal.pone.0039059.t002

Table 3. Robustness with skewed data.

Distributions: 1 2 3 4

5 subj. 64 levels 632 trials:

UKS test 5.00 5.34 5.03 5.01

Log transformation 5.07 5.07 5.01 4.91

10 subj. 63 levels 610 trials:

UKS test 5.36 6.17 5.27 6.09

Log transformation 5.01 4.93 4.72 5.10

20 subj. 62 levels 65 trials:

UKS test 5.60 8.61 6.62 7.85

Log transformation 4.98 5.22 4.68 4.66

UKS - Kruskal-Wallis 2.12 2.11 2.08 2.11

Rates of type I errors in UKS test for 3 representative experimental designs
(lines) and the 4 skewed distributions shown in Figure 3B (columns). In each
design, the UKS test was applied before and after log-transforming the random
datasets. The rates of each design are equal to the percentages of 60000
random datasets with null factor effect that were found significant at the 0.05
threshold by the UKS test. The type I error rates obtained for the same data with
Kruskal-Wallis test substituted to Anova are also indicated for the third design.
Overall, either log-transformation of skewed data or use of a per-individual
nonparametric test guards the UKS test against excessive type I errors.
doi:10.1371/journal.pone.0039059.t003
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studies (where the UKS test can also be an alternative to multilevel

ME analyses), pupils can be nested in types of classes themselves

nested in different schools. Keeping the same notations as in the

other sections, ME analyses rely on the following assumptions. At

the lowest hierarchical level, errors have the same Gaussian

distribution with null average and variance serr
2 across all

individuals and conditions. At the middle hierarchical level, the

individual effect of the jth experimental condition follows a

Gaussian distribution with mean mj and condition-independent

variance sint
2. At the highest hierarchical level, individual average

follows a Gaussian distribution with parameters msubj and ssubj
2.

The gist of ME analyses is to estimate these parameters and their

confidence intervals (CI) by means of an iterative convergence

process that maximizes their likelihood. When the goal is to assess

whether the experimental factor affects individual behaviors, ME

analyses involve deciding between a full and a restricted model

which assumes that sint is null, i.e. that trial-to-trial errors are the

only source of inter-individual differences in experimental

condition averages. The restricted model is assessed when the full

model, always tested first, does not reject the H0 hypothesis that

sint is null. The restricted model tests the across-individual average

of the factor’s effect against the trial-to-trial errors; this amounts to

pooling together the data of all individuals after having subtracted

the individual across-condition averages. As a result, the restricted

model is potentially more powerful than a RM Anova because its F

statistic has the same numerator but more degrees of freedom

associated with the denominator. For example, in a 10 subjects 6
2 levels 6 10 repetitions design, a RM Anova uses a F(1,9) test

while the restricted model uses a F(1,189) test. This test is

legitimate if the variations in individual factor’s effect result

exclusively from trial-to-trial errors. In the converse case, the test

of the restricted model will inflate type I error rates above the

nominal threshold because the F distribution has more degrees of

freedom than it should. To summarize, type II errors in testing the

full model are likely to lead to excessive type I error rates in the

restricted model. The present Monte-Carlo study aimed to assess

the type II error rates (power) in testing the full model, as well as

their consequences for type I error rates in the restricted model.

This was done in 490 random datasets of varying number of

individuals, factor levels, within-level repetitions, and partial

Intraclass Correlation Coefficients (pICC). We explain below the

rationale for systematically varying this coefficient, defined as

pICC =sint
2/(sint

2+ serr
2/N) where N is the number of within-

level repetitions [23]. The effect of the factor was randomly drawn

from Gaussian distributions with null average and null or non-null

variance (thus pICC). For each design, we assessed the type II

error rates of the full model and their causes (proportion of

unavailable and ill-defined confidence intervals), the significance

and type I error rates in the restricted model, and the type I and II

error rates of the UKS test for the same datasets.

