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ABSTRACT
Spatial information on the tumor immune microenvironment is of clinical relevance. Here, we aimed to 
quantify the spatial heterogeneity of lymphocytes and cancer cells and evaluated its prognostic value in 
patients with nasopharyngeal carcinoma (NPC). The scanned immunohistochemistry images of 336 NPC 
patients from two different hospitals were used to generate cell density maps for tumor and immune cells. 
Then, Getis-Ord hotspot analysis, a spatial statistic method used to describe species biodiversity in 
ecological habitats, was applied to identify cancer, immune, and immune-cancer hotspots. The results 
showed that cancer hotspots were not associated with any of the studied clinical outcomes, while 
immune-cancer hotspots predicted worse overall survival (OS) in the training cohort. In contrast, a high 
immune hotspot score was significantly associated with better OS (HR 0.41, 95% CI 0.22–0.77, P = .006), 
disease-free survival (DFS) (HR 0.43, 95% CI 0.24–0.75, P = .003) and distant metastasis-free survival (DMFS) 
(HR 0.40, 95% CI 0.20–0.81, P = .011) in NPC patients in the training cohort, and similar associations were 
also evident in the validation cohort. Importantly, multivariate analysis revealed that the immune hotspot 
score remained an independent prognostic indicator for OS, DFS, and DMFS in both cohorts. We explored 
the spatial heterogeneity of cancer cells and lymphocytes in the tumor microenvironment of NPC patients 
using digital pathology and ecological analysis methods and further constructed three spatial scores. Our 
study demonstrates that spatial variation may aid in the identification of the clinical prognosis of NPC 
patients, but further investigation is needed.
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Introduction

Nasopharyngeal carcinoma (NPC) is a unique subtype of head 
and neck cancer with an unbalanced geographical distribution, 
demonstrating high prevalence in southern China, Southeast 
Asia, and North Africa.1,2 Currently, the tumor-node- 
metastasis (TNM) staging system is the main tool for guiding 
treatment and predicting the prognosis of NPC. However, this 
system only takes anatomical data into consideration and pro-
vides insufficient prognostic information.3 Pathologically, NPC 
is characterized by heavy infiltration of immune cells within and 
around tumor lesions and a high expression of PD-L1 or other 
immune checkpoints by both tumor and immune cells,4–6 sug-
gesting the existence of a complex tumor microenvironment 
(TME) in NPC. Therefore, TME-based biomarkers that reflect 
individual levels of immune heterogeneity are expected to pre-
dict the prognosis of NPC patients.

Pathology images of tumor tissues contain not only essential 
information for tumor histopathologic classification but also 
information on the TME, such as the spatial distribution of 
different types of cells.7–9 Recently, with the development of 
computer vision techniques, digital pathology has emerged as 

a method enabling the automated identification and classifica-
tion of various cell types and tumor regions, offering an oppor-
tunity to study the spatial heterogeneity and interactions 
between tumor and immune cells.10,11 Important studies have 
found that the spatial interactions among tumor-infiltrating 
lymphocytes (TILs) and cancer cells generate complex ecolo-
gical dynamics that can ultimately impact tumor progression 
and the response to treatment.10,12 In addition, the spatial 
locations of cancer cells and immune cells have been shown 
to be associated with the clinical outcome of breast13,14 and 
colorectal cancer.15,16 Therefore, there is benefit in mapping 
the spatial distribution of cancer cells and lymphocytes using 
digital pathology and further evaluating its prognostic value for 
NPC patents.

In this study, we detected and quantified the spatial regions 
where the population of cancer cells or lymphocytes is signifi-
cantly high, that is, cancer hotspots, immune hotspots, and 
immune-cancer hotspots, for NPC patients using deep learn-
ing. Furthermore, we evaluated the prognostic value of these 
three spatial hotspots and found that immune hotspots could 
stratify NPC patients with different risks. This is the first study 
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to highlight the important role of lymphocytes in predicting 
the prognosis of NPC patients from the perspective of spatial 
distribution.