In preliminary simulations, we systematically varied the classical

intraclass correlation coefficient ICC, defined as sint
2/(sint

2+
serr

2), because it does not depend on the design. We switched to

investigate the effect of pICC because the ratio of sint
2 to serr

2/N

largely determines, together with the number of individuals, the

type I and II error rates. To grasp this point, recall that the

expected value of the empirical variance of levels’ averages is equal

to sint
2+serr

2/N. Therefore, the estimation of sint
2 relies on the

difference between the empirical variance of level averages and the

empirical variance of trial-to-trial errors divided by the number of

repetitions N. When sint
2 is smaller or hardly larger than serr

2/N,

and the numbers of individuals and repetitions small, the above

difference can happen to be close to zero or even negative. In such

situations the iterative estimation procedure either cannot

converge or yields ill-defined confidence intervals for the variance

([14,25,26], see also Tables S1 and S2). Therefore, a comprehen-

sive analysis of type I and II error rates in ME analyses required

testing the specific influence of the ratio R =sint
2/(serr

2/N), or,

equivalently, of the pICC value.

We now report the result of the simulation studies. First, we

found that the values and CI of all m and s parameters but sint
2

were generally accurately estimated in our fully balanced random

datasets drawn according to the assumptions of the mixed-effect

models (see Supporting Information for details). The only problem

concerned the estimation of the effect variance CI and

consequently the power for evidencing non-null sint
2 when the

pICC was low or when the number of individuals was small. In

these situations, the estimation of the CI frequently failed

altogether or was abnormally large (see Supporting Information).

This resulted in a low power of ME analyses for evidencing

significant random effect components when the pICC was small,

i.e. when the across-individuals effect variance sint
2 was low with

respect to the error variance serr
2 and the number of repetitions

inadequately small (see Table S3). More precisely, the power was

below 10% for low pICC and small number of individuals.

Adequate power (80%) typically required at least 50 (2-level factor)

or 15 (4-level factor) individuals, and a number of trials by level

sufficient for the pICC to reach 0.5 (e.g. 3, 5, 10 and 20 trials for

ICC equal to 0.25, 0.17, 0.09 and 0.05, respectively).

This lack of power can be detrimental when the missed

components are large enough to bias the ensuing statistical tests –

that assume these components are exactly null. To properly tackle

this issue, we first investigated how the type I error rates of the

restricted model varied as a function of pICC and sample sizes

across all datasets, and then focused on the datasets with type II

errors in the full model. As for the first point, we found that the

type I error rate of the restricted model steadily increased with the

pICC and the number of factor’s levels up to 40%, and that, at

variance with type II errors in the full model, it did not depend on

the number of individuals (Table S4). Finally, in keeping with this

observation, we found that the percentages of datasets with no

significant random effect component in the full model and a

wrongly significant main effect in the restricted model were well

above 5% for small and medium numbers of individuals. We stress

that these rates increased (up to 13%) with pICC values, and thus

with ICC and the number of repetitions (see Table S5).

In light of these results, what should be the minimum

population size to have adequate power and keep type I errors

close to their nominal rate when the restricted model is assessed

after the full model failed to evidence a random effect component?

From a strict viewpoint, and considering that there is no a priori

knowledge about the ICC, at least 100 individuals in a 4-level

condition design, and probably 200 with a 2-level condition, would

be required to have at most 5% of datasets with a significant effect

and no significant random effect component (Table S5). However,

the type I error rates for 30 individuals in 4-level designs and 50

individuals in 2-level designs are smaller than 7% and exceed 5%

only for pICC equal to 0.25 or smaller. A pICC equal to 0.3

corresponds to ICC equal to 0.024, 0.048, 0.091 and 0.167 for

numbers of trials by level equal to 40, 20, 10 and 5, respectively.

Based on the idea that ICCs smaller than 0.05 seldom occur in

social and educational sciences [12] and probably when individ-

uals are the highest hierarchical level (linguistics and psychology),

we consider that designs with at least 20 trials by factor level and

30 (4-level factor) or 50 (2-level factor) individuals should yield type

I error rates equal or below the nominal 5% level. It should be

however noted that for these population sizes the type II error
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rates when testing the random effect component can be as high as

50% (Table S3) and that 50 or 100 individuals are preferable.

Since ME analyses should involve at least 50 individuals and 20

trials by factor level in RM Anova designs, would the UKS test be

a sensible choice in designs with smaller sample sizes? To this end,

we computed the type I and II error rates of the UKS test for the

same random datasets (Table S6). As expected, we found the type I

error rates equal to the nominal threshold for whatever population

size. When the pICC was above zero, the power increased from 6

to 100% when the pICC, number of individuals and number of

factor levels increased. It should be noted that although the power

does not depend on the number of trials for a given pICC, it does

increase with the number of trials by level through the pICC.

Finally, we computed for all datasets the difference between the

significance rates of the UKS test and random effect component

test in ME analyses. The comparison showed that the two tests had

comparable power, with a relative advantage for the UKS test for

datasets with low number of individuals or small pICC (Table S7).

More precisely, the UKS test seemed preferable to ME analyses

with 6, 8, 10, 15, 30, 50, and 100 individuals when the pICC is

inferior to 0.6, 0.5, 0.4, 0.35, 0.25, 0.2 and 0.15, respectively. As

the ICC, and thus the pICC, is often unknown, we conclude that

UKS test should be preferred to ME models for assessing datasets

with less than 20 repetitions per level or less than 30 individuals

(50 is there are only 2 factor levels).

Finally, we wish to stress that the above results were obtained

with fully balanced datasets in which the errors of all individuals

were drawn from the same Gaussian distribution, individual effects

from another Gaussian distribution, and individual averages from

a third distribution with a particularly high variance. Although

assessing the consequences of departures from these specifications

would be outside the scope of the present Monte-Carlo study, it

seems likely that violation of these hypotheses would favor the

UKS test rather than the ME analyses for four reasons. First, we

were careful setting the variance ssubj
2 over 10 times sint

2 after

uncovering in preliminary studies that small ssubj often result into

failures in estimating the confidence intervals and biases in

estimating the factor’s effect variance. In other words, the power of

ME analyses can be affected when ssubj
2 is smaller than sint

2

divided by the number of factor’s levels in the same way as when

sint
2 is smaller than serr

2/N (see above). Second, the UKS test

provides reliable outcome whether or not the number of

repetitions varies across individuals, while estimating variances

and their CI in ME analyses may be more problematic for

unbalanced designs. Third, the UKS test does not depend on

whether the variance of Gaussian errors varies across individuals,

while this kind of heteroscedasticity might affect type I and II error

rates in ME analyses. Fourth, the UKS test do not need any

assumption about the distribution of individual factor effects and is

robust with respect to individual outliers, while violation of the

normality assumption should bias the estimation of the random

effect component and its CI in ME analyses.

Discussion

1. Overview
Life and social sciences investigate systems whose behavior

depends on multiple interacting components. Controlled experi-

ments allow identification of these components by showing that

individual factor effects either have a sample average significantly

larger than expected from their inter-individual variability (null

average hypothesis), or are larger than expected from the intra-

individual residual variability (global null hypothesis). The second

approach seems much more appropriate to life and social sciences

than the first one. Indeed, it is more consistent with the scientific

goals of most experiments – uncovering experimental factors that

affect individual behavior rather than average behavior – and, in

sharp contrast with the first approach, its power increases with

inter-individual variability (Result Section part 1). However, the

overwhelming majority of studies test for the ‘‘null average hypothesis’’

by using statistical tests such as t-tests, Anovas, linear regressions,

logistic regression and other methods akin to general(ized) linear

models. This is all the more damageable that the experimental

effects that are the most likely to be overlooked are also likely to be

the most informative. Indeed, when properly investigated,

individually variable factors effects can shed more light into

systemic processes than stereotypical effects. As recently stressed in

various domains [27–33], we should embrace individual differ-

ences as a major source of knowledge rather than discard them as

an uninteresting and disappointing nuisance.

From a methodological point of view, the new test of the global

null hypothesis we propose has several important strengths that are

worth emphasizing. First, at variance with alternative procedures

(testing subject-factor interaction in RM Anovas, or meta-analytic

methods for combining p-values), a highly significant effect in a

single individual is never sufficient for the UKS test to reject the

null hypothesis (Part 3). Second, at variance with RM Anovas, the

procedure yields a highly reproducible outcome when factor

effects are null or opposite in a part of the population (Part 2).

Third, the procedure can also be applied with possible pretreat-

ment when the assumptions of normality and homoscedasticity are

not fully met in individual data (Part 4 to 6). Fourth, the UKS test

can naturally be used in conjunction with non-parametric tests, if

more suitable (Part 7). Fifth, it is more powerful than ME analyses

when the number of individuals is smaller than 30 (Part 8). Last,

the UKS procedure is easy to comprehend and therefore reduces

the likelihood of errors in analysis or modeling.