Materials and methods

Clinical specimens

We retrospectively included 336 pretreatment, nonmetastatic 
NPC patients from two academic institutions in China. Of all 
specimens obtained for this study, 221 specimens obtained from 
the Sun Yat-sen University Cancer Center (Guangzhou) 
between January 2011 and December 2013 were designated as 
the training cohort, and 115 samples collected from the 
Affiliated Hospital of Guilin Medical University (Guilin) 
between November 2006 and October 2012 were used for vali-
dation. The American Joint Committee on Cancer (AJCC)- 
TNM Staging System Manual (8th Edition, 2017) was used to 
restage all patients.3 This study was approved by the 
Institutional Ethical Review Boards of both hospitals, and all 
included patients gave informed consent before treatment. This 
study is reported according to the Reporting Recommendations 
for Tumor Marker Prognostic Studies (REMARK) criteria.17

Immunohistochemistry and digital pathology

First, slides were mounted with tumor sections obtained from 
paraffin-embedded tumor blocks; then, one slide for each 
patient was used for immunohistochemistry staining (IHC) 
with anti-CD3 (ab16669, 1:800; Abcam, Cambridge, UK). All 
slides were subsequently scanned, and the digital images were 
used for further analyses. The digital pathology techniques 
consisted of nucleus segmentation and tumor cell (TC) and 
immune cell (IC) population classification as described in our 
previous study.5 Briefly, following stain deconvolution of the 
digital images, nucleus segmentation was performed in the 
hematoxylin channel using a regional convolutional neural 
network (R-CNN). Next, we classified the cells into TCs or 
ICs using the Xception deep learning model, which was devel-
oped based on the manual annotation of each nucleus as 
belonging to a TC or IC by two pathologists and achieved 
good performance (Supplementary Fig. S1).

Automated evaluation of spatial cancer, immune or 
immune-cancer hotspots

The centroid of each segmented nucleus was recognized as the 
cell location and was used to generate a cell density map for 
TCs and ICs. To characterize the spatial distributions of TCs 
and ICs, we adopted the Getis-Ord statistics-based 
approach13,18 to identify cancer and immune hotspots, which 
are defined as areas of highly clustered tumor cells and lym-
phocytes, respectively. Specifically, each cell density map was 
processed within a set of 64 µm * 64 µm (128 pixels by 128 
pixels) sliding windows to count the number of nuclei in each 
window. The z-score for each window was calculated based on 
the Getis-Ord local statistic, which takes into account the 
number of nuclei in the current window as well as in the 
corresponding first-, second- and third-order neighboring 

windows. We used P = .05 and its associated z-score as the 
threshold, and all windows with larger z-scores were identified 
as significant spatial hotspots. After the cancer and immune 
hotspots were created, a colocalized hotspot (the immune- 
cancer hotspot) was also generated from the regions of overlap 
between the cancer hotspot and the immune hotspot 
(Figure 1). The spatial scores of the cancer hotspots, immune 
hotspots, and immune-cancer hotspots were calculated by 
quantifying the area percentage of each type of hotspot in the 
entire tissue (Supplementary Table S1–S2).

DNA extraction and real-time quantitative polymerase 
chain reaction

Plasma Epstein-Barr virus (EBV) DNA titers were routinely 
measured by real-time quantitative polymerase chain reaction 
assay before treatment for the NPC patients in the training 
cohort.19 The pretreatment plasma EBV DNA titer cutoff value 
(2000 copies/mL) had been previously estimated to define low 
and high EBV DNA levels.20

Statistical analysis

In our study, overall survival (OS) was set as the primary 
endpoint, and the secondary endpoints were disease-free sur-
vival (DFS) and distant metastasis-free survival (DMFS). OS 
was calculated from the date of treatment to the date of death 
from any cause or the last date known alive. DFS was calculated 
from the first day of treatment to failure, death or the last visit, 
and DMFS was estimated from the first day of treatment to the 
first distant metastatic relapse.