2. Limits
A first limit regards the validity of the underlying statistical tests:

these must meet their assumptions and must yield exact or well

approximated statistics. The UKS test may yield inflated type I

error rates when applied to approximate p-values of non-

parametric statistics or maximum likelihood estimation (Part 7).

Violation of the assumptions required by individual tests may lead

to a similar inflation of false positives. We showed for simple

designs that heteroscedasticity was not a threat, but that skewness

in individual data is a serious difficulty. Nevertheless, type I error

rate get back to nominal rate when individual data are log-

transformed, at least in the simple Anova designs we investigated.

Further investigations should extend the range of designs for which

we understand the robustness of UKS. However, our investiga-

tions already makes the robustness of UKS procedure better

understood than that of alternative methods for combining p-

values [34] and, as far as we know, that of subject-factor

interactions in RM Anovas and multilevel ME analyses. Finally,

it should be noted that although individual Anovas with two or

more factors require carrying out as many UKS tests as there are

main effects and interactions of interest, corrections for multiple

comparison are unnecessary. Indeed, it is traditionally considered

that different F tests address conceptually distinct questions [23],

and there is no more reason to apply corrections for multiple

comparisons with the UKS test than with RM Anovas or

multilevel mixed-effects analyses.

A second limit is the inference that ‘‘there is an effect in a non-

negligible part of the population’’ when the UKS test is significant.

While this may sound a weak conclusion, it must be clear that no

stronger statement can be made on individual effects with non-

Dealing with Interindividual Variations of Effects

PLoS ONE | www.plosone.org 11 June 2012 | Volume 7 | Issue 6 | e39059



significant sample average. Subject-effects interactions in RM

Anovas and multilevel analyses assess the same global null hypothesis

that there is no difference between individual and average effect in

any individual. In contrast to UKS, interaction tests have null

resistance and are probably as sensitive as meta-analytic methods

to outlier individual p-values. In other words, we think that

rejecting the global null hypothesis with the UKS test is more robust

and reproducible than rejecting the same hypothesis with a meta-

analytic method or a mixed-effects analysis. The price to pay for

this higher robustness is that the former test is less powerful than

the latter. As shown in Part 1 & 2, this trade-off remains in

reasonable limits, since the power of the UKS test is comparable to

that of RM Anovas.

A third limit concerns internal validity. As with any other test

based on repeated-measures designs, experimenters are always at

risk to confound the effects of experimental factors with those of

learning, fatigue, individual maturation or lasting effects of

treatments. This threat can be minimized by experimental designs

orthogonalizing experimental factors and trial order. In addition,

we consider that conclusions based on the UKS test should

systematically be backed by the demonstration of no interactions

between effects and trial order.

The last and probably most important limit concerns the

required experimental design. The UKS test requires measure-

ments to be repeated both across and within individuals (doubly

repeated-measures designs): this is not always possible. As stressed

by Friston and colleagues [5], learning experiments, as well as

pharmacological studies when treatments have long-lasting effects,

require random-effects analyses because their object is incompat-

ible with repeated measurements.

3. UKS Test and Multilevel Mixed-effects Models
With respect to multilevel mixed-effects analyses, the UKS test

has three advantages: it is of simple use; it is devoid of any

assumption about the distribution of individual parameters; it can

be used with small number of individuals. It may also provide

more robust and reproducible results than tests of subject-factor

interactions. However, multilevel analyses have a number of

advantages with respect to UKS test. They can deal with missing

data and correlation between successive trials. They are powerful

methods for evidencing both inter-individual and intra-individual

significant effects. They allow including second-level variables –

individual characteristics – in the analysis. As emphasized by

Baayen and colleagues [27], multilevel analyses have been

developed to capture individual differences in a principled way

and are the appropriate method for bringing individual differences

into theories. However, they require extensive work and high

statistical expertise for analyzing the data [25]. Moreover, the tests

used by mixed-effect analyses have only asymptotic validity, which

may cause difficulties in obtaining proper p values with small

sample sizes [35], so that UKS is a safer method to evidence

subject-factor interactions whenever population size is lower than

30 individuals (Part 8). In light of these observations, we believe

that the simple and straightforward UKS test is a promising

statistical tool that should help counterbalancing the bias of

Anovas toward evidencing stereotypical effects. Its use in small

exploratory designs can pave the way for later large-sample mixed-

effects analyses. In this latter perspective, we think that papers

based on the UKS test should include three key pieces of

information in order to facilitate further investigations using

multilevel models: (1) the percent of variance explained by each

individual model, to allow assessing the size of the evidenced

effects; (2) the distribution of individual parameters, to indicate

how far they are from the Gaussian assumption required by

multilevel models; (3) the correlations of all recorded individual

characteristics with the fitted parameters, to help choosing the

appropriate second-level variables in further investigations.

4. Conclusion
As regards the investigated objects, the scope of the UKS test is

potentially very large. Virtually all experimental sciences study

complex systems, and we cannot assess how often insight can be

gained from comparing individual experimental effects to within-

individual variability. With respect to simple repeated-measures

designs analyzed with paired t-tests, RM Anovas or Ancovas, the

UKS test offers a different perspective on data. The null average

hypothesis is one way to evidence the effects of experimental factors.

The global null hypothesis is another way, based on within- rather

than between-individual variability. This different perspective may

be determinant to highlight experimental effects that would be

overlooked or misunderstood when across-individual average is

compared to across-individual variability. In addition, papers

based on the UKS test can set the stage for further investigations

using multilevel analyses to model the relationship between

experimental effects and individual characteristics. Finally, we

are not without hoping that making the UKS test available may

abate the inclination to force significant average effects out by

discarding individuals, multiple testing [36] or other questionable

practices [37].

Methods

All Monte-Carlo simulations studies were carried out with

MATLAB (The MathWorks, Natick, USA) except those involving

multilevel mixed-effects analyses that were carried out with the R

package nlme (The R Foundation for Statistical Computing,

Vienna, Austria; http://www.r-project.org). MATLAB programs

for parallelized computation of Anovas, repeated-measures

Anovas and Kolmogorov-Smirnov tests were specially developed

and controlled with respect to corresponding built-in functions of

MATLAB or R. Specifically, the cumulative distribution function

of the Kolmogorov-Smirnov statistics was estimated using the

algorithm of the R function ks.test.

Type II Errors in UKS Tests and RM Anovas
The comparison involved two stages. In the first one, we focused

on how the median p-values yielded by both tests varied as a

function of sint and serr for a two-way mixed design with 10

within-level trial repetitions, 2 levels in the fixed factor and 10

individuals. We computed the median probabilities yielded by RM

Anovas and UKS tests for all combinations of 41 values for the

standard deviation of the subject-factor interaction sint (from 0 to

4 by 0.1 steps) and 46 values for the trial-to-trial standard

deviation serr (.001, .002, .005, .01, .02, .05, and from 0.1 to 4 by

0.1 steps). For each combination, we built 100000 random datasets

of 200 trials by adding three values representing the factor’s effect,

the individual variation of the factor’s effect and the trial-to-trial

error. The first value was set to 1/!2 for level 1 and –1/!2 for level

2 so that Seff was equal to 1 with Seff defined

bySeff~
Pj~C

j~1

a2
j

,
(C{1) and aj is the value of the jth of C effects.

The second value was common to the 10 within-level repetitions of

an individual and was drawn from a Gaussian distribution N (0,

sint). The third value was drawn from a Gaussian distribution with

zero mean and a different standard deviation for each individual.

These standard deviations were equal to 1z0:2|(X{2)½ � serr,

where X was randomly drawn from a gamma distribution with

parameters k = 2 and h= 1. This allowed intra-individual standard
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deviations to vary in a realistic way around serr (95% of values

between 65% and 171% of serr).

In the second stage, we investigated how the probabilities

yielded by UKS tests and RM Anovas varied as a function of the

number of individuals, factor levels and within-level repetitions.

The effect of the number of individuals (I = 4, 5, 7, 10, 14 or 28)

was systematically investigated in 27 studies that differed by the

number of factor levels C, the number of repetitions N, or the ratio

VR of the standard deviations of the subject-factor interaction and

the trial-to-trial errors (VR = sint=serr = 0.1, 0.2, 1/!10, 0.5, 1/!2

or 1). In two other studies, the number of factor levels was

systematically varied (C = 2 to 6) for 2 combinations of S, VR, and

N. In a final set of studies, the number of within-level repetitions

(N = 2, 3, 5, 10, 20, 40 or 80) was systematically varied for 9

combinations of S, C and VR. In each of these 38 studies, we

compute median probabilities from 10000 random datasets for 40

increasing (serr, sint) couples with a fixed VR ratio chosen so that

UKS test and RM Anovas have commensurate type II error rates.