The χ2 test or Fisher’s exact test was employed to analyze the 
associations between the immune hotspots and clinicopatholo-
gical variables. Survival outcomes, namely, OS, DFS, and DMFS, 
were estimated by the Kaplan–Meier method and compared by 
the log-rank test. Multivariate analysis using a Cox proportional 
hazards model was performed to test for independent signifi-
cance by backward selection. Hazard ratios (HRs) and 95% 
confidence intervals (CIs) were calculated using the Cox pro-
portional hazards model. Variables with P ≤ 0.05 were included 
in the multivariate analysis, and only independent prognostic 
factors were retained in the multivariate model.

All statistical tests were two-sided and considered signifi-
cant when the P value was less than 0.05. Statistical analyses 
were performed using Statistical Package for the Social 
Sciences (SPSS) version 22.0 (IBM, Armonk, NY, USA). The 
key raw data have been uploaded to the Research Data Deposit 
public platform (www.researchdata.org.cn) with approval 
number RDDB2021000979.

Results

Correlations among infiltrating lymphocytes and spatial 
scores

The spatial patterns of TILs and cancer cells can be indicative 
of immune functional phenotypes and disease prognosis. Here, 
we analyzed the spatial heterogeneity of the tumor immune 
microenvironment of NPC patients using slides from our 
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previous study.21 Based on the whole-slide images, cancer hot-
spots, immune hotspots, and immune-cancer hotspots were 
identified, and three spatial scores were calculated using hot-
spot analysis (Getis-Ord spatial analysis). The clinicopatholo-
gic characteristics of the Guangzhou training cohort (n = 221) 
and the Guilin external validation cohort (n = 115) are sum-
marized in Table 1. The median follow-up time was 
69.7 months (interquartile range (IQR) 65.1–72.8) for the 
patients from the training cohort and 58 months (IQR 41– 
69) for those from the validation cohort.

The immune infiltrate densities of CD3, CD8, and 
CD45RO in the tumor and stromal areas and the corre-
sponding immune scores (ISs) of these two cohorts were 
obtained in our previous study.16 There was a strong, positive 
correlation between the IS and the infiltrate densities of CD3, 
CD8, and CD45RO in the tumor and stroma in the training 
cohort (r = 0.426–0.752) and validation cohort (r = 0.407– 
0.654), which is consistent with the definition of the immune 
score. Then, we investigated the correlations among the 
spatial scores; those among the spatial scores were weak in 
both the training cohort (|r| ≤ 0.069) and the validation 
cohort (|r| ≤ 0.175), suggesting the typical lack of tumor 
cell and lymphocyte clustering in NPC patients. 
Interestingly, in the training cohort, the immune hotspot 
was positively associated with infiltrating lymphocytes and 
the IS (r = 0.292–0.528), whereas the cancer hotspot was 
weakly negatively associated with lymphocytes and the IS 
(r < 0). These findings were confirmed in the validation 
cohort (Table 2).

Prognostic value of the spatial scores

Then, we explored the prognostic value of the cancer hotspots, 
immune hotspots, and immune-cancer hotspots in the training 
cohort. X-tile software was used to generate the optimal cutoff 
values for separating high and low spatial scores for the three 
hotspots, yielding values of 0.150 for the cancer hotspot score, 
0.198 for the immune hotspot score, and 0.0045 for the 
immune-cancer hotspot score. Patients with a high immune 
hotspot score had a lower risk for death than patients with 
a low immune hotspot score (HR 0.41, 95% CI 0.22–0.77, 
P = .006, Figure 2a). However, a high immune-cancer hotspot 
score was associated with poorer OS than a low immune- 
cancer hotspot score (HR 1.98, 95% CI 1.04–3.78, P = .038, 
Figure 3a). Moreover, when patients were stratified by the 
spatial location of cancer cells, there were no significant differ-
ences in OS between the two groups in the training cohort (HR 
1.66, 95% CI 0.81–3.41, P = .17, Figure 3a).