Mixed Gaussian Distributions
We estimated the proportion p of significant outcome for UKS

tests (.01 and .05 thresholds) and RM Anovas (.05) for a simple

design where 10 individuals performed 8 trials in each of 2

different experimental conditions. Trial errors were drawn from a

Gaussian distribution with parameters 0 and !8, so that the

average of each experimental condition had unit variance. A

constant value, randomly drawn with replacement from a set of 10

values, was added to all trials of the first experimental condition. In

one simulation study, the set of 10 values contained one zero and

nine values d. As a result, the individual differences between

conditions’ averages were distributed according to a mixed

Gaussian distribution including 10% of a Gaussian distribution

with parameters (0, !2) and 90% of a Gaussian distribution with

parameters (d, !2). In five other studies, the central parameters and

proportions were as follows: [0, 20%; d, 80%]; [–d, 10%; d, 90%];

[0, 40%; d, 60%]; [–d, 20%; d, 80%]; [–d, 10%; 0; 20%; d, 70%].

In each simulation study, the value of d was varied from 0 to 8 by

.2 steps. For each of these 41 d values, the proportion of significant

tests was estimated from the outcome of 10000 Monte-Carlo runs.

Type I Errors with Gaussian Distributions and Equal
Variances

We draw random datasets from Gaussian distributions for each

of 168 designs obtained by combinations of 2, 3, 4 or 5 levels in the

factor, 4, 5, 7, 10, 20 or 40 individuals, and 2, 3, 5, 10, 20, 40 or

100 within-cell repetitions. We ran both UKS test and RM Anova

on every random dataset to test whether the probability of wrongly

highlighting an effect as significant was equal to the nominal 0.05

threshold. For computational considerations, the number of

random datasets varied from 1000 for the largest datasets (20000

trials in the 56406100 combination) to 1250000 for the smallest

(16 trials). Datasets were constructed as for type II error rate

studies (see above) except that the factor effect and the inter-

individual variability were set to zero. Note that setting sint to zero

does not boil down to assume that the effects do not vary across

individuals. The individual effects are expected to vary, but only

because of trial-to-trial variability. If we had assumed that the SD

of the interaction between the fixed and random factors were

above zero, the UKS test would rightly have yielded more than

5% of significant results at the 0.05 threshold with a null average

effect. Stating that the effect of an experimental factor genuinely

varies across individuals is the same thing as affirming that the

effect is not null in one individual, or even in all of them if its

across-individual distribution is Gaussian.

Type I Errors with Unequal Variances
We carried out a systematic investigation of the issue by drawing

216 samples of 60000 random datasets from Gaussian distribu-

tions. The large sample size (60000) was necessary to obtain

reliable estimates of the type I error rates. The 216 samples were

obtained by systematically combining the numbers of fixed-factor

levels (2, 3 or 4), within-level repetitions (2, 3, 5, 10, 20, or 40), and

individuals (5, 10 or 20) with 4 values of heteroscedasticity. The 4

values of heteroscedasticity were obtained by setting the ratio of

the largest to the smallest variance to 2, 3, 4 or 8 (Figure 3, panel

A) while maintaining the average variance unchanged. For the 4-

level case, the ratio of variance of the two intermediate levels was

set to the square root of the extremum ratio while their average

was the same as that of the extreme levels (e.g.: 0.4, 2/3, 4/3 and

1.6). We varied the intra-individual variability serr across samples

so that UKS test and RM Anova would have had a power around

60% if the effect size was 1 instead of 0 (measured values:

64.868.3% for the UKS test, 59.8610.8% for RM Anova).

Type I Errors with Non-Gaussian Distributions
We investigated the effects of violations of normality on type I

errors for 84 designs obtained by combining the numbers of

individuals (5, 7, 10 or 20), condition levels (2, 3 or 4), and within-

level repetitions (2, 3, 5, 7, 10, 15, or 32). For each design, we drew

60000 random datasets from each of 16 different distributions: 3

standard Gaussian distributions used as baseline (3 control

distributions allowed determining the limits between normal and

abnormal rates on a large sample of 180000 datasets), 8 skewed

distributions, and 5 distributions with outliers. The 8 skewed

distributions included 2 gamma (h= 1, k = 4; h= 1, k = 2), 2

lognormal (m= 0, s= 1/!2; m= 0, s= 1), 2 Weibull (l= 0.5,

k = 1.2; l= 1, k = 1.8), and 2 exponential distributions (b= 0.4;

b= 1). The first of each pair is shown in Figure 3 (panel B).