Further analysis demonstrated that in the training 
cohort, the presence of a high immune hotspot score was 
also associated with improved DFS (82.7% vs. 64.4%, HR 
0.43, 95% CI 0.24–0.75, P = .003, Figure 2b) and DMFS 
(89.5% vs. 76.3%, HR 0.40, 95% CI 0.20–0.81, P = .011, 
Figure 2c). However, neither cancer hotspots nor immune- 
cancer hotspots showed an association with DFS or DMFS 
(Figure 3(b-C)).

To validate whether immune hotspots had similar prog-
nostic value in different populations, we stratified the patients 
from the Guilin cohort into high immune hotspot (n = 63) 

Figure 1. Illustration of the pipeline for identifying cancer hotspots, immune hotspots, and immune-cancer hotspots.
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and low immune hotspot (n = 52) groups using the cutoff 
value obtained for the training cohort. Survival analysis 
showed that patients with high immune hotspot scores also 
had longer OS (81.0% vs. 55.8%, HR 0.38, 95% CI 0.19–0.77, 

P = .007), DFS (71.4% vs. 48.1%, HR 0.48, 95% CI 0.27–0.88, 
P = .016) and DMFS times (87.3% vs. 67.3%, HR 0.34, 95% CI 
0.15–0.79, P = .012, Figure 2(d-F)) than those with low 
immune hotspot scores.

Table 1. Clinicopathological characteristics of the patients in the training and validation cohorts stratified by immune hotspot.

All Training cohort (n = 221) Validation cohort (n = 115)

Low High P Low High P

Total population 336 (100) 68 (30.8) 153 (69.2) 49 (42.6) 66 (57.4)
Age 0.93 0.074

≤ 45 years 163 (48.5) 31 (52.5) 84 (51.9) 17 (32.7) 31 (49.2)
> 45 years 173 (51.5) 28 (47.5) 78 (48.1) 35 (67.3) 32 (50.8)

Sex 0.81 0.063
Male 254 (75.6) 45 (76.3) 121 (74.7) 44 (84.6) 44 (69.8)
Female 82 (24.4) 14 (23.7) 41 (25.3) 8 (15.4) 19 (30.2)

WHO pathological type 0.87 1.00
I/II 8 (2.4) 2 (3.4) 3 (1.9) 1 (1.9) 2 (3.2)
III 328 (97.6) 57 (96.6) 159 (98.1) 51 (98.1) 61 (96.8)

T Stage 0.15 0.033
T1-T2 136 (40.5) 16 (27.1) 61 (37.7) 21 (40.4) 38 (60.3)
T3-T4 200 (59.5) 43 (72.9) 101 (62.3) 31 (59.6) 25 (39.7)

N Stage 0.76 0.58
N0-N1 200 (59.5) 41 (69.5) 116 (71.6) 18 (34.6) 25 (39.7)
N2-N3 136 (40.5) 18 (30.5) 46 (28.4) 34 (65.4) 38 (60.3)

TNM Stage 0.34 0.076
I–II 87 (25.9) 14 (23.7) 51 (30.2) 8 (15.4) 16 (25.4)
III–IV 249 (74.1) 45 (76.3) 113 (69.8) 44 (84.6) 47 (74.6)

EBV-DNA load (copy/mL) 0.90 NA
≤ 2000 122 (55.2) 33 (55.9) 89 (54.9) NA NA
> 2000 99 (44.8) 26 (44.1) 73 (45.1) NA NA

Death 0.009 0.003
Yes 74 (22.0) 17 (28.8) 22 (13.6) 23 (44.2) 12 (19.0)
No 262 (78.0) 42 (71.2) 140 (86.4) 29 (55.8) 51 (81.0)

Distant metastasis 0.012 0.01
Yes 56 (16.7) 14 (23.7) 17 (10.5) 17 (32.7) 8 (12.7)
No 280 (83.3) 45 (76.3) 145 (89.5) 35 (67.3) 55 (87.3)

Locoregional failure 0.11 0.70
Yes 51 (15.2) 9 (15.3) 13 (8.0) 14 (26.9) 15 (23.8)
No 285 (84.8) 50 (84.7) 149 (92.0) 38 (73.1) 48 (76.2)

Disease progression 0.004 0.011
Yes 94 (28.0) 21 (35.6) 28 (17.3) 27 (51.9) 18 (28.6)
No 242 (72.0) 38 (64.4) 134 (82.7) 25 (48.1) 45 (71.4)

Abbreviations: TNM, Tumor-node-metastasis; EBV-DNA, Epstein-Barr virus DNA.

Table 2. The correlation between three spatial hotspots, infiltrating lymphocytes and immune score in the training and validation cohorts (r value are presented; 
*P < .05, **P < .01).

Variable Cancer Hotspot Immune Hotspot Immune-Cancer Hotspot I-CD3 S-CD3 I-CD8 S-CD8 I-CD45RO S-CD45RO IS

Training cohort
Cancer Hotspot – – – – – – – – – –
Immune Hotspot −0.029 – – – – – – – – –
Immune-Cancer Hotspot −0.059 0.069 – – – – – – – –
I-CD3 −0.107 0.367** 0.186** – – – – – – –
S-CD3 −0.225** 0.318** 0.156* 0.341** – – – – – –
I-CD8 −0.122 0.446** 0.146* 0.457** 0.350** – – – – –
S-CD8 −0.124 0.455** 0.092 0.233** 0.418** 0.545** – – – –
I-CD45RO −0.08 0.299** 0.085 0.390** 0.264** 0.440** 0.304** – – –
S-CD45RO −0.133* 0.292** 0.067 0.239** 0.359** 0.384** 0.504** 0.541** – –
IS −0.176** 0.528** 0.140* 0.565** 0.426** 0.752** 0.589** 0.679** 0.534** –
Validation cohort
Cancer Hotspot – – – – – – – – – –
Immune Hotspot −0.175 – – – – – – – – –
Immune-Cancer Hotspot 0.042 −0.029 – – – – – – – –
I-CD3 −0.123 0.174 0.089 – – – – – – –
S-CD3 −0.285** 0.429** 0.024 0.422** – – – – – –
I-CD8 −0.162 0.567** 0.110 0.285** 0.339** – – – – –
S-CD8 −0.182 0.544** −0.049 0.241* 0.483** 0.467** – – – –
I-CD45RO −0.124 0.313** 0.096 0.011 0.115 0.399** 0.231* – – –
S-CD45RO −0.135 0.507** −0.009 0.137 0.340** 0.297** 0.582** 0.314** – –
IS −0.240* 0.595** 0.028 0.470** 0.407** 0.646** 0.654** 0.430** 0.609** –
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Univariate analyses were performed in the training and 
validation cohorts, and the results showed that immune hotspot, 
TNM stage, and pretreatment EBV DNA levels were signifi-
cantly associated with OS, DFS, and DMFS in the training 
cohort. Moreover, immune hotspot and TNM stage were also 
significantly associated with OS, DFS, and DMFS in the valida-
tion cohort (Figure 3). Then, we performed multivariate Cox 
regression analysis, after which immune hotspots remained 
significant for OS, DFS, and DMFS in the training cohort (OS: 
HR 0.40, 95% CI 0.21–0.76, P = .005; DFS: HR 0.42, 95% CI 
0.24–0.74, P = .003; and DMFS: HR 0.39, 95% CI 0.19–0.80, 
P = .01) and validation cohort (OS: HR 0.42, 95% CI 0.21–0.84, 
P = .015; DFS: HR 0.52, 95% CI 0.29–0.94, P = .031; and DMFS: 
HR 0.37, 95% CI 0.16–0.86, P = .021). TNM stage and pretreat-
ment EBV DNA levels were also significantly associated with 
OS, DFS, and DMFS in multivariate analysis (Table 3).