Weibull and exponential distributions were chosen for their use in

fitting response time data [38–41], and the other distributions for

investigating the effects of moderate skewness. Gaussian data were

made positive by adding them a constant value equal to 1 minus

the across-samples minimum of the data. This allowed performing

Anovas on both the raw data and their natural logarithm. The 5

distributions with outliers were obtained by substituting abnormal

values to fixed proportions of the data in datasets drawn from

Gaussian distributions N (0,1). The first 2 distributions aimed at

assessing the effect of outliers that could not be removed by

standard procedures based on the 3 standard deviations threshold.

In these distributions, 2.5% and 7.5% of the data was replaced by

values drawn from Gaussian distribution N(2.5, 0.25). Therefore,

95% of outliers were expected to be between 2 and 3. The 3 other

distributions included ‘removable’ outliers drawn from the

distributions N (63.5, 0.25). The first two included 2.5% and

7.5% of values centered on 3.5, and the last one 2.5% of values

centered on –3.5 and 2.5% of values centered on +3.5. As for the

other distributions, the data was made positive by adding a

constant value equal to 1 minus the across-samples minimum of

the data.

Type I and Type II Errors with Individual Kruskal-Wallis
Tests

The exact Kruskal-Wallis distributions were computed for

designs with at most 21 trials by individual with a custom Matlab

program. For type I errors, we used the same datasets as above for

investigating the effects of violations of normality on type I errors,

except those with more than 21 trials by individuals. For type II

errors, we added fixed and random factor effects defined as in the
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first study (SEff = 1), except that sint was defined by

sint~(1:2 � serr)
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C � (N{1)
p

so as to enable RM Anovas and

UKS test to have similar type II error levels (C and N are

respectively the numbers of levels and within-level repetitions).

Comparison with Multilevel Mixed-effect Models (Part 8)
We examined the estimates and CI of the factor effect and of the

variance of errors, individual effects and individual averages for

the full and restricted (null variance of the factor effect) ME models

in 490 series of random datasets where the factor effect was set to

zero. Confidence intervals were probed by means of two main

indices: their size, and the percentage of CI including the

theoretical value. CI size was defined as the ratio of the upper

to lower CI limit and was compared to the ratio of the .975 to .025

quantile of random dataset sample variances in the series. Most

series included 2000 random datasets (for computational reasons,

the number of datasets was set to 1000 in designs with more than

3900 trials and 500 in designs with more than 7800 trials). Each

series corresponded to a specific RM Anova design and a specific

partial intraclass correlation coefficient (pICC). The 490 series

were obtained by systematically combining 2 or 4 factor levels, 6,

8, 10, 15, 30, 50 or 100 individuals as population size, 3, 5, 10, 20

or 40 within-level repetitions, and 7 couples of standard deviations

of the subject-factor interaction (sint: 0.0, 0.2, 0.4, 0.6, 0.7, 1.2 or

4.0) and trial-to-trial errors (serr: 0.9, 0.9, 0.9, 1.0, 1.0, 1.2 or 3.0

multiplied by the square root of the number of repetitions). The

standard deviations together defined 7 ratios R =sint
2/(serr

2/N)

from 0 to 16/9, which corresponded to approximate pICC = R/

(1+R) from 0 to 0.64. In order to keep power similar across

population sizes, the above values of sint and serr, chosen for 10

individuals, were multiplied by the square root of I/10 where I is

the number of individuals. Datasets were constructed as for the

type I error rate studies of Part 4, except that we added to every

data a value representing the individual variation of individuals’

grand mean. For every individual this value was drawn from a

Gaussian distribution N (0, ssubj) where ssubj was set to a high

value (10 times the sum of sint and serr) in order to avoid any

problem of convergence caused by an estimation of inter-subject

variance close to zero. Indeed, preliminary investigations showed

that the results of ME analyses can be affected when ssubj
2 is

smaller than sint
2 divided by the number of factor levels (for the

same reasons they are affected when sint
2 is smaller than serr

2

divided by the number of repetitions, see Results S1).
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