Discussion

In this study, we aimed to elucidate the spatial heterogene-
ity of tumor and immune cells and their spatial relationship 
using deep learning and further evaluated their prognostic 
value in two NPC patient cohorts. Our results showed that 
immune hotspots, which reflect the spatial distribution pat-
terns of different immune cell subsets, are highly prognos-
tic, whereas cancer hotspots and immune-cancer hotspots 
are not. To the best of our knowledge, this study was the 
first to evaluate and validate the prognostic significance of 

spatial scores in NPC patients, highlighting the importance 
of examining not only immune cell density but also spatial 
patterns that can be indicative of immune status and dis-
ease prognosis.

Immune infiltration in the tumor immune microenvir-
onment has attracted considerable attention for many years, 
and the prognostic value of the type and density of TILs 
has been extensively explored.22–25 However, due to the 
complexity of the tumor microenvironment and the limited 
number of analytical methods, the spatial heterogeneity of 
TILs, which is a fundamental biological feature of the 
microenvironment, has been largely ignored. Recently, by 
applying principles and quantitative methods from ecology, 
Nawaz et al. identified cancer and immune hotspots in 
estrogen receptor-negative (ER-) breast cancer and further 
reported that the amount of colocalized cancer and 
immune hotspots weighted by the tumor area correlated 
with prognosis.18 In addition, with the same methods, 
Heindl et al. demonstrated that immune hotspots based 
on the spatial heterogeneity of TILs were highly prognostic 
for late recurrence in patients with ER-positive (ER+) 
breast cancer after endocrine therapy.13 Unfortunately, 
until now, little has been known about the spatial hetero-
geneity of cancer and immune cells in histological samples 
and its prognostic value in NPC patients. Here, for the first 
time, we determined cancer hotspots, immune hotspots, 
and immune-cancer hotspots in NPC patients and further 
investigated their influence on clinical outcomes.

Figure 2. Kaplan–Meier curves of overall, disease-free and distant metastasis-free survival according to the spatial score of the immune hotspots identified in CD3+ 

immunohistochemistry slides in the training and validation cohorts. Plots show (a) overall survival, (b) disease-free survival and (c) distant metastasis-free survival in the 
training cohort and (d) overall survival, (e) disease-free survival and (f) distant metastasis-free survival in the validation cohort. Abbreviations: HR, hazard ratio; and CI, 
confidence interval.
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Recent advances in cancer research have shown that 
tumors, like species striving for survival, harbor intricate 
population dynamics, which suggests the possibility of 
exploiting the evolution and ecology of tumors to understand 
the complex dynamics of the TME and predict clinical 
outcomes.10 In ecological studies, the spatial distribution of 
species in their habitats is a key determinant in accessing 
resources, evading predators and interacting with other 
organisms and the environment.26,27 Getis-Ord hotspot ana-
lysis, a spatial statistics method that has been widely used with 
ecological and demographical data to analyze spatial 

interactions, can pinpoint regions with statistically significant 
spatial clustering of high magnitudes of a particular 
variable.13,28 Thus, with this method, we can map the spatial 
distribution of cancer cells and lymphocytes in the TME. In 
this study, applying deep learning, spatial statistics and eco-
logical theory, we detected the spatial patterns of cancer cells 
and lymphocytes in NPC patients from two different hospitals 
and further evaluated their prognostic value in these two 
independent cohorts. Our results suggest that immune hot-
spots, but not cancer hotspots or immune-cancer hotspots, 
could predict the OS, DFS, and DMFS of NPC patients.

Figure 3. Univariate analysis of factors associated with overall survival, disease-free survival, and distant metastasis-free survival in the training and validation cohorts. 
Plots show (a) overall survival, (b) disease-free survival and (c) distant metastasis-free survival. Abbreviations: HR, hazard ratio; CI, confidence interval; TNM, tumor-node- 
metastasis EBV DNA; Epstein-Barr virus DNA.
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Previously, we identified the IS of NPC based on the densities 
of different CD3, CD8 and CD45RO lymphocyte populations in 
the tumor and stroma using digital pathology, which can also 
provide prognostic information for NPC patients.21 The IS pro-
vides information on the immune infiltration of different lym-
phocyte populations in the tumor immune microenvironment, 
which can help classify tumors into different categories and 
potentially represents a practical tool for directing therapeutic 
intervention.29,30 This study provided an additional dimension 
to the analysis of the immune functional phenotype in NPC. 
Here, for the first time, we investigated the spatial distribution 
patterns of TILs and constructed three spatial hotspots for NPC 
patients, which provide effective approaches to explore the spa-
tial heterogeneity and interaction between immune and cancer 
cells in NPC. In addition, our results show that immune hotspots 
could predict the prognosis of NPC patients, which confirmed 
the positive prognostic value of immune infiltration from the 
perspective of spatial distribution. Multivariate analysis showed 
that not only immune hotspots but also TNM stage were sig-
nificantly associated with OS, DFS, and DMFS in both cohorts. 
Currently, TNM staging is the key determinant for prognostic 
prediction in NPC patients in routine clinical practice, which 
provides useful prognostic information and deserves further 
investigation.

Certain limitations in our study are worth mentioning. We 
selected a window size of 128 pixels*128 pixels to perform digital 
pathology according to evidence provided in a previous 
publication.18 However, the prognostic significance of the hotspot 
scores might be sensitive to the window size adopted in the Getic- 
Ord analysis. Comprehensive comparisons between various win-
dow sizes should be performed in future, larger cohort studies.

In summary, we explored the spatial heterogeneity of neo-
plastic cells and immune cells in the TME of NPC patients using 
digital pathology and ecological analysis methods. Furthermore, 
three spatial scores were constructed, revealing that the immune 
hotspot was an independent prognostic factor for clinical out-
comes in both the training and validation cohorts. The addition 
of spatial analysis to the evaluation of the types and abundance of 
immune cells in the TME with digital pathology may aid in the 
identification of relevant clinical prognosis and treatment selec-
tion features, all of which deserve further analysis.
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survival in the training and validation cohorts.

Training cohort (n = 221) Validation cohort (n = 115)

Variable HR (95% CI) P HR (95% CI) P

overall survival
Immune Hotspot (high vs low) 0.40 (0.21–0.76) 0.005 0.42 (0.21–0.84) 0.015
TNM Stage (III–IV vs. I–II) 3.25 (1.15–9.20) 0.026 10.8 (1.46–79.2) 0.020
EBV-DNA (> 2000 vs.≤ 2000) 2.12 (1.09–4.09) 0.026 NA NA
disease-free survival
Immune Hotspot (high vs low) 0.42 (0.24–0.74) 0.003 0.52 (0.29–0.94) 0.031
TNM Stage (III–IV vs. I–II) 2.63 (1.11–6.21) 0.028 7.20 (1.73–29.9) 0.007
EBV-DNA (> 2000 vs.≤ 2000) 2.30 (1.27–4.16) 0.006 NA NA
distant metastasis-free survival
Immune Hotspot (high vs low) 0.39 (0.19–0.80) 0.01 0.37 (0.16–0.86) 0.021
TNM Stage (III–IV vs. I–II) 3.32 (1.00–11.0) 0.049 7.71 (1.03–57.9) 0.047
EBV-DNA (> 2000 vs.≤ 2000) 2.48 (1.16–5.29) 0.019 NA NA

Abbreviations: HR, hazard ratio; CI, confidence interval; TNM, Tumor-node-metastasis; EBV-DNA, Epstein-Barr virus DNA.
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